最新平面向量的加减法

合集下载

平面向量加减法公式

平面向量加减法公式

平面向量加减法公式
平面向量的加法和减法是向量运算中的基本操作,下面我会从多个角度来解释这些公式。

首先,让我们回顾一下向量的定义。

在二维平面上,一个向量可以用它的横坐标和纵坐标来表示。

假设有两个向量 a 和 b,它们分别表示为 a = (a1, a2) 和 b = (b1, b2)。

向量的加法公式如下:
a +
b = (a1 + b1, a2 + b2)。

这意味着向量的加法就是将两个向量的对应分量分别相加,得到一个新的向量,它的横坐标是原始向量的横坐标相加,纵坐标是原始向量的纵坐标相加。

向量的减法公式如下:
a b = (a1 b1, a2 b2)。

向量的减法也是类似的操作,将两个向量的对应分量分别相减,得到一个新的向量。

另外,我们还可以用向量的几何方法来理解向量的加法和减法。

假设有两个向量 a 和 b,它们的起点都放在原点 O,那么 a + b
的结果就是以向量 a 的终点为起点,以向量 b 的终点为终点的新
向量。

而 a b 的结果则是从向量 b 的终点指向向量 a 的终点的新向量。

向量的加法和减法还满足一些性质,比如交换律和结合律。


a +
b = b + a,(a + b) +
c = a + (b + c)。

这些性质使得向量
的加法和减法更加灵活和便于计算。

总的来说,向量的加法和减法是向量运算中的基本操作,它们
可以用公式表示,也可以用几何方法理解,同时还满足一些重要的
性质。

这些公式和性质对于理解和应用向量运算非常重要。

平面向量的加法和减法

平面向量的加法和减法

平面向量的加法和减法在数学学科中,平面向量是一个非常重要的概念。

它不仅在几何学中有广泛的应用,而且在物理学、工程学等领域也扮演着重要的角色。

平面向量的加法和减法是其中最基本的运算,本文将对这两个运算进行详细的解析和说明。

一、平面向量的加法平面向量的加法是指将两个向量相加得到一个新的向量。

在平面直角坐标系中,向量可以用有序数对表示,即(x, y)。

假设有两个向量a和b,它们的坐标分别为(a₁, a₂)和(b₁, b₂),则它们的和向量c的坐标为(a₁+b₁, a₂+b₂)。

例如,有向量a(2, 3)和向量b(4, -1),它们的和向量c的坐标为(2+4, 3+(-1)),即c(6, 2)。

这意味着向量a和向量b的和向量c的起点与a的起点相同,终点与b的终点相同。

通过向量的加法,我们可以得到两个向量的合力向量。

合力向量的起点与第一个向量的起点相同,终点与第二个向量的终点相同。

这在物理学中有着重要的应用,例如计算物体在斜面上的合力。

二、平面向量的减法平面向量的减法是指将一个向量减去另一个向量得到一个新的向量。

在平面直角坐标系中,向量的减法可以通过向量的加法和取负得到。

假设有两个向量a和b,它们的坐标分别为(a₁, a₂)和(b₁, b₂),则它们的差向量d可以表示为d = a - b = a+ (-b),其中(-b)表示向量b的负向量,即(-b) = (-b₁, -b₂)。

例如,有向量a(2, 3)和向量b(4, -1),它们的差向量d可以表示为d = a - b = (2, 3) + (-4, 1) = (-2, 4)。

这意味着向量d的起点与a的起点相同,终点与b的终点相同。

通过向量的减法,我们可以计算两个向量之间的距离和方向。

例如,若向量a表示一个物体的位移,向量b表示一个参考点的位置,那么向量d就表示物体相对于参考点的位移。

三、应用举例1. 平面向量的加法应用举例假设有一个飞机从A地飞往B地,然后从B地飞往C地。

平面向量的运算

平面向量的运算

平面向量的运算平面向量在数学中是一种重要的概念,它们被广泛应用于几何学、物理学等领域。

平面向量的运算是平面向量的基本操作,包括加法、减法、数量乘法(或标量乘法)和向量乘法(或点乘、叉乘)等。

下面将分别对这些运算进行详细介绍。

一、平面向量的加法平面向量的加法定义简单,即对应元素相加。

假设有两个平面向量A和A,它们的加法表示为:A + A = (A₁ + A₁, A₂ + A₂)其中,A₁和A₂分别为向量A的两个分量,A₁和A₂分别为向量A的两个分量。

