山东省莱芜市2017中考数学试卷及答案

合集下载

2017年中考数学真题试题(含答案)

2017年中考数学真题试题(含答案)

2017年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【答案】A.2.一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【答案】B.3.单项式32xy的次数是()A.1 B.2 C.3 D.4【答案】D.4.如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【答案】B.5.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×104【答案】B.6.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【答案】C.7.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C.8.把不等式组231345xx x+>⎧⎨+≥⎩的解集表示在数轴上如下图,正确的是()A.B.C.D.【答案】B.9.如图,已知点A在反比例函数kyx=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.4yx=B.2yx=C.8yx=D.8yx=-【答案】C.10.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067 【答案】D.二、填空题(本大题共8小题,每小题4分,共32分)11.5的相反数是 . 【答案】﹣5. 12.一组数据2,3,2,5,4的中位数是 .【答案】3.13.方程1201x x-=-的解为x = . 【答案】2.14.已知一元二次方程230x x k -+=有两个相等的实数根,则k = .【答案】94. 15.已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 cm 2.【答案】15.16.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =2米,BC =18米,则旗杆CD 的高度是 米.【答案】3.42.17.从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .【答案】16. 18.如图,在Rt △ABC 中,∠C =90°,点D 是AB 的中点,ED ⊥AB 交AC 于点E .设∠A =α,且tanα=13,则tan2α= .【答案】34.三、解答题19.(1)计算:101()4sin 60(3 1.732)122----+; (2)先化简,再求值:2261213x x x x x +-⋅-++,其中x =2. 【答案】(1)1;(2)21x -,2. 20.如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .【答案】证明见解析.21.某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A ,B ,C (A 等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A 等所在的扇形的圆心角等于 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【答案】(1)作图见解析;(2)108;(3)800.22.如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【答案】证明见解析.四、解答题23.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【答案】(1)60(020)80(2080)xyx x<<⎧=⎨-+≤≤⎩;(2)40元或60元.五、解答题24.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sin C;(2)求证:DE是⊙O的切线.【答案】(1)13;(2)证明见解析. 六、解答题 25.如图,抛物线2y x bx c =++经过点A (﹣1,0),B (0,﹣2),并与x 轴交于点C ,点M 是抛物线对称轴l 上任意一点(点M ,B ,C 三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P 1,P 2,使得△MP 1P 2与△MCB 全等,并求出点P 1,P 2的坐标;(3)在对称轴上是否存在点Q ,使得∠BQC 为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q 的坐标.【答案】(1)22y x x =--;(2)P 1(﹣1,0),P 2(1,﹣2)或P 1(2,0),P 2(52,74);(3)点Q 的坐标是:(1227-+1227--.。

2017年中考数学真题试题与答案(word版)

2017年中考数学真题试题与答案(word版)

XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。

2017中考数学复习----二次函数综合题

2017中考数学复习----二次函数综合题

2017中考数学复习----二次函数综合题1.如图,在△ABC中,∠BAC=90,BC∥x轴,抛物线y=ax2﹣2ax+3经过△ABC的三个顶点,并且与x轴交于点D、E,点A为抛物线的顶点.(1)求抛物线的解析式;(2)连接CD,在抛物线的对称轴上是否存在一点P使△PCD为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.3.如图,已知直线y=x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B 两点,与x轴交于另一个点C,对称轴与直线AB交于点E.(1)求抛物线的解析式;(2)在第三象限内、F为抛物线上一点,以A、E、F为顶点的三角形面积为4,求点F的坐标;(3)连接B、C,点P是线段,AB上一点,作PQ平行于x轴交线段BC于点Q,过P作PM ⊥x轴于M,过Q作QN⊥x轴于N,求矩形PQNM面积的最大值和P点的坐标.2.如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的函数关系式及顶点D的坐标;(2)若点M是抛物线对称轴上的一个动点,求CM+AM的最小值.4.在平面直角坐标系中,抛物线y=x2﹣x﹣2的顶点为点D,与直线y=kx在第一象限内交于点A,且点A的横坐标为4;直线OA与抛物线的对称轴交于点C.(1)求△AOD的面积;(2)若点F为线段OA上一点,过点F作EF∥CD交抛物线于点E,求线段EF的最大值及此时点E坐标;(3)如图2,点P为该抛物线在第四象限部分上一点,且∠POA=45°,求出点P的坐标.5.如图,已知抛物线L1:y1=x2,平移后经过点A(﹣1,0),B(4,0)得到抛物线L2,与y轴交于点C.(1)求抛物线L2的解析式;(2)判断△ABC的形状,并说明理由;(3)点P为抛物线L2上的动点,过点P作PD⊥x轴,与抛物线L1交于点D,是否存在PD=2OC?若存在,求出点P的坐标;若不存在,说明理由.7.如图,已知抛物线与x轴交于A (﹣4,0)和B(1,0)两点,与y轴交于C点.(1)求此抛物线的解析式;(2)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q点,当P点运动到什么位置时,线段PQ的长最大,并求此时P点的坐标.6.抛物线y=ax2+bx+c(a≠0)的顶点为P(1,﹣4),在x轴上截得的线段AB长为4个单位,OA<OB,抛物线与y轴交于点C.(1)求这个函数解析式;(2)试确定以B、C、P为顶点的三角形的形状;(3)已知在对称轴上存在一点F使得△ACF周长最小,请写出F点的坐标.8.如图,抛物线y=﹣x2+ax+8(a≠0)于x轴从左到右交于点A,B于y轴交于点C于直线y=kx+b 交于点c和点D(m,5),tan∠DCO=1。

2017年山东省莱芜市中考数学试卷-答案

2017年山东省莱芜市中考数学试卷-答案

山东省莱芜市2017年初中学业水平考试数学答案解析第Ⅰ卷=︒⨯2)1803602)180︒,设这个多边形的边数是【考点】多边形的内角与外角和及对角线条数的求法故选D.【解析】解:如图,连接DP ,BD ,作DH BC ⊥于H216AP QM t =5sin 3AD A =,∴56AP QM t =;(利用解直角三角形求出20233+16AP QM =-选项中的图象符合题意D.AB ED AC EG=,224DM=⨯=,∴CDEF是菱形,∴,∵EF EDFD EC=⨯2=-1025=-1025360︒224DM=⨯,CDEF是菱形,先计算2E C=⨯-,计算可得结论1025【考点】正五边形的性质,相似的判定和性质,勾股定理第Ⅱ卷2(2)如图:tan3131tan3118.60AB ︒=︒≈M ,在Rt GMF △中,tan19GM FM ︒,在tan 40CD ︒,设甲乙两楼之间的距离为(1)在直角三角形45EDC∠=︒,∴45FAD∠=︒,∴90AND∠=︒,即DE AF⊥5315tan 4416AF BAD x x ∠==,AH =知,90HDG ODA ∠+∠=︒,29PQ PB=;25PQ PB=;234PQ PB==210PQ PB==2∴此时不存在符合条件的P、Q【提示】(1)由对称性和(2,3)A ,(4,3)B ,可知抛物线的对称轴是:3x =,利用顶点式列方程组解出可得抛物线的表达式;(2)如图1,先利用待定系数法求直线AC 的解析式,设点(,65)D m m m -+-,则点(,27)E m m -+,根据解析式表示DE 和AE 的长,由已知的比例式列式得结论;(3)根据题意得:BPQ △为等腰直角三角形,分三种情况:①若90BPQ ∠=︒,BP PQ =,如图2,作辅助线,构建全等三角形,证明BAP QMP △≌△,可得结论;如图3,同理可得结论;②若90BQP ∠=︒,BQ PQ =,如图4,证得:BNQ QMP △≌△,则3NQ PM ==,1NG =,5BN =,从而得出结论;如图5,同理易得QNB PMQ △≌△,可得结论;③若90PBQ ∠=︒,BQ BP =,如图6,由于23AB NQ =≠=,此时不存在符合条件的P 、Q【考点】二次函数综合体。

