折半查找算法伪代码

合集下载

有序表的折半查找算法

有序表的折半查找算法

有序表的折半查找算法一、前言有序表是一种常用的数据结构,它可以使查找、插入和删除等操作更加高效。

而折半查找算法是一种常用的查找有序表中元素的方法,它可以在较短的时间内定位到目标元素。

本文将详细介绍有序表的折半查找算法。

二、有序表有序表是一种按照某个关键字排序的数据结构,其中每个元素都包含一个关键字和相应的值。

有序表的排序方式可以是升序或降序,而且排序依据可以是任何属性。

例如,在一个学生信息系统中,可以按照学号、姓名、年龄等属性对学生信息进行排序。

由于有序表已经按照某个关键字排序,因此在进行查找、插入和删除等操作时,可以采用更加高效的算法。

其中最常见的算法之一就是折半查找算法。

三、折半查找算法1. 基本思想折半查找算法也称为二分查找算法,其基本思想是:将待查元素与有序表中间位置上的元素进行比较,如果相等,则返回该位置;如果待查元素小于中间位置上的元素,则在左半部分继续进行二分查找;否则,在右半部分继续进行二分查找。

重复以上过程,直到找到目标元素或确定其不存在为止。

2. 算法实现折半查找算法的实现可以采用递归或循环方式。

以下是采用循环方式实现的伪代码:```int binarySearch(int[] a, int target) {int left = 0;int right = a.length - 1;while (left <= right) {int mid = (left + right) / 2;if (a[mid] == target) {return mid;} else if (a[mid] < target) {left = mid + 1;} else {right = mid - 1;}}return -1; // 没有找到目标元素}```在以上代码中,`a` 表示有序表,`target` 表示待查元素。

首先,将左右指针 `left` 和 `right` 分别初始化为有序表的第一个和最后一个元素的下标。

折半查找程序

折半查找程序

先看看这个,下面有例子折半查找:二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。

因此,折半查找方法适用于不经常变动而查找频繁的有序列表。

首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。

重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

算法要求算法复杂度下面提供一段二分查找实现的伪代码:BinarySearch(max,min,des)mid-<(max+min)/2while(min<=max)mid=(min+max)/2if mid=des thenreturn midelseif mid >des thenmax=mid-1elsemin=mid+1return max折半查找法也称为二分查找法,它充分利用了元素间的次序关系,采用分治策略,可在最坏的情况下用O(log n)完成搜索任务。

它的基本思想是,将n个元素分成个数大致相同的两半,取a[n/2]与欲查找的x作比较,如果x=a[n/2]则找到x,算法终止。

如果x<a[n/2],则我们只要在数组a的左半部继续搜索x(这里假设数组元素呈升序排列)。

如果x>a[n/2],则我们只要在数组a的右半部继续搜索x。

二分查找法一般都存在一个临界值的BUG,即查找不到最后一个或第一个值。

可以在比较到最后两个数时,再次判断到底是哪个值和查找的值相等。

C语言代码int BinSearch(SeqList * R,int n , KeyType K ){ //在有序表R[0..n-1]中进行二分查找,成功时返回结点的位置,失败时返回-1int low=0,high=n-1,mid;//置当前查找区间上、下界的初值if(R[low].key==K){return low ;}if(R[high].key==k)return high;while(low<=high){ //当前查找区间R[low..high]非空mid=low+((high-low)/2);//使用(low + high) / 2 会有整数溢出的问题(问题会出现在当low + high的结果大于表达式结果类型所能表示的最大值时,这样,产生溢出后再/2是不会产生正确结果的,而low+((high-low)/2)不存在这个问题if(R[mid].key==K){return mid;//查找成功返回}if(R[mid].key>K)high=mid-1; //继续在R[low..mid-1]中查找elselow=mid+1;//继续在R[mid+1..high]中查找}if(low>high)return -1;//当low>high时表示查找区间为空,查找失败} //BinSeareh折半查找程序举例程序要求:1.在main函数中定义一个20个元素的int数组,完成初始化和显示操作。