通过按照上述规则进行相应的运算,可以得到向量的和。

二、平面向量的减法平面向量的减法类似于加法,即对应元素相减。

假设有两个平面向量A和A,它们的减法表示为:A - A = (A₁ - A₁, A₂ - A₂)其中,A₁和A₂分别为向量A的两个分量,A₁和A₂分别为向量A的两个分量。

通过按照上述规则进行相应的运算,可以得到向量的差。

三、平面向量的数量乘法平面向量的数量乘法指的是一个向量与一个标量(实数)的乘法。

假设有一个平面向量A和一个标量A,它们的数量乘法表示为:AA = (AA₁, AA₂)其中,A₁和A₂分别为向量A的两个分量。

通过按照上述规则进行相应的运算,可以得到向量与标量的乘积。

四、平面向量的向量乘法平面向量的向量乘法分为点乘和叉乘两种情况。

点乘,也称为数量积或内积,是两个向量相乘后再求和得到一个标量的运算。

假设有两个平面向量A和A,它们的点乘表示为:A·A = A₁A₁ + A₂A₂其中,A₁和A₂分别为向量A的两个分量,A₁和A₂分别为向量A的两个分量。

点乘的结果是一个标量。

叉乘,也称为向量积或外积,是两个向量相乘后得到一个新向量的运算。

假设有两个平面向量A和A,它们的叉乘表示为:A×A = (A₂A₃ - A₃A₂, A₃A₁ - A₁A₃, A₁A₂ - A₂A₁)其中,A₁、A₂和A₃分别为向量A的三个分量,A₁、A₂和A₃分别为向量A的三个分量。

平面向量的运算法则

平面向量的运算法则

平面向量的运算法则平面向量是二维的有方向和大小的量,通常用箭头表示。

在平面上,我们可以进行平面向量的加法、减法、数乘、点乘和叉乘等运算,下面将详细介绍这些运算法则。

1.平面向量的加法:设有平面向量A和B,表示为⃗A和⃗B,其加法运算为:⃗A+⃗B=⃗C,其中C是由A和B的箭头所形成的三角形的对角线的向量。

加法满足以下性质:-交换律:⃗A+⃗B=⃗B+⃗A-结合律:(⃗A+⃗B)+⃗C=⃗A+(⃗B+⃗C)2.平面向量的减法:设有平面向量A和B,表示为⃗A和⃗B,其减法运算为:⃗A-⃗⃗B=⃗C,其中C是由A的箭头指向B的箭头所形成的三角形的对角线的向量。

3.平面向量的数乘:设有平面向量A和实数k,表示为⃗A和k,其数乘运算为:k⃗A=⃗B,其中B的大小等于A的大小乘以k,方向与A相同(若k>0),或相反(若k<0)。

数乘满足以下性质:- 结合律:k(l⃗A) = (kl)⃗A-分配律:(k+l)⃗A=k⃗A+l⃗A4.平面向量的点乘(数量积):设有平面向量A和B,表示为⃗A和⃗B,其点乘运算为:⃗A · ⃗B = ABcosθ,其中A和B的夹角θ的余弦值等于点乘结果与两个向量大小的乘积的商。

点乘满足以下性质:-交换律:⃗A·⃗B=⃗B·⃗A-结合律:(⃗A+⃗B)·⃗C=⃗A·⃗C+⃗B·⃗C-数乘结合律:(k⃗A)·⃗B=k(⃗A·⃗B)特殊情况下:-若⃗A与⃗B垂直,即⃗A·⃗B=0,则称⃗A与⃗B是正交的或垂直的。