2017山东莱芜中考试卷解析

2017山东莱芜中考试卷解析

2017年山东省莱芜市初中学业考试数学试题(总分120分 考试时间120分钟)第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,在每小题都给出的四个选项中,只有一项是正确的,请把正确选项的代码涂写在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分) 1.(2017山东莱芜,1,3分)-6的倒数是( ) A .-16B .16C .-6D .6答案:A ,解析:-6的倒数是-16.2.(2017山东莱芜,2,3分)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为( )A .7.8×10-7B .7.8×10-8C .0.78x 10-7D .78x 10-8答案:A ,解析:0.000 000 78=7.8×10-7 3.(2017山东莱芜,3,3分)下列运算正确的是( ) A .2x 2-x 2=1 B .x 6÷x 3=x 2 C .4x ·x 4=4x 5 D .(3xy 2)2=6x 2y 4 答案:C ,解析:A 项, 2x 2-x 2=x 2,该项错误; B 项,x 6÷x 3=x 3,该项错误; C .4x ·x 4=4x 5,该项正确; D .(3xy 2)2=9x 2y 4,该项错误. 4.(2017山东莱芜,4,3分)电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少?设自行车的平均速度为x 千米/小时,应列方程为( ) A .30x -1=40x -25B .30x -1=40x +25C .30x +1=40x -25D .30x +1=40x +25答案:B ,解析:据时间方面的等量关系列方程:30x -1=40x +25.5.(2017山东莱芜,5,3分)将一个正方体沿正面相邻两条棱的中点连线截去一个三梭柱,得到一个如图所示的几何体,则该几何体的左视图是( )答案:C ,解析:该几何体的左视图是C 项中的图形. 6.(2017山东莱芜,6,3分)如图,AB 是⊙O 的直径,直线DA 与⊙O 相切于点A ,DO 交⊙O 于点C ,连接BC ,若∠ABC =21°,则∠ADC 的度数为( ) A .46° B .47° C .48° D .49°答案:C ,解析:∵直线DA 与⊙O 相切,∴∠ODA =90°. ∵∠AOD =2∠ABC =2×21°=42°,∴∠ADC =90°-∠AOD =90°-42°=48°. 7.(2017山东莱芜,7,3分)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是( ) A .12 B .13 C .14 D .15 答案:C ,解析:设多边形的边数是n ,据题意,得 (n -2)·180°=2×360°+180°. 解得n =7.7边形的对角线的条数是7(73)2⨯-=14. 8.(2017山东莱芜,8,3分)如图,在Rt △ABC 中,∠BCA =90°,∠BAC =30°,BC =2,将Rt △ABC 绕A 点顺时针旋转90°得到Rt △ADE ,则BC 扫过的面积为( ) A .π2B .(2-3)πC .2-32πD .πB(第6题图)正面(第5题图)A B C D答案:D ,解析:∵∠BCA =90°,∴222BC AC AB +=,即222AB AC BC -=. ∵整个图形的面积=△ABC 的面积+扇形BAD 的面积 =阴影部分的面积+扇形CAE 的面积+△AED 的面积, 又△ABC 的面积=△AED 的面积,∴阴影部分的面积=扇形BAD 的面积-扇形CAE 的面积= 2290()360AB AC π⋅-= 290360BCπ⋅=π.点拨 线段旋转所形成的阴影部分的面积=线段两端点分别绕旋转中心旋转所形成的扇形面积的差. 9.(2017山东莱芜,9,3分)如图,菱形ABCD 的边长为6,∠ABC =120°,M 是BC 边的一个三等分点,P 是对角线AC 上的动点,当PB +PM 的值最小时,PM 的长是( ) A .72B .273C .355D .264答案:A ,解析:法一:解析:连接BD 、DM ,DM 交AC 于点P ,则此时PB +PM 的值最小.过点D 作DF ⊥BC 于点F ,过点M 作ME ∥BD 交AC 于点E . ∵∠ABC =120°,∴∠BCD =60°.又∵DC =BC ,∴△BCD 是等边三角形.∴BF =CF =12BC =3.∴MF =CF -CM =3-2=1,DF =3BF =3 3.∴DM =(33)2+12=27.∵ME ∥BD ,∴△CEM ∽△CO B.∴ME OB =CM BC =26=13.又∵OB =OD ,∴ME OD =13.MDAB P(第9题图)∵ME ∥BD ,∴△PEM ∽△PO D.∴PM PD =ME OD =13.∴PM =14DM =14×27=72.故选A .法二:作点M 关于AC 的对称点M ′,连接BM ′交AC 于点P ,此时PB +PM 的值最小. 过点作BE ⊥CD 于E .可求CE =3,则EM ′=1. 利用勾股定理可得BM ′=利用相似三角形可得PM ′=PM =72.10.(2017山东莱芜,10,3分)如图,在四边形ABCD 中,DC ∥AB ,AD =5,CD =3,sin A =sin B =13,动点P 自A 点出发,沿着边AB 向点B 匀速运动,同时动点Q 自点A 出发,沿着边AD -DC -CB 匀速运动,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P 运动t (秒)时,△APQ 的面积为S ,则S 关于t 的函数图象是( )AB C P D M′E M答案:B ,解析:法一:过点D 作DE ⊥AB 于点E ,过点C 作CF ⊥AB 于点F . ∵sin A =DE AD =13,∴DE 5=13.∴DE =53.∴CF =DE =53.∵sin A =sin B ,∴∠A =∠B.∴△ADE ≌△BCF . ∴BC =AD =5,AE =BF =52-⎝⎛⎭⎫532=103 2.∴AB =AE +EF +BF =2×1032+3=2032+3,AD +CD +BC =5+3+5=13.∵2032+3<13, ∴当点P 到达终点B 时,点Q 在线段BC 上,此时△APQ 的面积为S >0. 当8<t ≤2032+3时,点Q 在线段BC 上,此时AP =t ,AD +CD +CQ =t ,∴CQ =t -8,∴BQ =5-( t -8)=13-t .过点Q 作QG ⊥AB 于点G ,则sin B =QG BQ =13,∴QG 13-t =13.∴QG =13(13-t ).∴△APQ 的面积S =12AP ×QG =12×t ×13(13-t )=-16(t 2-13t ),其图象开口向下.又∵当点P 到达终点B 时,点Q 在线段BC 上,此时△APQ 的面积为S >0.∴由此可得答案选B .G法二:分为三段,当点Q 在AD 上运动时,S 关于t 的函数为二次函数,且S 随t 的增大而增大; 当点Q 在DC 上运动时,S 关于t 的函数为一次函数,且S 随t 的增大而增大;P(第10题图)当点Q 在AD 上运动时,S 关于t 的函数为二次函数,且S 随t 的增大而减小,注意在该段当点P 运动点B 停止时,点Q 没有到达达点B. 综上,选B.11.(2017山东莱芜,11,3分)对于实数a ,b ,定义符号min ,其意义为:当a ≥b 时,min=b :当a <b 时,min=a .例如min=-1.若关于x 的函数y =min {2x -1,-x +3},则该函数的最大值为( ) A .23B .1C .43D .53答案:D ,解析:当2x -1≥-x +3时,43x ≥,y =min {2x -1,-x +3}=-x +3,最大值为53.当2x -1<-x +3时,43x <,y =min {2x -1,-x +3}=2x -1,最大值为53. 综上,该函数的最大值为53.12.(2017山东莱芜,12,3分)如图,正五边形ABCDE 的边长为2,连结AC 、AD 、BE ,BE 分别与AC 和AD 相交于点F ,G ,连结DF ,给出下列结论:①∠FDG =18°;②FG =3-5;③(S 四边形CDEF )2=9+25;④DF 2-DG 2=7-25.其中结论正确的个数是( ) A .1 B .2 C .3 D .4答案:B ,解析:(1)∵正五边形ABCDE 的每一个内角都等于(5-2)×180°5=108°.∴∠BAC =∠BCA =(180°-108°)÷2=36°. 同理可得∠ABE =∠AEB =∠EAD =∠EDA =36°. ∴∠CBF =∠FCD =∠GDC =∠DEG =108°-36°=72°. ∴∠BFC =180°-∠BCA -∠CBF =180°-36°-72°=72°.GF(第12题图)∴∠BFC =∠CBF =72°. ∴BC =CF =2.同理可得DG =DE =2.∵BC =CF ,BC =CD ,∴CF =C D . 又∵∠FCD ==72°, ∴∠CDF =∠CFD =(180°-72°)÷2=54°. ∴∠FDG =∠GDC -∠CDF =72°-54°=18°. 由此可知①正确;(2)∵∠ABE =∠BCA =36°,∠BAF =∠CAB ,∴△BAF ∽△CA B .∴AB AC =AF AB .∴AB AF +CF =AF AB .∴2AF +2=AF2.解得AF =5-1.∴AC =AF +FC =(5-1)+2=5+1.∵△AFG ∽△ACD ,∴AF AC =FGCD .∴5-15+1=FG 2.解得FG =3-5.由此可知②正确;(3)过点A 作AM ⊥CD 于点M ,交BE 于点N .MMG∵AC =AD , AM ⊥CD ,∴CM =DM =12CD =1.∴cos ∠ACM =CM AC =15+1=5-14.∴(sin ∠ACM )2=1-( cos ∠ACM )2=1-(5-14)2. ∵CD =CF =EF =DE =2,∴四边形CDEF 是菱形.∴S 四边形CDEF =2 S △CDF=2×(12CF ×CD ×sin ∠ACM )=2×(12×2×2×sin ∠ACM )=4sin ∠ACM .∴(S 四边形CDEF )2=(4sin ∠ACM )2 =16×(sin ∠ACM )2=10+25≠9+25. 由此可知③错误;(4)过点F 作FG ⊥CD 于点G . ∵cos ∠ACM =cos ∠FCG =CG FC =5-14,∴CG 2=5-14. ∴CG =5-12.∴DG =CD -CG =2-5-12=5-52. ∴DG 2=(5-52)2=15-552.由对称性知CF=DG.∴DF 2-DG 2=DG 2-CG 2=6-25≠7-25.由此可知④错误;综上①②正确,故选B .第Ⅱ卷(非选择题 共84分)二、填空题(本大题共5小题,每小题填对得4分,共20分.请填在答题卡上) 13.(2017山东莱芜,13,4分)3012cos 45(3.14)2π-⎛⎫--︒+-+ ⎪⎝⎭=___________.答案:-7(-2)3-2×22+1+22=-8-2+1+22=-714.(2017山东莱芜,14,4分)圆锥的底面周长为23π,母线长为2,点P 是母线OA 的中点,一根细绳(无弹性)从点P 绕圆锥侧面一周回到点P .则细绳的晟短长度为___________.答案:1,解析:将圆锥的侧面展开,如图.取OA ′的中点P ′,连接PP ′,则P P ′ 即为细绳的最短路径. ∵2180O π∠⋅⋅︒=23π,∴∠O =60°.∵OP =OP ′=12×2=1,∴△OPP ′是等边三角形. ∴PP ′=1. O AA′P P ′15.(2017山东莱芜,15,4分)直线y =kx +b 与双曲线6y x=-交于A (-3,m ),B (n ,-6)两点.将直线y =kx +b 向上平移8个单位长度后,与双曲线交于D ,E 两点,则S △ADE =___________.答案:16,解析:把A (-3,m )代入6y x=-,得m =-6-3=2.∴A (-3,2).把B (n ,-6)代入6y x=-,得-6=-6n .∴n =1.∴B (1,-6).把A (-3,2)、B (1,-6)分别代入y =kx +b ,得⎩⎨⎧2=-3k +b -6=k +b .解得⎩⎨⎧k =-2b =-4. ∴y =-2x -4. 把x =0代入y =-2x -4,得y =-4.∴直线y =-2x -4与y 轴交于点(0,-4). 把点(0,-4)向上平移8个单位长度后得到的点是(0,4),∴将直线y =-2x -4向上平移8个单位长度后所得的直线是y =-2x +4.解方程组⎩⎪⎨⎪⎧y =-2x +4y =-6x ,得⎩⎨⎧x 1=3y 1=-2,⎩⎨⎧x 2=-1y 2=6.∴可以取D (-1,6)、E (3,-2).设直线AE 的解析式为y =mx +n ,则⎩⎨⎧2=-3m +n-2=3m +n .解得⎩⎪⎨⎪⎧m =-23n =0. ∴直线AE 的解析式为y =-23x ,该直线经过原点(0,0).过点D 作DC ⊥x 轴于点C ,交AE 于点F ,则C (-1,0)、F (-1,-23).∴DF =6-23=163.∴S △ADE =S △ADF + S △FDE =12DF ×CM +12DF ×CN =12DF ×(CM +CN )= 12DF ×MN =12×163×6=16.16.(2017山东莱芜,16,4分)二次函数y =ax 2+bx +c (a <0) 图象与x 轴的交点A 、B 的横坐标分别为-3,1,与y 轴交于点C ,下面四个结论: ①16a -4b +c <0; ②若P (-5,y 1)、Q (52,y 2)是函数图象上的两点,则y 1>y 2; ③a =-13c ;④若△ABC 是等腰三角形,则b .其中正确的有_______________.(请将结论正确的序号全部填上) 答案:①③,解析:①∵a <0,∴该抛物线开口向下. ∵图象与x 轴的交点A 、B 的横坐标分别为-3,1,∴当x =-3或1时,y =0且抛物线的对称轴是直线x =-1. ∴当x =-4时,y =a +b +c <0. 由此可知①正确;②点P (-5,y 1)关于对称轴的对称点是P ′(3,y 1).点是P ′(3,y 1)、Q (52,y 2)都在对称轴右侧. ∵该抛物线开口向下,对称轴是直线x =-1, ∴当x >-1时,y 随x 的增大而减小. ∵3>52,∴y 1<y 2.由此可知②错误;③∵对称轴是直线x =-1, ∴-b2a=-1.