算法设计与分析部分算法伪代码

算法设计与分析部分算法伪代码

第三章 蛮力法1.选择排序SelectionSort(A[0..n-1])for i=0 to n-2 domin=ifor j=i+1 to n-1 doif A[j]<A[min]min=jswap A[i] and A[min]2.冒泡排序BubbleSort(A[0..n-1])// 输入:数组A,数组中的元素属于某偏序集// 输出:按升序排列的数组Afor i=0 to n-2 dofor j=0 to n-2-i doif A[j+1]<A[j] swap A[j] and A[j+1]3.改进的冒泡算法ALGORITHM BubbleSortImproved( A[0,…,n –1] )// 冒泡排序算法的改进// 输入:数组A,数组中的元素属于某偏序集// 输出:按升序排列的数组Afor i ← 0 to n – 2 doflag ← Truefor j ← 0 to n – 2 – i doif A[j+1] < A[j]swap(A[j], A[j+1])flag ← False// 如果在某一轮的比较中没有交换,则flag为True,算法结束returnif flag = True4. 顺序查找算法算法 SwquentialSearch2(A[0...n],k)//顺序查找算法的实现,它用了查找键来作限位器//输入:一个n个元素的数组A和一个查找键K//输出:第一个值等于K的元素的位置,如果找不到这样的元素就返回 -1A[n]<--ki<--0while A[i]!=K doi<--i+1if i<n return iElse return -15. 蛮力字符串匹配算法 BruteForceStringMatch(T[0...n-1],P[0...m-1])//该算法实现了蛮力字符串匹配代表一段文本//输入:一个n个字符的数组T[0...n-1]// 一个m个字符的数组P[0..m-1]代表一个模式//输出:如果查找成功的话,返回文本的第一个匹配字串中第一个字符的位置, // 否则返回-1For i<--0 to n-m doj<--0While j<m and P[j]=T[i+j]doj<--i+1If j=m return ireturn -1合并排序最差Θ(nlog2n)快速排序最优Θ(nlog2n)最差Θ(n2)平均Θ(1.38nlog2n)选择排序 Θ(n2)冒泡排序 Θ(n2)插入排序最差Θ(n2)最优 Θ(n)平均 Θ(n2)第四章 分治法合并排序算法 MergeSort(A[0..n-1] )排序 // 递归调用mergesort来对数组 A[0...n-1]// 输入:一个可排序数组A[0..n-1]// 输出:非降序排列的数组A[0..n-1]if n > 1n/2 -1]copy A[0.. n/2 -1] to B[0..n/2 -1]copy A[ n/2 ..n-1] to C[0..MergeSort( B )MergeSort( C )Merge( B,C,A )两个数组合并的算法算法 Merge(B[0..p-1],C[0..q-1],A[0..p+q-1])//将两个有序数组合并成一个有序的数组和C[0...q-1]//输入:两个有序数组B[0...p-1]//输出:A[0..p+q-1]中已经有序存放了B和C中的元素 i=0,j=0,k=0;while i<p and j<q do≤C[j]if B[i]A[k]=B[i], i=i+1elseA[k]=C[j], j=j+1k=k+1if i=pcopy C[j..q-1] to A[k..p+q-1]elsecopy B[i..p-1] to A[0..p+q-1]快速排序算法QuickSort(A[l..r])// 使用快速排序法对序列或者子序列排序或者序列本身A[0..n-1]// 输入:子序列A[l..r]// 输出:非递减序列Aif l < rs ← Partition( A[l..r] )QuickSort( A[l..s-1] )QuickSort( A[s+1..r] )//s是中轴元素/基准点,是数组分区位置的标志实现分区的算法Partition( A[l..r] )// 输入:子数组A[l..r]// 输出:分裂点/基准点pivot的位置p ← A[l]i ← l; j ← r+1repeat≥ prepeat i ←i + 1until A[i]≤ prepeat j ← j – 1 until A[j]swap( A[i], A[j] )≥ juntil iswap( A[i], A[j] )swap( A[l], A[j] )return j折半查找BinarySearch( A[0..n-1], k )// 输入:已排序大小为n的序列A,待搜索对象k// 输出:如果搜索成功,则返回k的位置,否则返回-1 l=0,r=n-1;While l≤rmid= (l+r)/2if k = A[mid] return midelse if k < A[mid] r=m-1else l=m+1return -1Strassen矩阵Strassen方法M1=A11(B12-B22)M2=(A11+A12)B22M3=(A21+A22)B11M4=A22(B21-B11)M5=(A11+A22)(B11+B22)M6=(A12-A22)(B21+B22)M7=(A11-A21)(B11+B12)第五章 减治法插入排序ALGORITHM InsertionSort( A[0..n-1] )// 对给定序列进行直接插入排序// 输入:大小为n的无序序列A// 输出:按非递减排列的序列Afor i ← 1 to n-1 dotemp ← A[i]j ← i-1while j ≥ 0 and A[j] > temp doA[j+1] ← A[j]j ← j –1A[j+1] ←temp深度优先查找算法 BFS(G)//实现给定图的深度优先查找遍历//输入:图G=<V,E>//输出:图G的顶点,按照被DFS遍历第一次访问到的先后次序,用连续的整数标记,将V中的每个顶点标记为0,表示还“未访问”count =0//记录这是第几个访问的节点标记为 unvisitedmark each vertex with 0//∈ V dofor each vertex vif v is marked with 0dfs(v)dfs(v)//递归访问所有和v相连接的未访问顶点,然后按照全局变量count的值//根据遇到它们的先后顺序,给它们附上相应的数字count = count + 1mark v with countv dofor each vertexw adjacent toif w is marked with 0dfs(w)广度优先BFS(G)/实现给定图的深度优先查找遍历//输入:图G=<V,E>//输出:图G的顶点,按照被BFS遍历第一次访问到的先后次序,用连续的整数标记,将V中的每个顶点标记为0,表示还“未访问”count =0mark each vertex with 0for each vertex v∈ V dobfs(v)bfs(v)//递归访问所有和v相连接的未访问顶点,然后按照全局变量count的值//根据遇到它们的先后顺序,给它们附上相应的数字count = count + 1mark v with countinitialize queue with vwhile queue is not empty doa = front of queuefor each vertex w adjacent to a doif w is marked with 0count = count + 1mark w with countadd w to the end of the queueremove a from the front of the queue拓扑排序第六章 变治法Gauss消去法GaussElimination(A[1..n], b[1..n])// 输入:系数矩阵A及常数项 b// 输出:方程组的增广矩阵等价的上三角矩阵for i=1 to n doA[i][n+1] =b[i]for j= i+1 to n dofor k = i to n+1 do– A[i][k]*A[j][i]/A[i][i]A[j][k] = A[j][k]堆排序堆排序主要包括两个步骤:对于给定的数组构造相应的堆。