-若⃗A和⃗B非零,且⃗A·⃗B>0,则夹角θ为锐角。

-若⃗A和⃗B非零,且⃗A·⃗B=0,则夹角θ为直角。

-若⃗A和⃗B非零,且⃗A·⃗B<0,则夹角θ为钝角。

5.平面向量的叉乘(向量积):设有平面向量A和B,表示为⃗A和⃗B,其叉乘运算为⃗A × ⃗B = nABsinθ⃗n,其中n为垂直于A和B所在平面的单位向量,θ为A和B 的夹角。

平面向量的加法与减法运算

平面向量的加法与减法运算

平面向量的加法与减法运算在平面向量的运算中,加法与减法是最基本的运算法则。

平面向量加法与减法的定义及运算规则如下:一、平面向量的定义在平面上,向量是由大小和方向确定的箭头表示,具有大小和方向的量。

平面向量用字母加箭头表示,如AB→,表示从点A指向点B的向量。

二、平面向量的加法运算1. 定义:对于两个平面向量AB→和CD→,可以将CD→放置在平面上的A点,使得它们有相同的起点,然后从A点指向D点,得到一个新的向量AD→。

AD→就是AB→与CD→的和,表示为AB→+CD→。

2. 运算规则:a) 加法的交换律:AB→ + CD→ = CD→ + AB→b) 加法的结合律:(AB→ + CD→) + EF→ = AB→ + (CD→ + EF→)c) 零向量的定义:零向量是指大小为0的向量,用0→表示,对于任意向量AB→,有AB→ + 0→ = AB→d) 反向向量的定义:对于任意向量AB→,存在一个与之方向相反但大小相等的向量,称为其反向向量,用-AB→表示,有AB→ + (-AB→) = 0→三、平面向量的减法运算1. 定义:对于两个平面向量AB→和CD→,可以将CD→取反,然后按照向量加法的规则,得到AB→ + (-CD→),表示为AB→ - CD→。

2. 减法的运算规则:a) 减法的定义:AB→ - CD→ = AB→ + (-CD→)b) 减法的性质:AB→ - CD→ ≠ CD→ - AB→,减法不满足交换律。

四、示例分析1. 平面向量加法示例:设有向量AB→ = 3i + 4j和向量CD→ = -2i + 5j,其中i和j是单位向量。

AB→ + CD→ = (3i + 4j) + (-2i + 5j) = (3 - 2)i + (4 + 5)j = i + 9j2. 平面向量减法示例:设有向量AB→ = 3i + 4j和向量CD→ = -2i + 5j,其中i和j是单位向量。

AB→ - CD→ = (3i + 4j) - (-2i + 5j) = (3 + 2)i + (4 - 5)j = 5i - j五、平面向量的运算性质1. 平面向量加法满足交换律和结合律,即满足整个群论的要求。

平面向量的运算平面向量的加法减法及数量积的性质

平面向量的运算平面向量的加法减法及数量积的性质

平面向量的运算平面向量的加法减法及数量积的性质平面向量的运算:平面向量的加法、减法及数量积的性质平面向量是数学中的重要概念,它具有方向和大小两个基本属性。

在平面向量的运算中,主要包括加法、减法以及数量积。

本文将详细介绍平面向量的这三种运算及其性质。

一、平面向量的加法与减法平面向量的加法和减法是两种基本的运算操作。

下面先介绍平面向量的加法。

1. 平面向量的加法设有两个平面向量a→=(a1,a2)和a→=(a1,a2),它们的加法定义如下:a→+a→=(a1+a1,a2+a2)即将两个向量的对应分量相加得到新的向量。