∴b =2a .∵抛物线过点(1,0),∴a +b +c =0.把b =2a 代入上式,得a +2a +c =0.∴a =-13c . 由此可知③正确;④若△ABC 是等腰三角形,则有两种情况:AB =AC 或BA =BC ,因此c 的值有两个,b 的值也有两个.由此可知④错误.17.(2017山东莱芜,17,4分)如图,在矩形ABCD 中,BE ⊥AC 分别交AC 、AD 于点F 、E ,若AD =1,AB =CF ,则AE =___________.CE . E DB (第17题图)EDB A∵AB =CF ,AB =CD ,∴CF =CD .又∵CE =CE ,∠EFC =∠EDC =90°,∴△EFC ≌△ED C.∴DE =EF .设AB =CD =CF =a ,则AC 2=AD 2+CD 2=12+a 2=1+a 2.设AE =x ,则DE =EF =1-x .∵△ABE ∽△DAC ,∴AB AD =AE DC .∴a 1=x a. ∴x =a 2…………………………①∵△AEF ∽△ACD ,∴AE AC =EF DC .∴AE 2AC 2=EF 2DC2. ∴x 21+a 2=(1-x )2a 2.…………………………② 由①、②两式,可解得x =5-12, ∴AE =5-12.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤)18.(本题满分6分)(2017山东莱芜,18,6分) 先化简,再求值:(a +63a a -)÷(a +993a a +-),其中a 3. 思路分析:先将两括号内的式子分别通分,再将除法转化为乘法,然后约分化简,最后代入所给的值求解. 解:原式=(3)63a a a a -+-÷(3)993a a a a -++- =233a a a +-×2369a a a -++=(3)3a a a +-×23(3)a a -+ =3a a +.当a3时,原式=3aa+119(本题满分8分)(2017山东莱芜,19,8分)为了丰富校园文化,某学校决定举行学生趣味运动会,将比赛项目确定为袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛五种.为了解学生对这五项运动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择五项中的一种),并将调查结果绘制成如下不完整的统计图表:根据图表中提供的信息,解答下列问题:(1)a=____________,b=_______,c=_______.(2)请将条形统计图补充完整;(3)根据调查结果,请你估计该校3000名学生中有多少名学生最喜欢绑腿跑;(4)根据调查结果,某班决定从这五项(袋鼠跳、夹球跑、跳大绳、绑腿跑、拔河赛可分别记A、B、C、D、E)中任选其中两项进行训练,用画树状固或列表的方法求恰好选到学生喜欢程度最高的两项的概率.思路分析:(1)根据“袋鼠跳”的学生数和百分比可以求出被调查学生的总数,即a的值;用“绑腿跳”的百分比乘以a,即可得b的值;用“夹球跑”的学生数除以a,即可得c的值.(2)根据b的值即可将条形统计图补充完整.(3)用3000乘以“绑腿跳”的百分比,即可得到该校学生中最喜欢绑腿跑的人数.(4)用“列表法”求解即可,需注意本小题是属于“不放回”类型的.解:(1)a=300,b=60,c=10;(2)学生最喜欢的活动项目的人数条形统计图(3)3000×20%=600(名);(4)P =220=110.(树状图或列表略)20.(本题满分9分)(2017山东莱芜,20,9分)某学校教学楼(甲楼)的顶部E 和大门A 之间挂了一些彩旗.小颍测得大门A 距甲楼的距离AB 是31 m ,在A 处测得甲楼顶部E 处的仰角是31°.(1)求甲楼的高度及彩旗的长度:(精确到0.01 m )(2〉若小颖在甲楼楼底C 处测得学校后面医院楼(乙楼)楼顶G 处的仰角为40°.爬到甲楼楼顶F 处测得乙楼楼顶G 处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01 m )(cos31°≈0.86,t an31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77, tan40°≈0.84)思路分析:(1)应用∠A 的正切可以求得甲楼的高度BE ;应用∠A 的余切可以求得彩旗的长度AE ;(2)设甲乙两楼之间的距离为x m ,再利用19°角、40°角的正切列方程求解. 解:(1)在Rt △ABE 中,BE =AB ·tan31°=31×tan31°≈31×0.60=18.60.AE =cos31AB ︒=31cos31︒≈310.86≈36.05 故甲楼的高度为18.60m ,彩旗的长度为36.05m.(2)过点F 作FM ⊥GD ,交GD 于M ,在Rt △GMF 中,GM =FM tan19°,在Rt △GDC 中,GD =CD tan40°,设甲乙两楼之间的距离为x m ,FM =CD =x ,则根据题意得: 19︒40︒31︒甲乙 C D E F G A B (第20题图)x tan40°-x tan19°=18.60;解之得:x =37.20m ;乙楼的高度:GD =CD tan40°≈37.20×0.84≈31.25,故乙楼的高度为31.25m ,甲乙两楼之间的距离为37.20m.21.(本题满分9分)(2017山东莱芜,21,9分)己知△ABC 与△DEC 是两个大小不同的等腰直角三角形.(1)如图①所示,连接AE 、DB .试判断线段AE 和DB 的数量和位置关系,并说明理由;(2)如图②所示,连接DB ,将线段DB 绕D 点顺时针旋转90°到DF ,连接AF ,试判断线段DE 和AF 的数量和位置关系,并说明理由.思路分析:(1)通过证明Rt △ACE ≌Rt △BCD 即可解决;(2)通过证明△EBD ≌△ADF 即可得解.解:(1)AE =DB ,AE ⊥DB .理由:由题意可知,CA =CB ,CE =CD ,∠ACE =∠BCD =90°,∴Rt △ACE ≌Rt △BCD .∴AE =DB .延长DB 交AE 于点M , ① C E B ② F C E B (第21题图)∵Rt△ACE≌Rt△BCD,∴∠AEC=∠BDC.又∵∠AEC+∠EAC=90°,∴∠BDC+∠EAC=90°,∴在△AMD中,∠AMD=180°-90°=90°,∴AE⊥DB.(2)DE=AF,DE⊥AF.理由:设ED与AF相交于点N,由题意可知,BE=AD.∵∠EBD=∠C+∠BDC=90°+∠BDC,∠ADF=∠BDF+∠BDC=90°+∠BDC,∴∠EBD=∠ADF,又∵DB=DF,∴△EBD≌△ADF.∴DE=AF.∠E=∠F AD,∵∠E=45°,∠EDC=45°,∴∠F AD=45°. ∴∠AND=90°.∴DE ⊥AF .22.(本题满分10分〉(2017山东莱芜,22,10分)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩毎袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)该网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10 000元购进甲、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的45.已知甲种口罩毎袋的进价为22.4元,乙种口罩毎袋的进价为18元.请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?思路分析:(1)根据等量关系列方程组求解;(2)根据不等关系列不等式组求解各种符合题意的方案;分别计算所得各种方案的获利情况,可得利润最大的方案及最大利润;也可以建立二次函数模型求解.解:(1)设该网店甲种口罩每袋的售价为x 元,乙种口罩每袋的售价为y 元,根据题意得:523110x y x y -=⎧⎨+=⎩, 解这个方程组得:2520x y =⎧⎨=⎩, 故该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元.(2)设该网店购进甲种口罩m 袋,则购进乙种口罩(500-m )袋,根据题意得:4(500)522.418(500)10000m m m m ⎧>-⎪⎨⎪+-≤⎩, 解这个不等式组得:222 2<m ≤227 3,因m 是整数,故有5种进货方案,分别是: 购进甲种口罩223袋,乙种口罩277袋;购进甲种口罩224袋,乙种口罩276袋;购进甲种口罩225袋,乙种口罩275袋;购进甲种口罩226袋,乙种口罩274袋;购进甲种口罩227袋,乙种口罩273袋;设网店获利为w 元,则有w =(25-22.4)m +(20-18)(500-m )=0.6m +1000,因w 随m 的增大而增大,故当m =227时,w 最大,W 最大=0.6×227+1000=1136.2(元).故网店购进甲种口罩227袋,乙种口罩273袋时,获利最大,最大获利为1136.2元.23.(本题满分10分〉(2017山东莱芜,23,10分)已知AB 是⊙O 的直径,C 是圆上一点,∠BAC 的平分线交⊙O 于点D ,过D 作DE ⊥AC 交AC 的延长线于点E ,如图①.(1)求证:DE 是⊙O 的切线;(2)若AB=10.AC=6,求BD的长;(3)如图②,若F是OA的中点,FG⊥OA交直线DE于点G,若FG=194,tan∠BAD=34,求⊙O的半径.思路分析:(1)连接OD,证明OD⊥DE即可得解;(2)连接BC,构造直角三角形,利用勾股定理求出BC的长度,再进一步应用三角形中位线性质及勾股定理求解;(3)设FG与AD交于点H,证明△DHE是等腰三角形是解题突破口.解:(1)如图,连接OD.NEDCBAO∵OA=OD,∴∠OAD=∠ODA.又∵AD平分∠BAC,∴∠OAD=∠DAE.∴∠ODA=∠DAE. ∴OD∥AE.∴∠ODE+∠AED=180°.又∵∠AED=90°,∴∠ODE=90°.∴OD⊥DE.∴DE是⊙O的切线.(2)连接BC,交OD于点N.∵AB是直径,∴∠BCA=90°.∵OD∥AE,O是AB的中点,∴ON∥AC,且ON=12 AC,∴∠ONB=90°,且ON=3.则BN=4,ND=2,∴BD==.②(第23题图)①(3)如图,设FG 与AD 交于点H .FEH C G M DA OB根据题意,设AB =5x ,AD =4x ,BD =3x ,则AF =54x ,5315tan 4416FH AF BAD x x =⋅∠=⋅=, 52544cos 165x AF AH x BAD ===∠,HD =AD -AH =253941616x x x -=. 由(1)可知,∠HDG +∠ODA =90°,在Rt △HF A 中,∠F AH +FHA =90°,又∵∠OAD =∠ODA ,∠FHA =∠DHG ,∴∠DHG =∠HDG .∴GH =GD .过点G 作GM ⊥HD ,交HD 于点M .∴MH =MD ,∴HM =12HD =12×3916x =3932x . ∵∠F AH +∠AHF =90°,∠MHG +∠HGM =90°,∴∠F AH =∠HGM . 在Rt △HGM 中,HG =sin HM HGM ∠=393235x =6532x . ∵FH +GH =194,故有1516x +6532x =194,解之得:x =85. 故此圆的半径为52×85=4.24.(本题满分12分)(2017山东莱芜,24,12分)抛物线y =ax 2+bx +c 过A (2,3),B (4,3),C (6,-5)三点.(1)求抛物线的表达式;(2)如图①,抛物线上一点D 在线段AC 的上方,DE ⊥AB 交AC 于点E ,若潢足DE AE,求点D 的坐标.(3〉如图②,F 为抛物线顶点,过A 作直线l ⊥AB ,若点P 在直线l 上运动,点Q 在x 轴上运动,是否存在这样的点P 、Q ,使得以B 、P 、Q 为顶点的三角形与△ABF 相似.若存在,求P 、Q 的坐标,并求此时△BPQ 的面积;若不存在,请说明理由.思路分析:(1)将A (2,3),B (4,3),C (6,-5)三点的坐标分别代入y =ax 2+bx +c ,得到关于a ,b ,c 的方程组,解所得的方程组得到a ,b ,c 的值,即得抛物线的解析式;(2)根据题意,AB ∥x 轴,DE ⊥x 轴,求出直线AC 的解析式y =kx n +,设D 设点D (m ,ax 2+bx +c ),2<m <6,则点E (m ,kx n +),用含有m 的式子分别表示出AE 、DE 的长度,再求解;(3)先确定△ABF 的形状,再分不同情况分别讨论求解.解:(1)根据题意,设抛物线表达式为y =2(3)a x h -+.所以395a h a h +=⎧⎨+=-⎩﹐﹒ 解得14a h =-⎧⎨=⎩﹐﹒ 所以抛物线表达式为y =265x x -+-.(2)设直线AC 的表达式为y =kx n +,则2365k n k n +=⎧⎨+=-⎩﹐﹒ 解得27k n =-⎧⎨=⎩﹐﹒ ∴直线AC 表达式为y =-2x +7.设点D (m ,265m m -+-),2<m <6,则点E (m ,-2m +7),∴DE =2(65)(27)m m m -+---+=2812m m -+-.设直线DE 与直线AB 交于点G ,则AG =m -2,EG =3(27)m --+=2(m -2),m -2>0.(第24题图)在Rt △AEG 中,∴AE (m -2).由DEAE ,2,化简得221114m m -+=0,解得m =72或m =2(舍去).∴D (72,154). (3)根据题意得,△ABF 为等腰直角三角形,假设存在满足条件的点P 、Q ,则△BPQ 为等腰直角三角形.(i )若∠BPQ =90°,BP =PQ ,如图①,易知△BAP ≌△PMQ ,由AB =PM =2,所以P(2,2),Q (3,0),PQ ,S △BPQ =52.如图②,△BNP ≌△PMQ ,由PN =QM =2,所以P (2,-2),Q (-3,0),PQ S △BPQ =292. (ii )若∠BQP =90°,BQ =PQ ,如图③,易知△BNQ ≌△QMP ,由NQ =PM =3,所以P(2,-5),Q (-l ,0),PQ S △BPQ =17.如图④,△QNB ≌△PMQ ,由NQ =PM =3,所以p(2,-1),Q (5,0),PQ S △BPQ =5.(iii )若∠PBQ =90°,BQ =BP ,如图⑤,易知△PQB ≌△BNQ ,又AB =2,NQ =3,AB ≠NQ ,此时不存在满足条件的点P 、Q .。