折半查找法

折半查找法

二分查找是在我们整个数据结构当中一个比较重要的算法,它的思想在我们的实际开发过程当中应用得非常广泛。

在实际应用中,有些数据序列是已经经过排序的,或者可以将数据进行排序,排序后的数据我们可以通过某种高效的查找方式来进行查找,今天要讲的就是折半查找法(二分查找),它的时间复杂度为O(logn),将以下几个方面进行概述了解二分查找的原理与思想分析二分查找的时间复杂度掌握二分查找的实现方法了解二分查找的使用条件和场景1 二分查找的原理与思想在上一个章节当中,我们学习了各种各样的排序的算法,接下来我们就讲解一下针对有序集合的查找的算法—二分查找(Binary Search、折半查找)算法,二分查找呢,是一种非常容易懂的查找算法,它的思想在我们的生活中随处可见,比如说:同学聚会的时候喜欢玩一个游戏——猜数字游戏,比如在1-100以内的数字,让别人来猜从,猜的过程当中会被提示是猜大了还是猜小了,直到猜中为止。

这个过程其实就是二分查找的思想的体现,这是个生活中的例子,在我们现实开发过程当中也有很多应用到二分查找思想的场景。

比如说仙现在有10个订单,它的金额分别是6、12 、15、19、24、26、29、35、46、67 请从中找出订单金额为15的订单,利用二分查找的思想,那我们每一次都会与中间的数据进行比较来缩小我们查找的范围,下面这幅图代表了查找的过程,其中low,high代表了待查找的区间的下标范围,mid表示待查找区间中间元素的下标(如果范围区间是偶数个导致中间的数有两个就选择较小的那个)第一次二分查找第二次二分查找第三次二分查找通过这个查找过程我们可以对二分查找的思想做一个汇总:二分查找针对的是一个有序的数据集合,查找思想有点类似于分治思想。