例如:a→=(2,3),a→=(1,4)a→+a→=(2+1,3+4)=(3,7)2. 平面向量的减法平面向量的减法可以转化为加法运算。

设有两个平面向量a→=(a1,a2)和a→=(a1,a2),它们的减法定义如下:a→−a→=a→+(−a→)即将向量a→取负号,再与向量a→进行加法运算。

例如:a→=(2,3),a→=(1,4)a→−a→=a→+(−a→)=(2,3)+(−1,−4)=(2−1,3−4)=(1,−1)二、平面向量的数量积及性质平面向量的数量积是两个向量之间的乘法运算,它也被称为点积或内积。

平面向量的数量积具有以下性质。

1. 定义设有两个平面向量a→=(a1,a2)和a→=(a1,a2),它们之间的数量积定义如下:a→·a→=a1a1+a2a2即将两个向量对应分量的乘积相加。

例如:a→=(2,3),a→=(1,4)a→·a→=2×1+3×4=2+12=142. 性质平面向量的数量积具有以下性质:(1)交换律a→·a→=a→·a→即两个向量的数量积不受顺序的影响。

(2)分配律a→·(a→+a→)=a→·a→+a→·a→即将一个向量与两个向量的和的数量积等于该向量与这两个向量的数量积之和。

平面向量的加减运算

平面向量的加减运算

平面向量的加减运算平面向量是表示平面上的有向线段的数学工具,常用于描述位移、速度、力等物理量。

在平面向量的运算中,加法和减法是最基本的操作。

1. 加法运算平面向量的加法运算是指将两个向量相加得到一个新的向量的操作。

设有向量A(A₁, A₂)和向量A(A₁, A₂),则它们的和为向量A(A₁,A₂),即:A = A + A = (A₁ + A₁, A₂ + A₂)2. 减法运算平面向量的减法运算是指将一个向量减去另一个向量得到一个新的向量的操作。

设有向量A(A₁, A₂)和向量A(A₁, A₂),则它们的差为向量A(A₁, A₂),即:A = A - A = (A₁ - A₁, A₂ - A₂)在进行平面向量的加减运算时,我们可以利用向量的坐标表示进行计算。

具体操作如下:1. 给出需要进行加减运算的向量A和向量A的坐标表示。

2. 将两个向量的对应坐标进行相加(或相减),得到新的坐标。

3. 根据得到的新坐标,构造新的向量A(加法运算)或向量A(减法运算)。

4. 最后,将新的向量A(加法运算)或向量A(减法运算)的坐标表示写出,即完成了平面向量的加减运算。

补充说明:1. 在计算过程中,要注意坐标的顺序,确保符号对应正确。

2. 加法运算和减法运算可以通过相互转化来进行,即:A + A = A - ( - A)3. 若有多个向量进行加减运算,可以采用逐步进行的方法,先进行第一对向量的运算,然后将得到的结果与下一个向量进行运算,依次类推。