专题10 四边形-2017年中考数学试题分项版解析汇编(解析版)

专题10 四边形-2017年中考数学试题分项版解析汇编(解析版)

专题10:四边形一、选择题1.(2017北京第6题)若正多边形的一个内角是150°,则该正多边形的边数是( )A . 6B . 12C . 16D .18【答案】B .【解析】试题分析:设多边形的边数为n ,则有(n -2)×180°=n ×150°,解得:n =12.故选B .考点:多边形的内角与外角2. (2017河南第7题)如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C .AC BD = D .12∠=∠【答案】C .考点:菱形的判定.3. (2017湖南长沙第10题)如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 20【答案】D【解析】试题分析:根据菱形的对角线互相垂直,可知OA =3,OB =4,根据勾股定理可知AB =5,所以菱形的周长为4×5=20.故选:D考点:菱形的性质4. (2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( ) A .22 B .21 C .215- D .随H 点位置的变化而变化【答案】B【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m =8a ,设CM =x ,DE =y ,则DM =2a -x ,EM =2a -y ,∵∠EMG =90°,∴∠DME +∠CMG =90°.∵∠DME +∠DEM =90°,∴∠DEM =∠CMG ,又∵∠D =∠C =90°△DEM ∽△CMG , ∴CG CM MG DM DE EM ==,即22CG x MG a x y a y==-- ∴CG =(2)(2)=,x a x x a y CG MG y y--= △CMG 的周长为CM +CG +MG =24ax x y-在Rt △DEM 中,DM 2+DE 2=EM 2即(2a -x )2+y 2=(2a -y )2整理得4ax -x 2=4ay∴CM +MG +CG =2444ax x ay a y y-===n . 所以12n m = 故选:B .考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理5. (2017山东临沂第7题)一个多边形的内角和是外角和的2倍,这个多边形是( )A .四边形B .五边形C .六边形D .八边形【答案】C【解析】试题分析:根据多边形的外角和为360°,可知其内角和为720°,因此可根据多边形的内角和公式(n -2)·180°=720°,解得n =6,故是六边形.故选:C考点:多边形的内外角和6. (2017山东临沂第12题)在ABC V 中,点D 是边BC 上的点(与B 、C 两点不重合),过点D 作DE AC ∥,DF AB ∥,分别交AB ,AC 于E 、F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形C .若BD CD =,则四边形AEDF 是菱形D .若AD 平分BAC ∠,则四边形AEDF 是菱形【答案】D【解析】试题分析:根据题意可知:DE AC ∥,DF AB ∥,可得四边形AEDF 是平行四边形.若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;选项A 错误;若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;选项B 错误;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形;选项C 错误;若AD 平分∠BAC ,则四边形AEDF 是菱形;正确.故选:D考点:特殊平行四边形的判定7. (2017山东青岛第7题)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23B .23C .721D .7212 【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. (2017四川泸州第11题)如图,在矩形ABCD 中,点E 是边BC 的中点,AE BD ⊥,垂足为F ,则tan BDE ∠的值是 ( )A .24B .14C .13D .23【答案】A .【解析】试题分析:由AD ∥BC 可得△ADF ∽△EBF ,根据相似三角形的性质可得AD AF DF EB EF BF== ,因点E 是边BC 的中点且AD =BC ,所以AD AF DF EB EF BF ===2,设EF =x ,可得AF =2x ,在Rt △ABE 中,由射影定理可得BF =2x ,再由AD AF DF EB EF BF ===2可得DF =22x ,在Rt △DEF 中,tan BDE ∠=2422EF x DF x == ,故选A . 9. (2017江苏苏州第10题)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .283B .243C .323D .3238-【答案】A .【解析】试题分析:作,,DH AB PK AB FL AB ⊥⊥⊥在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点 423,3AF EF EL ∴==∴=,P 是F E 的中点,32PK ∴= 43DH = 1373322PP CD ∴-= 高为4 7382832S ∴=⨯=L K H故答案选A .考点:平行四边形的面积,三角函数. 10.(2017江苏苏州第7题)如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为A .30B .36C .54D .72【答案】B .【解析】试题分析:∠ABE =3601=3652︒⨯︒ 故答案选B . 考点:多边形的外角,等腰三角形的两底角相等11.(2017浙江台州第10题) 如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE BF =,将,AEH CFG ∆∆分别沿,EH FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AE EB 为 ( )A . 53B .2C . 52D .4 【答案】A考点:1、菱形的性质,2、翻折变换(折叠问题)二、填空题1.(2017天津第17题)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .【答案】5.【解析】试题分析:连结AC ,根据正方形的性质可得A 、E 、C 三点共线,连结FG 交AC 于点M ,因正方形ABCD 和正方形EFCG 的边长分别为3和1,根据勾股定理可求得EC =FG =2,AC =32,即可得AE =22,因P 为AE 的中点,可得PE =AP =2,再由正方形的性质可得GM =EM =22,FG 垂直于AC ,在Rt △PGM 中,PM =322,由勾股定理即可求得PG =5.2.(2017福建第15题)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD =∠ODC =180°-108°=72°,∴∠COD =36°,∴∠AOB =360°-108°-108°-36°=108°.D C3.(2017广东广州第16题)如图9,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④453OD =;其中正确的结论是 .(填写所有正确结论的序号)【答案】①③【解析】试题分析:如图,分别过点A 、B 作AN OB ⊥ 于点N ,BM x ⊥ 轴于点M在OABC 中,(80)(34)(114)137A C B OB ∴= ,,,,,D E 、 是线段AB 的三等分点, 12OD BD ∴= ,CB OF ODF BDC ∴∆∆111222OF OD OF BC OA BC BD ∴==∴==, F ∴ 是OA 的中点,故①正确.(34)5C OC OA ∴=≠ ,,OABC ∴ 不是菱形.,DOF COD EBG ODF COD EBG ∴∠≠∠=∠∠≠∠=∠(40)17,F CF OC CFO COF ∴=<∴∠>∠ ,,DFO EBG ∴∠≠∠故OFD ∆ 和BEG ∆ 不相似.则②错误;由①得,点G 是AB 的中点,FG ∴ 是OAB ∆ 的中位线1137,22FG OB FG OB ∴== D E 、 是OB 的三等分点,1373DE ∴= 1118416222OAB S OB AN OA BM ∆=⋅=⋅=⨯⨯= 解得:1162AN OB= ,DF FG ∴ 四边形DEGH 是梯形()551202121223DEGF DE FG h S OB h OB AN -∴==⋅=⋅=四边形 则③正确 113733OD OB == ,故④错误. 综上:①③正确.考点: 平行四边形和相似三角形的综合运用4.(2017广东广州第11题)如图6,四边形ABCD 中,0//,110AD BC A ∠=,则B ∠=___________.【答案】70°【解析】试题分析:两直线平行,同旁内角互补,可得:B ∠=180°-110°=70°考点:平行线的性质5.(2017山东临沂第18题)在ABCD Y 中,对角线AC ,BD 相交于点O .若4AB =,10BD =,3sin 5BDC ∠=,则ABCD Y 的面积是 .【答案】24【解析】试题分析:作OE ⊥CD 于E ,由平行四边形的性质得出OA =OC ,OB =OD =12BD =5,CD =AB =4,由sin ∠BDC =35,证出AC ⊥CD ,OC =3,AC =2OC =6,得出▱ABCD 的面积=CD •AC =24. 故答案为:24.考点:1、平行四边形的性质,2、三角函数,3、勾股定理6.(2017山东青岛第13题)如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.【答案】32 【解析】 试题分析:如下图由∠ABC =∠ADC =90°,E 为对角线AC 的中点,可知A ,B ,C ,D 四点共圆,圆心是E ,直径AC 然后根据圆周角定理由∠BAD =58°,得到∠BED =116°,然后根据等腰三角形的性质可求得∠EBD =32°. 故答案为:32.考点:1、圆周角性质定理,2、等腰三角形性质7.(2017山东滨州第16题)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.ABCDHQGFE【答案】8.【解析】由折叠的性质可得DH =EH ,设AH =x ,则DH =EH =8-x ,在Rt △AEH 中,根据勾股定理可得2224(8)x x +=- ,解得x =3,即可得AH =3,EH =5;根据已知条件易证△AEH ∽△BFE ,根据相似三角形的性质可得AH AE EH BE BF EF == ,即3452BF EF ==,解得BF =83 ,EF =103,所以△EBF 的周长为2+83+103=8. 8.(2017江苏宿迁第15题)如图,正方形CD AB 的边长为3,点E 在边AB 上,且1BE =.若点P 在对角线D B 上移动,则PA +PE 的最小值是 .【答案】10.9.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .【答案】3105. 【解析】试题分析:如图,过点C 作MN ⊥BG ,分别交BG 、EF 于点M 、N ,根据旋转的旋转可得AB =BG =EF =CD =5,AD =GF =3,在Rt △BCG 中,根据勾股定理求得CG =4,再由1122BCG S BC CG BG CM =⋅=⋅ ,即可求得CM =125 ,在Rt △BCM 中,根据勾股定理求得BM =22221293()55BC CM -=-=,根据已知条件和辅助线作法易知四边形BENMW 为矩形,根据矩形的旋转可得BE =MN =3,BM =EN =95,所以CN =MN -CM =3-125=35,在Rt △ECN 中,根据勾股定理求得EC =22223990310()()55255CN EN +=+==.考点:四边形与旋转的综合题.10.(2017江苏苏州第18题)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).【答案】745. 【解析】试题分析:连接AG ,设DG =x ,则 G=4+x ''AB =B在'Rt AB G ∆ 中,22492(4)1x x x +=+⇒= ,则5,7AB BC =='254974'55CC BB +∴==考点:旋转的性质 ,勾股定理 .11. (2017山东菏泽第11题)菱形ABCD 中, 60=∠A ,其周长为cm 24,则菱形的面积为____2cm . 【答案】183. 【解析】试题分析:如图,连接BD ,作DE ⊥AB ,已知菱形的周长为cm 24,根据菱形的性质可得AB =6;再由 60=∠A ,即可判定△ABD 是等边三角形;求得DE =33,所以菱形的面积为:6×33=183.12. (2017浙江湖州第13题)已知一个多边形的每一个外角都等于72,则这个多边形的边数是 . 【答案】5考点:多边形的外角和三、解答题1. (2017北京第20题) 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S . 【解析】试题分析:由矩形的对角线的性质,对角线把矩形分成两个面积相等的三角形计算即可. 本题解析:由矩形对角线把矩形分成两个面积相等的两部分可得:(),()ADC ANF FGC ABC AEF FMC NFGD EBMF S S S S S S S S ∆∆∆∆∆=-+=-+矩形矩形 ,∴,,ADC ABC ANF AEF FGC FMC S S S S S S ∆∆∆∆∆∆=== , ∴NFGD EBMF S S =矩形矩形 . 考点:矩形的性质,三角形面积计算.2. (2017北京第22题)如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 【答案】(1)证明见解析.(2)3. 【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.本题解析:(1)证明:∵E 为AD 中点,A D =2BC ,∴BC =ED , ∵AD ∥BC , ∴四边形ABCD 是平行四边形,∵AD =2BE , ∠ABD =90°,AE =DE ∴BE =ED , ∴四边形ABCD 是菱形.(2)∵AD ∥BC ,AC 平分∠BAD ∴∠BAC =∠DAC =∠BCA ,∴BA =BC =1, ∵AD =2BC =2,∴sin ∠ADB =12,∠ADB =30°, ∴∠DAC =30°, ∠ADC =60°.在RT △ACD 中,AD =2,CD =1,AC = 3 .考点:平行线性质,菱形判定,直角三角形斜边中线定理.3. (2017天津第24题)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A .(1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标; (2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).【答案】(1)点A ’的坐标为(2,1);(2)1;(3)3333(,)22--或2333(,)22- . 【解析】试题分析:(1)因点)0,3(A ,点)1,0(B ,可得OA =3 ,OB =1,根据折叠的性质可得△A ’OP ≌△AOP ,由全等三角形的性质可得OA ’=OA =3,在Rt △A ’OB 中,根据勾股定理求得'A B 的长,即可求得点A的坐标;(2)在Rt △AOB 中,根据勾股定理求得AB =2,再证△BOP 是等边三角形,从而得∠OPA =120°.在判定四边形OPA ’B 是平行四边形,根据平行四边形的性质即可得B A '的长; 试题解析:(1)因点)0,3(A ,点)1,0(B , ∴OA =3 ,OB =1.根据题意,由折叠的性质可得△A ’OP ≌△AOP .∴OA ’=OA =3,由OB B A ⊥',得∠A ’BO =90°.在Rt △A ’OB 中,22''2A B OA OB =-=, ∴点A ’的坐标为(2,1). (2) 在Rt △AOB 中,OA =3 ,OB =1, ∴222AB OA OB =+= ∵当P 为AB 中点, ∴AP =BP =1,OP =12AB =1. ∴OP =OB =BP , ∴△BOP 是等边三角形 ∴∠BOP =∠BPO =60°, ∴∠OPA =180°-∠BPO =120°. 由(1)知,△A ’OP ≌△AOP ,∴∠OPA ’=∠OPA =120°,P ’A =PA =1,又OB =PA ’=1,∴四边形OPA ’B 是平行四边形. ∴A ’B =OP =1. (3)3333(,)22--或2333(,)22- .4. (2017福建第24题)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长; (Ⅱ)若2AP =,求CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)CF =324【解析】试题分析:(Ⅰ)分情况CP =CD 、PD =PC 、DP =DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由AP =2 ,从而可得CF =324. 试题解析:(Ⅰ)在矩形ABCD 中,AB =6,AD =8,∠ADC =90°,∴DC =AB =6, AC =22AD DC + =10;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP =CD 时,CP =6,∴AP =AC -CP =4 ;(2)当PD =PC 时,∠PDC =∠PCD ,∵∠PCD +∠PAD =∠PDC +∠PDA =90°,∴∠PAD =∠PDA ,∴PD =PA ,∴PA =PC ,∴AP =2AC,即AP =5;(3)当DP =DC 时,过D 作DQ ⊥AC 于Q ,则PQ =CQ ,∵S △ADC =12 AD ·DC =12AC ·DQ ,∴DQ =245AD DC AC = ,∴CQ =22185DC DQ -= ,∴PC =2CQ =365 ,∴AP =AC -PC =145. 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,∵四边形ABCD 和PEFD 都是矩形,∴∠ADC =∠PDF =90°,即∠ADP +∠PDC =∠PDC +∠CDF ,∴∠ADP =∠CDF ,∵∠BCD =90°,OE =OD ,∴OC =12 ED ,在矩形PEFD 中,PF =DE ,∴OC =12PF ,∵OP =OF =12PF ,∴OC =OP =OF ,∴∠OCF =∠OFC ,∠OCP =∠OPC ,又∵∠OPC +∠OFC +∠PCF =180°,∴2∠OCP +2∠OCF =180°,∴∠PCF =90°,即∠PCD +∠FCD =90°,在Rt △ADC 中,∠PCD +∠PAD =90°,∴∠PAD =∠FCD ,∴△ADP ∽△CDF ,∴34CF CD AP AD == ,∵AP =2 ,∴CF =324.5. (2017广东广州第24题)如图13,矩形ABCD 的对角线AC ,BD 相交于点O ,COD ∆关于CD 的对称图形为CED ∆.(1)求证:四边形OCED 是菱形;(2)连接AE ,若6cm AB =,5BC cm =. ①求sin EAD ∠的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP ,一动点Q 从点O 出发,以1/cm s 的速度沿线段OP 匀速运动到点P ,再以1.5cm /s 的速度沿线段PA 匀速运动到点A ,到达点A 后停止运动.当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.【答案】(1)详见解析;(2)①2sin 3EAD ∠= ②32AP =和Q 走完全程所需时间为32s 【解析】(2)①连接OE ,直线OE 分别交AB 于点F ,交DC 于点GCOD ∆ 关于CD 的对称图形为CED ∆,OE DC DC AB ∴⊥ ,OF AB EF AD ∴⊥在矩形ABCD 中,G 为DC 的中点,且O 为AC 的中点OG ∴ 为CAD ∆ 的中位线 52OG GE ∴==同理可得:F 为AB 的中点,532OF AF ==, 22223593()22AE EF AF ∴=+=+= 32sin sin 932EAD AEFEAD AEF ∠=∠∴∠=∠==②过点P 作PM AB ⊥ 交AB 于点MQ ∴ 由O 运动到P 所需的时间为3s由①可得,23AM AP = ∴ 点O 以1.5/cm s 的速度从P 到A 所需的时间等于以 1/cm s 从M 运动到A 即:11OP PA OP MA t t t OP MA =+=+=+ Q ∴ 由O 运动到P 所需的时间就是OP +MA 和最小.如下图,当P 运动到1P ,即1PO AB 时,所用时间最短. 3t OP MA ∴=+=在11Rt APM ∆ 中,设112,3AM x APx == 2222211115(3)=(2)+()22AP AM PM x x =+∴ 解得:12x = 32AP ∴= 32AP ∴=和Q 走完全程所需时间为32s考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置6. (2017山东青岛第24题)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。