每次都通过跟区间的中间元素对比,将待查找的区间范围缩小为原来的一半,直到找到要查找的元素,或者区间被缩小为0。

一:查找的数据有序二:每次查找,数据的范围都在缩小,直到找到或找不到为止。

c语言折半查找法代码

c语言折半查找法代码

c语言折半查找法代码折半查找法,也称二分查找法,是一种高效的查找算法。

它的基本思想是将有序数组分成两部分,通过比较中间元素和目标元素的大小关系,来确定目标元素在哪一部分中,然后再在该部分中继续进行查找,直到找到目标元素或者确定目标元素不存在为止。

下面是C语言实现折半查找法的代码:```#include <stdio.h>int binarySearch(int arr[], int left, int right, int target) {while (left <= right) {int mid = left + (right - left) / 2;if (arr[mid] == target) {return mid;} else if (arr[mid] < target) {left = mid + 1;} else {right = mid - 1;}}return -1;}int main() {int arr[] = {1, 3, 5, 7, 9, 11, 13, 15};int n = sizeof(arr) / sizeof(arr[0]);int target = 7;int index = binarySearch(arr, 0, n - 1, target);if (index == -1) {printf("目标元素不存在\n");} else {printf("目标元素在数组中的下标为:%d\n", index);}return 0;}```在上面的代码中,binarySearch函数接收四个参数:数组arr、左边界left、右边界right和目标元素target。

它通过while循环不断缩小查找范围,直到找到目标元素或者确定目标元素不存在为止。

其中,mid表示当前查找范围的中间位置,通过比较arr[mid]和target的大小关系来确定目标元素在哪一部分中。

第7章 减治法(《算法设计与分析(第3版)》C++版 王红梅 清华大学出版社)

第7章 减治法(《算法设计与分析(第3版)》C++版 王红梅 清华大学出版社)

比较对象,若 k 与中间元素相等,则查找成功;若 k 小于中间元素,则在中间元
算 法 设

素的左半区继续查找;若 k 大于中间记录,则在中间元素的右半区继续查找。不
与 分

断重复上述过程,直到查找成功,或查找区间为空,查找失败。
( 第
版 )
k
清 华


[ r1 … … … rmid-1 ] rmid [ rmid+1 … … … rn ] (mid=(1+n)/2)
Page 4
3
7.1.2 一个简单的例子——俄式乘法
【问题】俄式乘法(russian multiplication)用来计算两个正整数 n 和 m 的乘积
,运算规则:如果 n 是偶数,计算 n/2×2m;如果 n 是奇数,计算(n-1)/2×2m+
m;当 n 等于 1 时,返回 m 的值。


俄式乘法的优点?
与 分 析
2. 测试查找区间[low,high]是否存在,若不存在,则查找失败,返回 0;
( 第
3. 取中间点 mid = (low+high)/2; 比较 k 与 rmid,有以下三种情况:
版 )
3.1 若 k < rmid,则 high = mid - 1;查找在左半区进行,转步骤2;
清 华
3.2 若 k > rmid,则 low = mid + 1;查找在右半区进行,转步骤2;
Page 12
7.2.2 选择问题
【想法】假定轴值的最终位置是 s,则: (1)若 k=s,则 rs 就是第 k 小元素; (2)若 k<s,则第 k 小元素一定在序列 r1 ~ rs-1 中; (3)若 k>s,则第 k 小元素一定在序列 rs+1 ~ rn 中。

算法设计与分析基础习题参考答案

算法设计与分析基础习题参考答案

习题1.15..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:如果d整除u和v, 那么d一定能整除u±v;如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d 能整除n和r,也一定能整除m=r+qn和n。