4. 在实际问题中,应用到向量加减运算时,可以结合图像进行解释和计算,更直观地理解向量的运算规律。

通过以上步骤,我们可以完成平面向量的加减运算。

在实际应用中,平面向量的加减运算常常用于解决平面几何和物理学中的问题,如位移、速度、力的合成分解等。

总结:平面向量的加减运算是指将两个向量相加或相减得到一个新的向量。

通过计算向量的各个坐标,然后进行相应的加减操作,我们可以得到最终的结果。

平面向量的加法和减法运算

平面向量的加法和减法运算

平面向量的加法和减法运算在数学中,平面向量是指具有大小和方向的量,常用箭头来表示。

平面向量的加法和减法是两个基本操作,它们可以帮助我们描述和解决各种与方向和位移相关的问题。

本文将详细介绍平面向量的加法和减法运算方法,以及一些实际应用。

一、平面向量的表示平面向量通常使用有序对来表示,如AB。

其中,A和B分别表示向量的起点和终点。

我们可以用箭头来表示向量的方向,箭头的长度则表示向量的大小。

例如,AB向量可以表示为→AB。

二、平面向量的加法运算平面向量的加法运算可以用三角法和平行四边形法两种方法进行。

1. 三角法三角法是一种简单直观的计算平面向量加法的方法。

首先,我们将两个向量的起点放在一起,然后从第一个向量的终点画一条箭头指向第二个向量的终点。

这样,连接起点和终点的箭头便表示了两个向量相加的结果。

2. 平行四边形法平行四边形法是另一种常用的计算平面向量加法的方法。

我们需要将两个向量的起点放在一起,然后将它们的终点连接起来,形成一个平行四边形。

此时,从共同起点到对角线上的交点的箭头便表示了两个向量相加的结果。

三、平面向量的减法运算平面向量的减法运算可以通过将减去的向量取其相反向量并进行加法运算来实现。

假设有两个向量AB和CD,我们可以将CD取其相反向量-CD,然后将AB与-CD进行加法运算。

实际上,减法运算也可以表示为向量加上其相反数。

四、平面向量运算的性质平面向量的加法和减法满足以下性质:1. 交换律:A + B = B + A2. 结合律:(A + B) + C = A + (B + C)3. 加法单位元:0 + A = A + 0 = A(其中0为零向量)4. 加法逆元:A + (-A) = (-A) + A = 05. 减法定义:A - B = A + (-B)五、平面向量运算的应用平面向量的加法和减法运算在几何、物理等领域中有广泛的应用。

1. 位移和方向:平面向量的加法可以用来描述一个物体在平面上的位移和方向变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