2017莱芜数学中考练习试题及答案

2017莱芜数学中考练习试题及答案

2017莱芜数学中考练习真题一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的.1.在0、﹣1、、π四个实数中,最小的数是( )A.﹣1B.0C.D.π2.下列运算中正确的是( )A.(a2)3=a5B.C.a2+a2=a4D.3x2﹣3x=x3.如图,点B是△ADC的边AD的延长线上一点,DE∥AC,若∠C=50°,∠BDE=60°,则∠CDB的度数等于( )A.70°B.100°C.110°D.120°4.为了比较某校同学汉字听写谁更优秀,语文老师随机抽取了10次听写情况,发现甲乙两人平均成绩一样,甲、乙的方差分别为2.7和3.2,则下列说法正确的是( )A.甲的发挥更稳定B.乙的发挥更稳定C.甲、乙同学一样稳定D.无法确定甲、乙谁更稳定5.二元一次方程组的解是( )A. B. C. D.6.若a2+b+5=0,则代数式3a2+3b+10的值为( )A.25B.5C.﹣5D.07.若一次函数y=kx+b的图象与直线y=﹣x+1平行,且过点(8,2),则此一次函数的解析式为( )A.y=﹣x﹣2B.y=﹣x﹣6C.y=﹣x﹣1D.y=﹣x+108.如图,AB为半圆O的直径,点C在AB的延长线上,CD与半圆O相切于点D,且AB=2CD=8,则图中阴影部分的面积为( )A. B.32﹣8π C.4﹣π D.8﹣2π9.在﹣2、﹣1、0、1、2、3这六个数中,任取两个数,恰好互为相反数的概率为( )A. B. C. D.10.如图,用火柴棒摆出一列正方形图案,第①个图案用了4根,第②个图案用了12根,第③个图案用了24根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是( )A.84B.81C.78D.7611.关于x的方程的解为正数,且关于y的不等式组有解,则符合题意的整数m有( )个.A.4B.5C.6D.712.重庆实验外国语学校坐落在美丽的“华岩寺”旁边,它被誉为“巴山灵境”.我校实践活动小组准备利用测角器和所学的三角函数知识去测“华岩寺”大佛的高度.他们在A处测得佛顶P的仰角为45°,继而他们沿坡度为i=3:4的斜坡AB前行25米到达大佛广场边缘的B处,BQ∥AC,PQ⊥BQ,在B点测得佛顶P 的仰角为63°,则大佛的高度PQ为( )米.(参考数据:,, )A.15B.20C.25D.35二、填空题:(本大题共6个小题,每小题4分,共24分)13.地球半径约为6 400 000m,这个数字用科学记数法表示为m.14.计算 = .15.如图,△ABC中,E是AB上一点,且AE:EB=3:4,过点E作ED∥BC,交AC于点D,则△AED与四边形BCDE的面积比是.16.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是.17.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3 ,75);④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是.18.如图,正方形ABCD的边长为3,点E、F分别在边AD、AB上且AE=BF=1,连接BE、CF交于点G,在线段EG上取一点H使HG=BG,连接DH,把△EDH沿AD边翻折得到△EDH’,则点H到边DH’的距离是.三、解答题(本大题共3个小题,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.19.已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.20.数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.补全条形统计图,并估计我校初三年级体重介于47kg至53kg的学生大约有多少名.21.化简下列各式:(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2) .四、解答题(本大题共3个小题,共30分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.22.如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO= ,OB=4,OE=2.(1)求直线AB和反比例函数的解析式;(2)求△OCD的面积.23.重庆外国语学校为解决“停车难”问题,决定对车库进行扩建,扩建工程原计划由A施工队独立完成,8周后为了缩短工期,学校计划从第九周起增派B施工队与A施工队共同施工,预计共同施工4周后工程即可完工,已知B施工队单独完成整个工程的工期为20周.(1)增派B施工队后,整个工程的工期比原计划缩短了几周?(2)增派B施工队后,学校需要重新与A施工队商定从第九周起的工程费支付问题,已知学校在工程开始前已支付给A工程队设计费、勘测费共计200万元,工程开始后前八周的工程费已按每周40万元进行支付,从第九周开始,学校需要支付给A施工队的每周工程费在原来40万元的基础上增加20%.支付给B施工队的每周工程费为a万元,在整个工程结束后再一次性支付给A、B两个施工队的总费用不超过1000万元,则每周支付给B施工队的施工费最多为多少万元?24.有一个n位自然数能被x0整除,依次轮换个位数字得到的新数能被x0+1整除,再依次轮换个位数字得到的新数能被x0+2整除,按此规律轮换后,能被x0+3整除,…,能被x0+n﹣1整除,则称这个n位数是x0的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”.(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.(2)若三位自然数是3的一个“轮换数”,其中a=2,求这个三位自然数 .五、解答题(本大题共2个小题,共24分)解答时每小题都必须写出必要的演算过程或推理步骤25.已知,Rt△ABC中,∠ACB=90°,∠CAB=30°,分别以AB、AC为边,向Rt△ABC外作等边△ABD和等边△ACE(1)如图1,连接BE、CD,若BC=2,求BE的长;(2)如图2,连接DE交AB于点F,作BH⊥AD于H,连接FH.求证:BH=2FH;(3)如图3,取AB、CD得中点M、N,连接M、N,试探求MN和AE的数量关系,并直接写出结论.26.如图1,正方形OABC在平面直角坐标系中的位置如图所示,点A在x 轴上,点C在y轴上,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC,抛物线y= x2﹣ x+2过C,E两点,与AB的交点为K.(1)求线段CK的长度;(2)点P为EC线段下方抛物线上一点,过点P作y轴的平行线与EC线段交于点Q,当线段PQ最长时,在y轴上找一点F使|PF﹣DF|的值最大,求符合题意的F点坐标;(3)如图2,DE与AB交于点G,过点B作BH⊥CD于点H,把△BCH沿射线CB的方向以每秒1个单位长度的速度向右平移.平移过程中的三角形记为△B′C′H′,当点H′运动到四边形HDEB的外部时运动停止,设运动时间为t(t>0),△B′C′H′与△BEG重叠部分的面积为S,写出S关于t的函数关系式及自变量的取值范围.2017莱芜数学中考练习真题答案一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的.1.在0、﹣1、、π四个实数中,最小的数是( )A.﹣1B.0C.D.π【考点】实数大小比较.【专题】推理填空题.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣ <﹣1<0<π,∴在0、﹣1、、π四个实数中,最小的数是﹣ .故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.下列运算中正确的是( )A.(a2)3=a5B.C.a2+a2=a4D.3x2﹣3x=x【考点】幂的乘方与积的乘方;立方根;合并同类项.【分析】根据幂的乘方、立方根、合并同类项,即可解答.【解答】解:A、(a2)3=a6,故本选项错误;B、 =﹣3,正确;C、a2+a2=2a2,故本选项错误;D、3x2与3x不能合并同类项、故本选项错误;故选:B.【点评】本题考查了幂的乘方、立方根、合并同类项,解决本题的关键是熟记幂的乘方、立方根、合并同类项.3.如图,点B是△ADC的边AD的延长线上一点,DE∥AC,若∠C=50°,∠BDE=60°,则∠CDB的度数等于( )A.70°B.100°C.110°D.120°【考点】三角形的外角性质;平行线的性质.【专题】计算题.【分析】因为DE∥AC,所以∠A=∠BDE=50°,因为∠BDC是外角,所以∠BDC=∠A+∠C=60°+50°=110°.【解答】解:∵DE∥AC,∠BDE=60°,∠C=50°,∴∠BDE=∠A=60°,∵∠BDC=∠A+∠C=60°+50°=110°.故选C.【点评】本题比较简单,考查的是平行线的性质及三角形外角的性质.4.为了比较某校同学汉字听写谁更优秀,语文老师随机抽取了10次听写情况,发现甲乙两人平均成绩一样,甲、乙的方差分别为2.7和3.2,则下列说法正确的是( )A.甲的发挥更稳定B.乙的发挥更稳定C.甲、乙同学一样稳定D.无法确定甲、乙谁更稳定【考点】方差.【分析】根据甲乙的方差,可以比较它们的大小,方差越小越稳定,从而可以解答本题.【解答】解:∵2.7<3.2,∴甲的发挥更稳定,故选A.【点评】本题考查方差,解题的关键是明确方差的意义,方差越小越稳定.5.二元一次方程组的解是( )A. B. C. D.【考点】解二元一次方程组.【分析】观察原方程组,由于两个方程的y系数互为相反数,可用加减消元法进行求解,进而可判断出正确的选项.【解答】解:,①+②,得:3x+4=10,即x=2;③将③代入①,得:2+y=10,即y=8;∴原方程组的解为: .故选A.【点评】此题考查的是二元一次方程组的解法,常用的方法有:代入消元法和加减消元法;要针对不同的题型灵活的选用合适的方法.6.若a2+b+5=0,则代数式3a2+3b+10的值为( )A.25B.5C.﹣5D.0【考点】代数式求值.【分析】先由a2+b+5=0得出a2+b=﹣5,再把代数式变形为3(a2+b)+10的形式,然后利用“整体代入法”求代数式的值.【解答】解:∵a2+b+5=0,∴a2+b=﹣5,则代数式3a2+3b+10=3(a2+b)+10,=3×(﹣5)+10,=﹣5.故选C.【点评】本题考查了代数式求值,解题的关键是利用“整体代入法”求代数式的值.7.若一次函数y=kx+b的图象与直线y=﹣x+1平行,且过点(8,2),则此一次函数的解析式为( )A.y=﹣x﹣2B.y=﹣x﹣6C.y=﹣x﹣1D.y=﹣x+10【考点】待定系数法求一次函数解析式.【分析】根据平行直线的解析式的k值相等求出k,然后把点P(﹣1,2)的坐标代入一次函数解析式计算即可得解.【解答】解:∵一次函数y=kx+b的图象与直线y=﹣x+1平行,∴k=﹣1,∵一次函数过点(8,2),∴2=﹣8+b解得b=10,∴一次函数解析式为y=﹣x+10.故选D.【点评】本题考查了两直线平行的问题,根据平行直线的解析式的k值相等求出一次函数解析式的k值是解题的关键.8.如图,AB为半圆O的直径,点C在AB的延长线上,CD与半圆O相切于点D,且AB=2CD=8,则图中阴影部分的面积为( )A. B.32﹣8π C.4﹣π D.8﹣2π【考点】扇形面积的计算;切线的性质.【分析】求出OD=CD=4,求出∠BOD=45°,分别求出三角形OCD的面积和扇形DOB的面积,即可求出答案.【解答】解:∵AB=2CD=8,AB=2OD,∴OD=CD=4,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∴△OCD是等腰直角三角形,∴∠BOD=45°,∴阴影部分的面积是S△OCD﹣S扇形DOB= ×4×4﹣ =8﹣2π,故选D.【点评】本题考查了等腰三角形性质,三角形的内角和定理,切线的性质,扇形的面积,三角形的面积的应用,解此题的关键是求出扇形和三角形的面积,题目比较典型,难度适中.9.在﹣2、﹣1、0、1、2、3这六个数中,任取两个数,恰好互为相反数的概率为( )A. B. C. D.【考点】列表法与树状图法.【分析】根据题意画出树状图,进而利用概率公式求出答案.【解答】解:由题意画树状图得:,一共有30种可能,符合题意的有4种,故恰好互为相反数的概率为: .故选:A.【点评】此题主要考查了树状图法求概率,正确画出树状图是解题关键.10.如图,用火柴棒摆出一列正方形图案,第①个图案用了4根,第②个图案用了12根,第③个图案用了24根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是( )A.84B.81C.78D.76【考点】规律型:图形的变化类.【分析】图形从上到下可以分成几行,第n个图形中,竖放的火柴有n(n+1)根,横放的有n(n+1)根,因而第n个图案中火柴的根数是:n(n+1)+n(n+1)=2n(n+1).把n=6代入就可以求出.【解答】解:设摆出第n个图案用火柴棍为Sn.①图,S1=1×(1+1)+1×(1+1);②图,S2=2×(2+1)+2×(2+1);③图,S3=3×(3+1)+3×(3+1);…;第n个图案,Sn=n(n+1)+n(n+1)=2n(n+1).则第⑥个图案为:2×6×(6+1)=84.故选A.【点评】本题考查了规律型:图形的变化,此题注意第n个图案用火柴棍为2n(n+1).11.关于x的方程的解为正数,且关于y的不等式组有解,则符合题意的整数m有( )个.A.4B.5C.6D.7【考点】分式方程的解;解一元一次不等式;一元一次不等式组的整数解.【分析】先求出方程的解与不等式组的解集,再根据题目中的要求,求出相应的m的值即可解答本题.【解答】解:∵关于x的方程的解为正数,∴2﹣(x+m)=2(x﹣2),解得:x= ,则6﹣m>0,故m<6,∵关于y的不等式组有解,∴m+2≤y≤3m+4,且m+2≤3m+4,解得:m≥﹣1,故m的取值范围是:﹣1≤m<6,∵x﹣2≠0,∴x≠2,∴ ≠2,m≠0,则符合题意的整数m有:﹣1,1,2,3,4,5,共6个.故选:C.【点评】本题考查分式方程的解、一元一次不等式组的整数解,解题的关键是明确题意,找出所求问题需要的条件.12.重庆实验外国语学校坐落在美丽的“华岩寺”旁边,它被誉为“巴山灵境”.我校实践活动小组准备利用测角器和所学的三角函数知识去测“华岩寺”大佛的高度.他们在A处测得佛顶P的仰角为45°,继而他们沿坡度为i=3:4的斜坡AB前行25米到达大佛广场边缘的B处,BQ∥AC,PQ⊥BQ,在B点测得佛顶P 的仰角为63°,则大佛的高度PQ为( )米.(参考数据:,, )A.15B.20C.25D.35【考点】解直角三角形的应用﹣仰角俯角问题;解直角三角形的应用﹣坡度坡角问题.【分析】如图,作BE⊥AC于E,延长PQ交AC于F.设PQ=4x,则四边形BEFQ是矩形,求出BQ、EF、AE,列出方程即可解决问题.【解答】解:如图,作BE⊥AC于E,延长PQ交AC于F.设PQ=4x,则四边形BEFQ是矩形,∵tan∠P BQ= = ,∴BQ=EF=3x,∵ = ,AB=25,∴BE=15,AE=20,∵∠PAF=45°,∠PFA=90°,∴∠PAF=∠APF=45°,∴AF=PF,∴20+3x=4x+15,∴x=5.∴PQ=20米故选B.【点评】本题考查解直角三角形,仰角问题、坡度问题等知识,解题的关键是理解这些概念,学会添加常用辅助线,属于中考常考题型.二、填空题:(本大题共6个小题,每小题4分,共24分)13.地球半径约为6 400 000m,这个数字用科学记数法表示为 6.4×106 m.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成M时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于3 120 000有7位,所以可以确定n=7﹣1=6.【解答】解:6 400 000=6.4×106,故答案为:6.4×106.【点评】本题主要考查了科学记数法,把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,掌握当原数绝对值大于10时,n与M的整数部分的位数的关系是解决问题的关键.14.计算 = 5 .【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题;实数.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及算术平方根定义计算即可得到结果.【解答】解:原式=2+1﹣2+4=5,故答案为:5【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.如图,△ABC中,E是AB上一点,且AE:EB=3:4,过点E作ED∥BC,交AC于点D,则△AED与四边形BCDE的面积比是9:40 .【考点】相似三角形的判定与性质.【分析】由DE∥BC,即可得△ADE∽△ABC,然后由相似三角形面积比等于相似比的平方,即可求得S△ADE:S△ABC的值,继而求得△ADE与四边形DBCE 的面积比.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵AE:EB=3:4,∴AE:AB=3:7,∴S△ADE:S△ABC=9:49,∴S△ADE:S四边形DBCE=9:40.故答案为:9:40.【点评】此题考查了相似三角形的判定与性质.此题难度不大,注意掌握相似三角形面积比等于相似比的平方定理的应用是解此题的关键.16.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是65°.【考点】圆周角定理.【分析】连接OB,要求∠BAO的度数,只要在等腰三角形OAB中求得一个角的度数即可得到答案,利用同弧所对的圆周角是圆心角的一半可得∠AOB=50°,然后根据等腰三角形两底角相等和三角形内角和定理即可求得.【解答】解:连接OB,∵∠ACB=25°,∴∠AOB=2∠ACB=50°,∵OA=OB,∴∠BAO=∠ABO=(180°﹣60°)÷2=65°,故答案为:65°【点评】本题考查了圆周角定理;作出辅助线,构建等腰三角形是正确解答本题的关键.17.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3 ,75);④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是①③④.【考点】一次函数的应用.【专题】压轴题.【分析】根据一次函数的性质和图象结合实际问题对每一项进行分析即可得出答案.【解答】解:①设快递车从甲地到乙地的速度为x千米/时,则3(x﹣60)=120,x=100.(故①正确);②因为120千米是快递车到达乙地后两车之间的距离,不是甲、乙两地之间的距离,(故②错误);③因为快递车到达乙地后缷完物品再另装货物共用45分钟,所以图中点B的横坐标为3+ =3 ,纵坐标为120﹣60× =75,(故③正确);④设快递车从乙地返回时的速度为y千米/时,则(y+60)(4 ﹣3 )=75,y=90,(故④正确).故答案为;①③④.【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题,关键是根据一次函数的性质和图象结合实际问题判断出每一结论是否正确.18.如图,正方形ABCD的边长为3,点E、F分别在边AD、AB上且AE=BF=1,连接BE、CF交于点G,在线段EG上取一点H使HG=BG,连接DH,把△EDH沿AD边翻折得到△EDH’,则点H到边DH’的距离是.【考点】翻折变换(折叠问题);三角形的面积;全等三角形的判定与性质;勾股定理的应用;正方形的性质;平行线分线段成比例.【专题】方程思想;面积法.【分析】先连接HH',根据轴对称的性质,判定△ABE≌△BCF,再根据勾股定理求得CF= ,BG= ,进而得出EH:HB=2:3,再根据平行线分线段成比例定理,求得PE= ,PH= ,PD= ,最后设点H到边DH'的距离是h,根据面积法得到×HH'×PD= ×DH'×h,求得h的值即可.【解答】解:连接HH',交AD于P,则AD垂直平分HH',∴DH=DH',即△DHH'是等腰三角形,∵正方形ABCD的边长为3,AE=BF=1,∠A=∠FBC=90°,∴△ABE≌△BCF(SAS),∴∠ABE=∠B CF,CF=BE,又∵∠ABE+∠GBC=90°,∴∠BCG+∠GBC=90°,∴BG⊥CF,∵BF=1,BC=3,∴Rt△BCF中,CF= ,BG= ,∴HG=BG= ,又∵CF=BE= ,∴HE= ,∴EH:HB=2:3,∵PH∥AB,∴ = = ,即 = = ,∴PE= ,PH= ,PD= ,∴Rt△PDH中,DH= = =DH',HH'=2× = ,设点H到边DH'的距离是h,则×HH'×PD= ×DH'×h,∴ × = ×h,∴h= ,∴点H到边DH'的距离是 .故答案为: .【点评】本题以折叠问题为背景,主要考查了正方形的性质、勾股定理的应用、全等三角形的判定与性质的综合应用,解决问题的关键是根据面积法列出等式求得点H到边DH'的距离,解题时注意方程思想的运用.三、解答题(本大题共3个小题,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.19.已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.【考点】全等三角形的判定与性质;正方形的性质.【专题】证明题.【分析】根据条件可以得出AD=AB,∠ABF=∠ADE=90°,从而可以得出△ABF≌△ADE,就可以得出∠FAB=∠EAD,就可以得出结论.【解答】证明:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠D=∠BAD=90°,∴∠ABF=90°.∵在△BAF和△DAE中,,∴△BAF≌△DAE(SAS),∴FAB=∠EAD,∵∠EAD+∠BAE=90°,∴∠FAB+∠BAE=90°,∴∠FAE=90°,∴EA⊥AF.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,等腰直角三角形的判定,在解答本题时,证明三角形全等是关键.20.数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.补全条形统计图,并估计我校初三年级体重介于47kg至53kg的学生大约有多少名.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】根据统计图可以求得本次调查的人数和体重落在B组的人数,从而可以将条形统计图补充完整,进而可以求得我校初三年级体重介于47kg至53kg 的学生大约有多少名.【解答】解:本次调查的学生有:32÷16%=200(名),体重在B组的学生有:200﹣16﹣48﹣40﹣32=64(名),补全的条形统计图如右图所示,我校初三年级体重介于47kg至53kg的学生大约有:1800× =576(名),即我校初三年级体重介于47kg至53kg的学生大约有576名.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.21.化简下列各式:(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2) .【考点】分式的混合运算;整式的混合运算.【分析】(1)根据完全平方公式和单项式乘以多项式、平方差公式将原式展开,然后再合并同类项即可解答本题;(2)先化简括号内的式子,再根据分式的除法即可解答本题.【解答】解:(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)=a2﹣2ab+b2﹣a2+2ab+4a2﹣b2=4a2;(2)==== .【点评】本题考查分式的混合运算、整式的混合运算,解题的关键是明确它们各自的计算方法.四、解答题(本大题共3个小题,共30分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.22.(2015•荆州)如图,在平面直角坐标系中,O为原点,直线AB分别与x 轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO= ,OB=4,OE=2.(1)求直线AB和反比例函数的解析式;(2)求△OCD的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例的函数解析式;(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解.【解答】解:(1)∵OB=4,OE=2,∴BE=2+4=6.∵CE⊥x轴于点E,tan∠ABO= = = .∴OA=2,CE=3.∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).设直线AB的解析式为y=kx+b,则,解得 .故直线AB的解析式为y=﹣ x+2.设反比例函数的解析式为y= (m≠0),将点C的坐标代入,得3= ,∴m=﹣6.∴该反比例函数的解析式为y=﹣ .(2)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(6,﹣1),则△BOD的面积=4×1÷2=2,△BOC的面积=4×3÷2=6,故△OCD的面积为2+6=8.【点评】本题是一次函数与反比例函数的综合题.主要考查待定系数法求函数解析式.求A、B、C点的坐标需用正切定义或相似三角形的性质,起点稍高,部分学生感觉较难.23.重庆外国语学校为解决“停车难”问题,决定对车库进行扩建,扩建工程原计划由A施工队独立完成,8周后为了缩短工期,学校计划从第九周起增派B施工队与A施工队共同施工,预计共同施工4周后工程即可完工,已知B施工队单独完成整个工程的工期为20周.(1)增派B施工队后,整个工程的工期比原计划缩短了几周?(2)增派B施工队后,学校需要重新与A施工队商定从第九周起的工程费支付问题,已知学校在工程开始前已支付给A工程队设计费、勘测费共计200万元,工程开始后前八周的工程费已按每周40万元进行支付,从第九周开始,学校需要支付给A施工队的每周工程费在原来40万元的基础上增加20%.支付给B施工队的每周工程费为a万元,在整个工程结束后再一次性支付给A、B两个施工队的总费用不超过1000万元,则每周支付给B施工队的施工费最多为多少万元?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设原计划需x周完成,则A队每周完成总量的,B队每周完成总量的,根据:A队8周的工作量+A、B两队合作4周的工作量=1,列方程求解可得;(2)根据:前8周付给A工程队的费用+后4周付给A工程队的费用+后4周付给B工程队的费用≤1000,列不等式求解可得.【解答】解:(1)设原计划需x周完成,则A队每周完成总量的,B队每周完成总量的,根据题意,得:8× +4×( + )=1,解得:x=15,经检验:x=15是原分式方程的解,∴15﹣(8+4)=3,答:增派B施工队后,整个工程的工期比原计划缩短了3周;(2)根据题意,得:40×8+4×40(1+0.2)+4a≤1000解得:a≤120.5,答:每周支付给B施工队的施工费最多为120.5万元.【点评】本题主要考查分式方程和一元一次不等式的应用能力,理解题意找到题目蕴含的相等关系或不等关系是解题的关键24.有一个n位自然数能被x0整除,依次轮换个位数字得到的新数能被x0+1整除,再依次轮换个位数字得到的新数能被x0+2整除,按此规律轮换后,能被x0+3整除,…,能被x0+n﹣1整除,则称这个n位数是x0的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”.(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.(2)若三位自然数是3的一个“轮换数”,其中a=2,求这个三位自然数 .【考点】数的整除性.。