数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。

故gcd(m,n)=gcd(n,r)6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0<=m<n的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次.7.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次)b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次)gcd(5,8)习题1.21.(农夫过河)P—农夫W—狼G—山羊C—白菜2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数)算法Quadratic(a,b,c)//求方程ax^2+bx+c=0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息If a≠0D←b*b-4*a*cIf D>0temp←2*ax1←(-b+sqrt(D))/tempx2←(-b-sqrt(D))/tempreturn x1,x2else if D=0 return –b/(2*a)else return “no real roots”else //a=0if b≠0 return –c/belse //a=b=0if c=0 return “no real numbers”else return “no real roots”5. 描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法DectoBin(n)//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进.算法MinDistance(A[0..n-1])//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements习题1.3考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表”60,35,81,98,14,47”排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示:b.该算法不稳定.比如对列表”2,2*”排序c.该算法不在位.额外空间for S and Count[]4.(古老的七桥问题)习题1.41.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度.a.删除数组的第i个元素(1<=i<=n)b.删除有序数组的第i个元素(依然有序)hints:a. Replace the ith element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array’s element(e.g., 0 for an array of positive numbers ) to mark the ith position is empty.(“lazy deletion”)习题2.11欧几里得算法的时间复杂度欧几里得算法, 又称辗转相除法, 用于求两个自然数的最大公约数. 算法的思想很简单, 基于下面的数论等式gcd(a, b) = gcd(b, a mod b)其中gcd(a, b)表示a和b的最大公约数, mod是模运算, 即求a除以b的余数. 算法如下:输入: 两个整数a, b输出: a和b的最大公约数function gcd(a, b:integer):integer;if b=0 return a;else return gcd(b, a mod b);end function欧几里得算法是最古老而经典的算法, 理解和掌握这一算法并不难, 但要分析它的时间复杂度却并不容易. 我们先不考虑模运算本身的时间复杂度(算术运算的时间复杂度在Knuth的TAOCP中有详细的讨论), 我们只考虑这样的问题: 欧几里得算法在最坏情况下所需的模运算次数和输入的a 和b 的大小有怎样的关系?我们不妨设a>b>=1(若a<b 我们只需多做一次模运算, 若b=0或a=b 模运算的次数分别为0和1), 构造数列{un}: u0=a, u1=b, uk=uk-2 mod uk-1(k>=2), 显然, 若算法需要n 次模运算, 则有un=gcd(a, b), un+1=0. 我们比较数列{un}和菲波那契数列{Fn}, F0=1<=un, F1=1<=un-1, 又因为由uk mod uk+1=uk+2, 可得uk>=uk+1+uk+2, 由数学归纳法容易得到uk>=Fn-k, 于是得到a=u0>=Fn, b=u0>=Fn-1. 也就是说如果欧几里得算法需要做n 次模运算, 则b 必定不小于Fn-1. 换句话说, 若 b<Fn-1, 则算法所需模运算的次数必定小于n. 根据菲波那契数列的性质, 有Fn-1>(1.618)n/sqrt(5), 即b>(1.618)n/sqrt(5), 所以模运算的次数为O(lgb)---以b 为底数 = O(lg(2)b)---以2为底数,输入规模也可以看作是b 的bit 位数。

raptor折半查找法

raptor折半查找法

Raptor是一个教育性的计算机编程学习工具,用于可视化算法和程序设计。

虽然Raptor 通常用于教学和理解算法的工作原理,但它并不是一个实际的编程语言或编译器,因此它不能直接执行代码。

然而,您可以使用Raptor来可视化算法的执行过程,包括折半查找法。

以下是使用Raptor可视化折半查找法的一般步骤:1. 打开Raptor:首先,打开Raptor编程学习工具。

2. 创建一个新程序:在Raptor中创建一个新的程序,以便开始构建折半查找算法。

3. 添加输入:在程序中添加输入,通常是一个有序的数组和要查找的目标元素。

您可以使用Raptor的输入操作符(通常是箭头符号)来模拟输入。

4. 初始化变量:创建变量来存储搜索范围的开始和结束索引以及中间索引。

初始化这些变量的值,通常开始索引为0,结束索引为数组的长度减1。

5. 创建循环结构:使用循环结构(通常是while循环)来执行折半查找。

循环条件通常是开始索引小于等于结束索引。

6. 计算中间索引:在每次迭代中,计算中间索引,通常通过将开始索引和结束索引相加并除以2来实现。

7. 比较中间元素:比较中间索引处的元素与目标元素。

如果它们相等,则找到了目标元素,结束搜索。

如果中间元素大于目标元素,则将结束索引更新为中间索引-1,否则将开始索引更新为中间索引+1。

8. 重复循环:根据比较的结果,重复步骤6和步骤7,直到找到目标元素或搜索范围缩小为0。

9. 输出结果:在找到目标元素或确定不存在时,输出搜索的结果。

10. 结束程序:完成折半查找的过程后,结束程序。

请注意,Raptor中的操作符和符号可能与实际编程语言有所不同,但上述步骤描述了折半查找算法的基本思想,您可以使用Raptor来可视化该算法的执行过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档