||=1200=12,
∴∠ABC=60°,从而船与水流方向成 120°的角.
故船行进的方向与水流的方向成 120°的角.
跟踪练习
1.一艘船以 8 km/h 的速度向垂直于对岸的方向行驶,由于水 流的原因,船的实际航行速度的大小为 4 5 km/h,则水流 速度的大小为________.
解析:由题意可知,水流速度的大小为 4 52-82= 4 (km/h).
提示:力的合力不在这两个方向上.
一、向量加法的定义和法则 1.向量加法的定义 求 两个向量和的运算,叫做向量的加法. 2.求向量和的方法
(1)三角形法则: 已知非零向量a、b,在平面上任取一点A,
作 AB =a, BC =b,则向量 AC 叫做a与 b的和或和向量,记作a+b,即a+b= AB + BC = AC .上述求两个向量和的方法,称为向量加法的三角 形法则.
[精解详析] 作 AB =υ 水,AD =υ 船,以 AB ,AD 为 邻边作▱ABCD,
则 AC=υ 实际,如图 由题意可知∠CAB=90°,在 Rt△ABC 中,
| AB |=|υ 水|=10 m/min,
| BC |=| AD |=|υ 船|=20 m/min,
∴cos
∠ABC=| |Leabharlann AB BC跟踪练习
1.正方形 ABCD 的边长为 1,则| AB + AD |为
A.1
B. 2
C.3
D.2 2
解析:正方形 ABCD 中, AB + AD = AC
∴| AB + AD |=| AC |= 2.
答案:B
()
2.化简下列各式: (1) PB + OP + OB 2 AB + MB + BO + OM
解:1 PB + OP + OB =( OP + PB )+ OB = OB + BO =0. 2 AB + MB + BO + OM = AB + BO + OM + MB = AO + OB = AB .
例题讲解
[例 3] 船在静水中的速度为 20 m/min,水流的速度为 10 m/min,如果船从岸边出发沿垂直于水流的航线到达对岸,求船 行进的方向.
答案:4 km/h
2.如图,一架飞机从 A 地按北偏西 30°的方向飞行 300 km 后 到达 B 地, 然后向 C 地飞行.已知 C 地在 A 地北偏 东 60°的方向处,且 A,C 两地相距 300 km,求飞机从 B 地向 C 地飞行的方 向及 B、C 两地的距离.
解:根据题意可知∠BAC=90°,| AB |=| AC |=300 km,则可得 | BC |=300 2 km. 又由于∠ABC=45°,A 地在 B 地东偏南 60°的方向处,可知 C 地在 B 地东偏南 15°的方向处. 即飞机从 B 地向 C 地飞行的方向是东偏南 15°,B、C 两地的距 离为 300 2 km.
问题1:数的加法满足交换律和结合律,向量的加法 是否也满足交换律和结合律?
提示:满足. 问题2:你能验证向量也满足结合律吗?
提示:如图,a+b+c=(a+b)+c=a+(b+c).
(1)向量加法的交换律:a+b= b+a ; (2)向量加法的结合律:(a+b)+c= a+(b+c.)
深化理解
1.对两种求向量和的方法的理解. (1)两个法则的使用条件不同. 三角形法则适用于任意两个非零向量求和,平行四边形法 则只适用于两个不共线的向量求和. (2)当两个向量不共线时,两个法则是一致的. 如图所示: AC = AB + AD (平行四边形法则,
平面向量的加减法
2.2.1 平面向量的加 法
新课讲解 问题1:向量能进行运算吗?请举例说明. 提示:能,如力的合成. 问题2:如果两个力F1,F2作用于同一个物体上, 当物体静止时,说明了什么? 提示:F1+F2=0.
问题3:做斜上抛运动的物体在水平方向上有速度 吗?在竖直方向上有速度吗?
提示:有. 问题4:在问题3中,物体为什么没沿水平或垂直方 向运动?
的位移,则 AC 表示小船两次的合位移(如 图).
例题讲解
[例 2] 化简或计算: (1) CD + BC + AB ; (2) AB + DF + CD + BC + FA .
[精解详析] (1) CD + BC + AB =( AB + BC )+ CD = AC + CD = AD . (2) AB + DF + CD + BC + FA =( AB + BC )+( CD + DF )+ FA = AC + CF + FA = AF + FA =0.
法二:如图 2 所示,首先在平面内任取一点 O,作向量 OA =a, OB =b,OC =c,以 OA、OB 为邻边作▱OADB,连接 OD,则 OD = OA + OB =a+b.
再以 OD、OC 为邻边作▱ODEC,连接 OE,则 OE = OD + OC =a+b+c 即为所 求.
跟踪练习
AC = AB + BC (三角形法则).
(3)在使用三角形法则时,应注意“首尾连接”;在使用平 行四边形法则时应注意两向量起点相同.
(4)三角形法则可以推广为多边形法则,即对于几个向量, 有 A0 A1 A1A2 A2 A3 An1An A0 An ,这可以称为向量加法 的多边形法则.
(2)平行四边形法则: 已知两个不共线向量a,b,作 OA =a OB =b,以a,b为邻边作▱OACB,则以O为 起点 的对角线 OC 就是a与b的和,如图.这种作两个向量 和的方法叫做向量加法的平行四边形法则. 对于零向量与任一向量a,规定:a+0= 0 + a =a .
二、向量加法的运算律
2.在向量加法的三角形法则中,可得|a|+|b|≥|a+b|.其 中,“=”在有一者为零向量或两个向量共线且方向相同时取 得.
例题讲解
[例1] 如图所示, 已知向量a,b,c试作出向量a+b+c. [精解详析] 法一:如图 1 所示, 首先在平面内任取一点 O,作向量 OA = a,再作向量 AB =b,则得向量 OB =a+b; 然后作向量 BC =c,则向量 OC =(a+b)+c =a+b+c 即为所求.
1.如图,已知平行向量 a、b,求作 a+b.
解:作 OA =a,AB =b,则 OB =a+b 就是求作的向量.
2.小船向正东方向行驶了 10 km,又沿北偏东 30°方向行驶 了 15 km,作出小船两次的合位移.
解:用 AB 表示向正东行驶 10 km 的位移, BC 表示沿北偏东 30°方向行驶了 15 km
相关文档
最新文档