10年-17年莱芜中考数学真题

10年-17年莱芜中考数学真题

5(第19题图)A10% B 30% D C 莱芜市2010年中等学校招生考试数 学 试 题一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项填写在答案栏的相应位置上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.31-的倒数是A .3-B .31-C .31 D .32.下列计算结果正确的是A .923)(a a =-B .632a a a =⋅C .22)21(21-=-- D .12160(cos 0=-3.在下列四个图案中既是轴对称图形,又是中心对称图形的是C .D .4.2010年4月20日晚,“支援青海玉树抗震救灾义演晚会”在莱芜市政府广场成功举行,热心企业和现场观众踊跃捐款31083.58元.将31083.58元保留两位有效数字可记为A .3.1×106元B .3.11×104元C .3.1×104元D .3.10×105元 5.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是A .0>abB .0>-b aC .0>+b aD .0||||>-b a 6.右图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是 A . B . C . D . 7.已知反比例函数xy 2-=,下列结论不正确...的是 A .图象必经过点(-1,2) B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-2 8.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为A .2.5B .5C .10D .159.二次函数c bx ax y ++=2的图象如图所示,则一次函数a bx y +=的图象不经过 A .第一象限B .第二象限C .第三象限D .第四象限10.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根为A .4B .2C . 2D . ±211.一个边长为2的正多边形的内角和是其外角和的2倍,则这个正多边形的半径是A .2B . 3C .1D .1212.在一次自行车越野赛中,甲乙两名选手行驶的路程y (千米) 随时间x (分)变化的图象(全程)如图,根据图象判定下 列结论不正确...的是 A .甲先到达终点B .前30分钟,甲在乙的前面C .第48分钟时,两人第一次相遇D .这次比赛的全程是28千米二、填空题(本大题共5小题,只要求填写最后结果,每小题填对得4分,共20分)13.分解因式:=-+-x x x 232 .14.有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 .15.某公司在2009年的盈利额为200万元,预计2011年的盈利额将达到242万元,若每年比上一年盈利额增长的百分率相同,那么该公司在2010年的盈利额为________万元.16.在平面直角坐标系中,以点)3,4(A 、)0,0(B 、)0,8(C 为顶点的三角形向上平移3个单位,得到△111C B A (点111C B A 、、分别为点C B A 、、的对应点),然后以点1C 为中心将△111C B A 顺时针旋转︒90,得到△122C B A (点22B A 、分别是点11B A 、的对应点),则点2A 的坐标是 . 17.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…, 观察上面的计算过程,寻找规律并计算=610C .三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤) 18.(本题满分6分) 先化简,再求值:24)2122(+-÷+--x xx x ,其中34 +-=x .19.(本题满分8分)2010年5月1日,第41届世博会在上海举办,世博知识在校园迅速传播.小明同学就本班学生对世博知识的了解程度进行了一次调查统计,下图是他采集数据后绘制的两幅不完整的统计图(A :不了解,B :一般了解,C :了解较多,D :熟悉).请你根据图中提供的信息解答以下问题: (1)求该班共有多少名学生; (2)在条形统计图中,将表示“一般了解”的部分补充完整; (3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的(4)从该班中任选一人,其对世博知识的了解程度为“熟悉”的概是多少?(第9题图)111(第12题图)乙甲 10 -1 a b BA (第5题图) (第6题图)20.(本题满分9分)2009年首届中国国际航空体育节在莱芜雪野举办,期间在市政府广场进行了热气球飞行表演.如图,有一热气球到达离地面高度为36米的A 处时,仪器显示正前方一高楼顶部B 的仰角是37°,底部C 的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)(参考数据:,75.037tan ,80.037cos ,60.037sin ≈︒≈︒≈︒73.13≈)21.(本题满分9分)在Rt △ACB 中,∠C =90°,AC =3cm ,BC =4cm ,以BC 为直径作⊙O 交AB 于点D . (1)求线段AD 的长度;(2)点E 是线段AC 上的一点,试问当点E 在什么位置时,直线ED 与⊙O 相切?请说明理由.22.(本题满分10分) 为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)问符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?23.(本题满分10分)在 ABCD 中,AC 、BD 交于点O ,过点O 作直线EF 、GH ,分别交平行四边形的四条边于E 、G 、F 、H 四点,连结EG 、GF 、FH 、HE .(1)如图①,试判断四边形EGFH 的形状,并说明理由;(2)如图②,当EF ⊥GH 时,四边形EGFH 的形状是 ;(3)如图③,在(2)的条件下,若AC =BD ,四边形EGFH 的形状是 ;(4)如图④,在(3)的条件下,若AC ⊥BD ,试判断四边形EGFH 的形状,并说明理由.24.(本题满分12分)如图,在平面直角坐标系中,已知抛物线c bx ax y ++=2交x 轴于)0,6(),0,2(B A 两点,交y 轴于点)32,0(C . (1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线x y 2=交于点D ,作⊙D 与x 轴相切,⊙D 交y 轴于点E 、F 两点,求劣弧EF 的长; (3)P PG 垂直于x 轴,垂足为点G ,试确定P 点的位置,使得△PGA 的面积被直线AC 分为1︰2两部分.(第24题图)C B A (第21题图) HG F E O D C B A 图① H G F E O D C B A 图② A B C D O E F G H 图③ A B C D O E F G H 图④ (第23题图)(第20题图)主视图 左视图俯视图A D EGHBCA C BD2011年山东省莱芜市中考数学试题一、选择题(本大题共12小题,每小题3分,满分36分)1.-6的绝对值是【 】A .-6B .6C .- 1 6D . 162.以下多边形中,既是轴对称图形又是中心对称图形的是【 】A .正五边形B .矩形C .等边三角形D .平行四边形 3.下列计算正确的是【 】A .3)3(2-=- B .91312=⎪⎭⎫ ⎝⎛-C .(-a 2)3=a 6D .a 6÷(12a 2)=2a 44.观察右图,在下列四种图形变换中,该图案不包含的变换是【 】 A .平移 B .轴对称 C .旋转 D .位似 5A .13,12.5B .13,12C .12,13D .12,12.56.如图所示是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是【 】A .3B .4C .5D .67.如图,是两个可以自由转动的均匀圆盘A 和B ,A 、B 分别被均匀的分成三等份和 四等份.同时自由转动圆盘A 和B ,圆盘停止后,指针分别指向的两个数字的积为 偶数的概率是【 】A . 3 4B . 2 3C . 1 2D . 138.下列说法正确的是【 】A .16的算术平方根是4B .方程-x 2+5x -1=0的两根之和是-5C .任意八边形的内角和等于1080ºD .当两圆只有一个公共点时,两圆外切9.如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD 的边上有一动点P ,沿A →B →C →D →A 运动一周,则点P 的纵坐标y 与P所走过的路程S 之间的函数关系用图象表示大致是【 】10.如图,E 、F 、G 、H 分别是BD 、BC 、AC 、AD 的中点,且AB =CD .下列结论:①EG ⊥FH ,②四边形EFGH 是矩形,③HF 平分∠EHG ,④EG = 12(BC -AD ),⑤四边形EFGH 是菱形.其中正确的个数是【 】A .1B .2C .3D .411.将一个圆心角是90º的扇形围成一个圆锥的侧面,则该圆锥的侧面积S 侧和底面积S 底的关系是【 】A .S 侧=S 底B .S 侧=2S 底C .S 侧=3S 底D .S 侧=4S底12.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则正比例函数y =(b +c )x 的图象与反比例函数y = ax 的图象在同一坐标系中大致是【 】 A .B .C .D .二、填空题(本大题共5小题,每小题4分,满分20分)13.近年来,莱芜市旅游产业高歌猛进,全市去年接待国内游客达527.2万人次,创历史新高.将527.2万保留两位有效数字并用科学记数法表示为 .14.分解因式:(a +b )3-4(a +b )= .15.如图,在△ABC 中,AB =BC ,∠B =120º,AB 的垂直平分线交AC 于点D .若AC =6cm ,则AD = cm .16.若a =3-tan60º,则⎝⎛⎭⎫1- 2a -1 ÷ a 2-6a +9 a -1 = . 17.如图①,在△AOB 中,∠AOB =90º,OA =3,OB =4.将△AOB 沿x 轴依次以点A 、B 、O 为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为 .三、解答题(本大题共7小题,满分64分)18.(6分)解不等式组:110 332(1)3 x x x -⎧-≥⎪⎨⎪--<⎩①②19.(8分)为迎接建党90周年,我市某中学拟组织学生开展唱红歌比赛活动.为此,校团委对初四一班会唱红歌的学生进行了统计(甲:会唱1首,乙:会唱2首,丙:会唱3首,丁:会唱4首以上),并绘制了如下两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)在条形统计图中,将会唱4首以上的部分补充完整; (2)求该班会唱1首的学生人数占全班人数的百分比;(3)在扇形统计图中,计算出会唱3首的部分所对应的圆心角的度数; (4)若该校初四共有350人,请你估计会唱3首红歌的学生约有多少人?甲丙 乙 30%丁(B)CD 图1图2 B1B20.(9分)莱芜某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.请根据下图,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28º≈0.47,cos28º≈0.88,tan28º≈0.53).21.(9分)已知矩形纸片ABCD中,AB=2,BC=3.操作:将矩形纸片沿EF折叠,使点B落在边CD上.探究:(1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等给出证明,如果不全等请说明理由;(2)如图2,若点B与CD的中点重合,求△FCB1和△B1DG的周长之比.22.(10分)莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发每天售出6吨.(1)受天气、场地等各种因素的影响,需要提前完成销售任务.在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务.那么原计划零售平均每天售出多少吨?(2)在(1)的条件下,若批发每吨获得利润为2000元,零售每吨获得利润为2200元,计算实际获得的总利润.23.(10分)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,DE=3,连接BD,过点E作EM∥BD,交BA的延长线于点M.(1)求⊙O的半径;(2)求证:EM是⊙O的切线;(3)若弦DF与直径AB相交于点P,当∠APD=45º时,求图中阴影部分的面积.24.(12分)如图,在平面直角坐标系中,已知点A(-2,-4),OB=2,抛物线y=ax2+bx+c经过点A、O、B三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形.若存在,求点P的坐标;若不存在,请说明理由.2012年山东省莱芜市中考数学试卷一、选择题(本大题共12小题,每小题3分,满分36分) 1.(3分)如图,在数轴上点A 表示的数可能是( )S 2如下表所示:甲14.2万吨污水排入江河湖5.(3分)(2012•莱芜)下列图形中,既是轴对称图形又是中心对称图形的共有( )6.(3分)(2012•莱芜)对于非零的实数a 、b ,规定a ⊕b=﹣.若2⊕(2x ﹣1)=1,则x=( )BCD ﹣7.(3分)(2012•莱芜)已知m 、n 是方程x 2+2x+1=0的两根,则代数式的值为( )3、4中任取一个数作为个位上的数 B C D()①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系) ②向锥形瓶中匀速注水(水面的高度与注水时间的关系)③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系)) 11.(3分)(2012•莱芜)以下说法正确的有() ①正八边形的每个内角都是135°②与是同类二次根式③长度等于半径的弦所对的圆周角为30°④反比例函数y=﹣,当x <0时,y 随x 的增大而增大.12.(3分)(2012•莱芜)如图,在梯形ABCD 中,AD ∥BC ,∠BCD=90°,BC=2AD ,F 、E 分别是BA 、BC 的中点,则下S 二、填空题(本大题共5小题,每小题4分,满分20分) 13.(4分)(2012•莱芜)计算:2﹣2﹣+6sin45°﹣= _________ .14.(4分)(2012•莱芜)若点P (a ,2)在一次函数y=2x+4的图象上,它关于y 轴的对称点在反比例函数y=的图象上,则反比例函数的解析式为.15.(4分)(2012•莱芜)在△ABC 中,AB=AC=5,BC=6.若点P 在边AC 上移动,则BP 的最小值是 _________ . 16.(4分)(2012•莱芜)为落实“两免一补”政策,某市2011年投入教育经费2500万元,预计2013年要投入教育经费3600万元.已知2011年至2013年的教育经费投入以相同的百分率逐年增长,则2012年该市要投入的教育经费为 _________ 万元. 17.(4分)(2012•莱芜)将正方形ABCD 的各边按如图所示延长,从射线AB 开始,分别在各射线上标记点A 1、A 2、A 3、…,按此规律,点A 2012在射线 _________ 上.第15题图三、解答题(本大题共7小题,满分64分) 18.(6分)(2012•莱芜)先化简,再求值:÷,其中a=﹣3.19.(8分)(2012•莱芜)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部”.请指出哪位同学的调查方式最合理.并绘制了如图所示的统计表和扇形统计图. 请你根据以上图表提供的信息解答下列问题:①a=_________,b=_________;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是_________;③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.20.(9分)(2012•莱芜)某市规划局计划在一坡角为16°的斜坡AB上安装一球形雕塑,其横截面示意图如图所示.已知支架AC与斜坡AB的夹角为28°,支架BD⊥AB于点B,且AC、BD的延长线均过⊙O的圆心,AB=12m,⊙O的半径为1.5m,求雕塑最顶端到水平地面的垂直距离(结果精确到0.01m,参考数据:cos28°≈0.9,sin62°≈0.9,sin44°≈0.7,cos46°≈0.7).21.(9分)(2012•莱芜)如图1,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A 顺时针旋转α角(0°<α<180°),得到△AB′C′(如图2).(1)探究DB′与EC′的数量关系,并给予证明;(2)当DB′∥AE时,试求旋转角α的度数.22.(10分)(2012•莱芜)为表彰在“缔造完美教室”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;4个文具盒、7支钢笔共需161元.(1)每个文具盒、每支钢笔各多少元?(2)时逢“五一”,商店举行优惠促销活动,具体办法如下:文具盒九折,钢笔10支以上超出部分八折.设买x个文具盒需要y1元,买x支钢笔需要y2元,求y1、y2关于x的函数关系式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请分析买哪种奖品省钱.23.(10分)(2012•莱芜)如图,在菱形ABCD中,AB=2,∠A=60°,以点D为圆心的⊙D与边AB相切于点E.(1)求证:⊙D与边BC也相切;(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF,求图中阴影部分的面积(结果保留π);(3)⊙D上一动点M从点F出发,按逆时针方向运动半周,当S△HDF =S△MDF时,求动点M经过的弧长(结果保留π).24.(12分)(2012•莱芜)如图,顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式;(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由.山东省莱芜市2013年中考数学试卷一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码涂写在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分). 1.(3分)在,,﹣2,﹣1这四个数中,最大的数是( )B2.(3分)在网络上用“Google”搜索引擎搜索“中国梦”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为 ( )3.下面四个几何体中,左视图是四边形的几何体共有( )第3题图第6题图 第7题图 4.(3分)方程=0的解为( )5.(3分)一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是( )6.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为 7.(3分)将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为( )B.8.(3分)下列图形中,既是轴对称图形,又是中心对称图形的个数是( ) ①等边三角形;②矩形;③等腰梯形;④菱形;⑤正八边形;⑥圆. 9.(3分)如图,在⊙O 中,已知∠OAB=22.5°,则∠C 的度数为()10.(3分)下列说法错误的是( )与﹣11.(3分)在平面直角坐标系中,O 为坐标原点,点A 的坐标为(1,),M 为坐标轴上一点,且使得△MOA 为等腰三角形,则满足条件的点M 的个数为( ) 12.(3分)如图,等边三角形ABC 的边长为3,N 为AC 的三等分点,三角形边上的动点M 从点A 出发, 沿A→B→C 的方向运动,到达点C 时停止.设点M 运动的路程为x ,MN 2=y ,则y 关于x 的函数 图象大致为( ) .BC二、填空题(本大题共5小题,只要求填写最后结果,每小题填对得4分,共20分).13.(3分)分解因式:2m 3﹣8m= . 14.(3分)正十二边形每个内角的度数为 .15.(4分)M (1,a )是一次函数y=3x+2与反比例函数图象的公共点,若将一次函数y=3x+2的图象向下平移4个单位,则它与反比例函数图象的交点坐标为 .16.(4分)如图,矩形ABCD 中,AB=1,E 、F 分别为AD 、CD 的中点,沿BE 将△ABE 折叠, 若点A 恰好落在BF 上,则AD= .17.(3分)已知123456789101112…997998999是由连续整数1至999排列组成的一个数,在该数中从左往右数第2013位上的数字为 .三、解答题(本大题共7小题,共64分,解得要写出必要的文字说明、证明过程或推演步骤)18.(9分)先化简,再求值:,其中a=+2.19.(8分)在学校开展的“学习交通安全知识,争做文明中学生”主题活动月中,学校德工处随机选取了该校部分学生,对闯红灯情况进行了一次调查,调查结果有三种情况:A.从不闯红灯;B.偶尔闯红灯;C经常闯红灯.德工处将调查的数据进行了整理,并绘制了尚不完整的统计图如下,请根据相关信息,解答下列问题.(1)求本次活动共调查了多少名学生;(2)请补全(图二),并求(图一)中B区域的圆心角的度数;(3)若该校有240名学生,请估算该校不严格遵守信号灯指示的人数.20.(9分)如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37°方向C处,B岛在南偏东66°方向,从B岛测得渔船在正西方向,已知两个小岛间的距离是72海里,A岛上维修船的速度为每小时20海里,B岛上维修船的速度为每小时28.8海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?(参考数据:cos37°≈0.8,sin37°≈0.6,sin66°≈0.9,cos66°≈0.4)21.(9分)如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.22.(10分)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?23.(10分)如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.24.(12分)如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.2014年山东省莱芜市中考数学试卷一、选择题(本题共12小题,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)D万C DC地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的C D中阴影部分的面积为()DC D10.(3分)(2014•莱芜)如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:11.(3分)(2014•莱芜)如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,下列说法不正确的是()A.△CDF的周长等于AD+CD12.(3分)(2014•莱芜)已知二次函数y=ax+bx+c的图象如图所示.下列结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2其中正确的个数有()13.(4分)(2014•莱芜)分解因式:a3﹣4ab2=_________.14.(4分)(2014•莱芜)计算:=_________.15.(4分)(2014•莱芜)若关于x的方程x2+(k﹣2)x+k2=0的两根互为倒数,则k=_________.16.(4分)(2014•莱芜)已知一次函数y=ax+b与反比例函数的图象相交于A(4,2)、B(﹣2,m)两点,则一次函数的表达式为_________.17.(4分)(2014•莱芜)如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为_________.三、解答题(本大题共7小题,共64分,18.(6分)(2014•莱芜)先化简,再求值:,其中a=﹣1.19.(8分)(2014•莱芜)在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.20.(9分)(2014•莱芜)如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)21.(9分)(2014•莱芜)如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.22.(10分)(2014•莱芜)某市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程、已知2013年投资1000万元,预计2015年投资1210万元.若这两年内平均每年投资增长的百分率相同.(1)求平均每年投资增长的百分率;(2)已知河道治污每平方需投入400元,园林绿化每平方米需投入200元,若要求2015年河道治污及园林绿化总面积不少于35000平方米,且河道治污费用不少于园林绿化费用的4倍,那么园林绿化的费用应在什么范围内?23.(10分)(2014•莱芜)如图1,在⊙O中,E是弧AB的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC 交AB于点F,EB=(r是⊙O的半径).(1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切;(2)求EF•EC的值;(3)如图2,当F是AB的四等分点时,求EC的值.24.(12分)(2014•莱芜)如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c 经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.2015年山东省莱芜市中考数学试卷一、选择题(本大题共12小题,每小题3分)1.(3分)(2015•莱芜)﹣3的相反数是()A. 3 B.﹣3 C.D.﹣2.(3分)(2015•莱芜)将数字2.03×10﹣3化为小数是()A.0.203 B.0.0203 C.0.00203 D.0.0002033.(3分)(2015•莱芜)下列运算正确的是()A.(﹣a2)•a3=﹣a6 B.a6÷a3=a2 C.a2+a3=a5 D.(a3)2=a64.(3分)(2015•莱芜)要使二次根式有意义,则x的取值范围是()A.x B.x C.x D.x5.(3分)(2015•莱芜)如图,AB∥CD,EF平分∠AEG,若∠FGE=40°,那么∠EFG的度数为()A.35° B.40° C.70° D.140°6.(3分)(2015•莱芜)下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.7.(3分)(2015•莱芜)为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:℃):﹣6,﹣3,x,2,﹣1,3.若这组数据的中位数是﹣1,则下列结论错误的是()A.方差是8 B.极差是9 C.众数是﹣1 D.平均数是﹣18.(3分)(2015•莱芜)下列几何体中,主视图和左视图都为矩形的是()A.B.C.D.9.(3分)(2015•莱芜)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.5410.(3分)(2015•莱芜)甲乙两人同时从A地出发到B地,如果甲的速度v 保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是()A.甲乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与速度v有关11.(3分)(2015•莱芜)如图,在矩形ABCD中,AB=2a,AD=a,矩形边上一动点P沿A→B→C→D的路径移动.设点P经过的路径长为x,PD2=y,则下列能大致反映y与x的函数关系的图象是()A.B.C.D.12.(3分)(2015•莱芜)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,以BC为直径的⊙O与AD相切,点E为AD的中点,下列结论正确的个数是()(1)AB+CD=AD;(2)S△BCE=S△ABE+S△DCE;(3)AB•CD=;(4)∠ABE=∠DCE.A.1 B.2 C.3 D.4二、填空题(本大题共5小题,每小题填对得4分,共20分,请填在答题卡上)13.(4分)(2015•莱芜)计算:﹣|﹣2|+(﹣1)3+2﹣1=.14.(4分)(2015•莱芜)已知m+n=3,m﹣n=2,则m2﹣n2=.15.(4分)(2015•莱芜)不等式组的解集为.16.(4分)(2015•莱芜)如图,在扇形OAB中,∠AOB=60°,扇形半径为r,点C 在上,CD⊥OA,垂足为D,当△OCD 的面积最大时,的长为.17.(4分)(2015•莱芜)如图,反比例函数y=(x>0)的图象经过点M(1,﹣1),过点M作MN⊥x轴,垂足为N,在x轴的正半轴上取一点P(t,0),过点P作直线OM的垂线l.若点N关于直线l的对称点在此反比例函数的图象上,则t=.三、解答题(本大题共7小题,共64分,8.(6分)(2015•莱芜)先化简,再求值:(1﹣),其中x=3.19.(8分)(2015•莱芜)为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:成绩频数频率优秀45 b良好 a 0.3合格105 0.35不合格60 c(1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.20.(9分)(2015•莱芜)为保护渔民的生命财产安全,我国政府在南海海域新建了一批观测点和避风港.某日在观测点A处发现在其北偏西36.9°的C处有一艘渔船正在作业,同时检测到在渔船的正西B处有一股强台风正以每小时40海里的速度向正东方向移动,于。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省莱芜市2017中考数学试卷及答案1(已知在Rt?ABC中,?C=90?,如果BC=2,?A=α,则AC的长为( )
A(2sinα B(2cosα C(2tanα D(2cotα
【考点】锐角三角函数的定义(
【分析】根据锐角三角函数的定义得出cotA=,代入求出即可(
【解答】解:?在Rt?ABC中,?C=90?,
cotA=,
BC=2,?A=α,
AC=2cotα,
故选D(
【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数
的定义是解此题的关键,注意:在Rt?ACB中,?ACB=90?,则sinA=,cosA=,tanA=,cotA=(
2(下列抛物线中,过原点的抛物线是( )
A(y=x2,1 B(y=(x+1)2 C(y=x2+x D(y=x2,x,1
【考点】二次函数图象上点的坐标特征(
【分析】分别求出x=0时y的值,即可判断是否过原点(
【解答】解:A、y=x2,1中,当x=0时,y=,1,不过原点;
B、y=(x+1)2中,当x=0时,y=1,不过原点;
C、y=x2+x中,当x=0时,y=0,过原点;
D、y=x2,x,1中,当x=0时,y=,1,不过原点;
故选:C(
【点评】本题主要考查二次函数图象上点的坐标特点,熟练掌握抛物线上特殊点的坐标及一般点的坐标的求法是解题的关键(
3(小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为( )
A(45米 B(40米 C(90米 D(80米
【考点】相似三角形的应用(
【专题】应用题(
【分析】在相同时刻,物高与影长组成的直角三角形相似,利用对应边成比例可得所求的高度(
【解答】解:?在相同时刻,物高与影长组成的直角三角形相似,
1.5:2=教学大楼的高度:60,
解得教学大楼的高度为45米(
故选A(
【点评】考查相似三角形的应用;用到的知识点为:在相同时刻,物高与影长的比相同(
4(已知非零向量,,,下列条件中,不能判定?的是 ( )
A(?,? B( C( = D( =, =
【考点】*平面向量(
【分析】根据向量的定义对各选项分析判断后利用排除法求解(
【解答】解:A、?,?,则、都与平行,三个向量都互相平行,故本选项错误;
B、表示两个向量的模的数量关系,方向不一定相同,故不一定平行,故本选项正确;
C、=,说明两个向量方向相反,互相平行,故本选项错误;
D、=, =,则、都与平行,三个向量都互相平行,故本选项错误;
故选:B(
【点评】本题考查了平面向量,主要利用了向量平行的判定,是基础题( 5(如图,在?ABCD中,点E是边BA延长线上的一点,CE交AD
于点F(下列各式中,错误的是( )
A( B( C( D(
【考点】相似三角形的判定与性质;平行四边形的性质(
【分析】根据平行四边形的性质和相似三角形的性质求解(
【解答】解:?AD?BC
=,故A正确;
CDBE,AB=CD,
CDFEBC
=,故B正确;
ADBC,
AEFEBC
=,故D正确(
C错误(
故选C(
【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键(
6(如图,已知在?ABC中,cosA=,BE、CF分别是AC、AB边上的高,联结EF,那么?AEF和?ABC的周长比为( )
A(1:2 B(1:3 C(1:4 D(1:9
【考点】相似三角形的判定与性质(
【分析】由?AEF??ABC,可知?AEF与?ABC的周长比=AE:AB,根据cosA==,即可解决问题(
【解答】解:?BE、CF分别是AC、AB边上的高,
AEB=?AFC=90?,
A=?A,
AEBAFC,
=,
=,??A=?A,
AEFABC,
AEF与?ABC的周长比=AE:AB,
cosA==,
AEF与?ABC的周长比=AE:AB=1:3,
故选B(
【点评】本题考查相似三角形的判定和性质,解题的关键是灵活运用相似三角形的性质解决问题,属于中考常考题型(
二、填空题:(本大题共12题,每题4分,满分48分)
7(已知,则的值为 (
【考点】比例的性质(
【分析】用a表示出b,然后代入比例式进行计算即可得解(
【解答】解:? =,
b=a,
==(
故答案为:(
【点评】本题考查了比例的性质,用a表示出b是解题的关键(
8(计算:(,3),(+2)= (
【考点】*平面向量(
【分析】根据平面向量的加法计算法则和向量数乘的结合律进行计算(
【解答】解::(,3),(+2)=,3,,×2)=(
故答案是:(
【点评】本题考查了平面向量,熟记计算法则即可解题,属于基础题型( 9(已知抛物线y=(k,1)x2+3x的开口向下,那么k的取值范围是 k,1 (
【考点】二次函数的性质(
【分析】由开口向下可得到关于k的不等式,可求得k的取值范围(
【解答】解:
y=(k,1)x2+3x的开口向下,
k,1,0,解得k,1,
故答案为:k,1(
【点评】本题主要考查二次函数的性质,掌握二次函数的开口方向与二次项系数有关是解题的关键(
10(把抛物线y=x2向右平移4个单位,所得抛物线的解析式为 y=(x,4)2 ( 【考点】二次函数图象与几何变换(
【分析】直接根据“左加右减”的原则进行解答即可(
【解答】解:由“左加右减”的原则可知,将y=x2向右平移4个单位,所得函数解析式为:y=(x,4)2(
故答案为:y=(x,4)2(
【点评】本题考查的是函数图象平移的法则,根据“上加下减,左加右减”得出是解题关键(
11(已知在?ABC中,?C=90?,sinA=,BC=6,则AB的长是 8 (
【考点】解直角三角形(
【专题】计算题;等腰三角形与直角三角形(
【分析】利用锐角三角函数定义求出所求即可(
【解答】解:?在?ABC中,?C=90?,sinA=,BC=6,
sinA=,即=,
解得:AB=8,
故答案为:8
【点评】此题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键(
12(如图,已知AB?CD?EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:5,BF=9,那么DF= (
【考点】平行线分线段成比例(
【分析】根据平行线分线段成比例定理即可得到结论(
【解答】解:?AC:CE=3:5,
AC:AE=3:8,
ABCDEF,

BD=,
DF=,
故答案为:(
【点评】本题考查平行线分线段成比例定理,关键是找出对应的比例线段,写出比例式,用到的知识点是平行线分线段成比例定理(
13(已知点A(2,y1)、B(5,y2)在抛物线y=,x2+1上,那么y1 , y2((填“,”、“=”或“,”)
【考点】二次函数图象上点的坐标特征(
【分析】分别计算自变量为2、5时的函数值,然后比较函数值的大小即可( 【解答】解:当x=2时,y1=,x2+1=,3;
当x=5时,y2=,x2+1=,24;
,3,,24,
y1,y2(
故答案为:,
【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式(也考查了二次函数的性质(
14(已知抛物线y=ax2+bx+c过(,1,1)和(5,1)两点,那么该抛物线的对称轴是直线 x=2 (
【考点】二次函数的性质(
【分析】根据函数值相等的点到对称轴的距离相等可求得答案(
【解答】解:
抛物线y=ax2+bx+c过(,1,1)和(5,1)两点,
对称轴为x==2,
故答案为:x=2(
【点评】本题主要考查二次函数的性质,掌握二次函数值相等的点到对称轴的距离相等是解题的关键(
15(在?ABC中,AB=AC=5,BC=8,AD?BC,垂足为D,BE是?ABC 的中线,AD与BE相交于点G,那么AG的长为 2 (
【考点】三角形的重心;等腰三角形的性质;勾股定理(
【分析】先根据等腰三角形的性质和勾股定理求出AD,再判断点G为?ABC的重心,然后根据三角形重心的性质来求AG的长(
【解答】解:?在?ABC中,AB=AC,AD?BC,
AD==3,
中线BE与高AD相交于点G,
点G为?ABC的重心,
AG=3×=2,
故答案为:2
【点评】本题考查了等腰三角形的性质和勾股定理以及三角形的重心的性质,判断点G为三角形的重心是解题的关键(
16(在一个距离地面5米高的平台上测得一旗杆底部的俯角为30?,旗杆顶部的仰角为45?,则该旗杆的高度为 5+5 米((结果保留根号)
【考点】解直角三角形的应用-仰角俯角问题(
【分析】CF?AB于点F,构成两个直角三角形(运用三角函数定义分别求出AF 和BF,即可解答(
【解答】解:作CF?AB于点F(
根据题意可得:在?FBC中,有BF=CE=5米(
在?AFC中,有AF=FC×tan30?=5米(
则AB=AF+BF=5+5米
故答案为:5+5(
【点评】本题考查俯角、仰角的定义,要求学生能借助其关系构造直角三角形并解直角三角形(
[1][2]下一页。

相关文档
最新文档