第11章磁场作业解答磁场分解
大学物理(下)十一章十二章作业与解答

⼤学物理(下)⼗⼀章⼗⼆章作业与解答第⼗⼀章恒定磁场⼀. 选择题1.在⼀平⾯内,有两条垂直交叉但相互绝缘的导线,流经两条导线的电流⼤⼩相等,⽅向如图,在哪些区域中有可能存在磁感应强度为零的点?(A) 在Ⅰ、Ⅲ象限(B) 在Ⅰ、Ⅳ象限(C) 在Ⅱ、Ⅲ象限(D) 在Ⅱ、Ⅳ象限[ ]2. 载流导线在同⼀平⾯内,形状如图,在圆⼼O处产⽣的磁感应强度⼤⼩为(A)(B)(C)(D) [ ]注意见第11章课件最后的总结的那个图,半圆载流回路在圆⼼处的磁感强度是多少?3. ⼀圆形回路1及⼀正⽅形回路2,圆的直径与正⽅形边长相等,⼆者中通有⼤⼩相同电流,则它们在各⾃中⼼处产⽣的磁感应强度⼤⼩之⽐为(A) 0.90(B) 1.00(C) 1.11(D) 1.22 [ ]注意教材page304,及课件最后总结的那个图4. 在磁感应强度为的均匀磁场中做⼀半径为r的半球⾯S,S边线所在平⾯的法线⽅向单位⽮量与的夹⾓为θ,则通过半球⾯S 的磁通量(取半球⾯向外为正)为(A)(B)(C)(D)[ ]5. 如图,⽆限长载流直导线附近有⼀正⽅形闭合曲⾯S,当S向导线靠近时,穿过S的磁通量和S上各点的磁感应强度的⼤⼩B 将(A) 增⼤,B增强(B) 不变,B不变(C) 增⼤,B不变(D) 不变,B增强[ ]6. 取⼀闭合积分回路L,使若⼲根载流导线穿过它所围成的⾯,若改变这些导线之间的相互间隔,但不越出积分回路,则(A) 回路L内的电流的代数和不变,L上各点的不变(B) 回路L内的电流的代数和不变,L上各点的改变(C) 回路L内的电流的代数和改变,L上各点的不变(D) 回路L内的电流的代数和改变,L上各点的改变[ ]7. 如图,两根导线ab和cd沿半径⽅向被接到⼀个截⾯处处相等的铁环上,恒定电流I 从a端流⼊⽽从d端流出,则磁感应强度沿闭合路径L的积分等于(A)(B)(C)(D)[ ]8. ⼀电荷为q的粒⼦在均匀磁场中运动,下列说法正确的是(A) 只要速度⼤⼩相同,粒⼦所受的洛仑兹⼒就相同(B) 在速度不变的前提下,若电荷q变为 -q,则粒⼦受⼒反向,数值不变(C) 粒⼦进⼊磁场后,其动能和动量都不变(D) 洛仑兹⼒与速度⽅向垂直,所以带电粒⼦运动的轨迹必定是圆[ ]9. 质量为m、电量为q的粒⼦,以速度v垂直射⼊均匀磁场中,则粒⼦运动轨道包围范围的磁通量与磁感应强度的⼤⼩之间的关系曲线为[ b ]注意见P317,(11.30)10. 如图,长直载流导线与⼀圆形电流共⾯,并与其⼀直径相重合(两者间绝缘),设长直电流不动,则圆形电流将(A) 向上运动(B) 绕旋转(C) 向左运动(D) 向右运动(E) 不动[ ]11. 磁场中有⼀载流圆线圈,其既不受⼒也不受⼒矩作⽤,这说明(A) 该磁场⼀定均匀,且线圈的磁矩⽅向⼀定与磁场⽅向平⾏(B) 该磁场⼀定不均匀,且线圈的磁矩⽅向⼀定与磁场⽅向平⾏(C) 该磁场⼀定均匀,且线圈的磁矩⽅向⼀定与磁场⽅向垂直(D) 该磁场⼀定不均匀,且线圈的磁矩⽅向⼀定与磁场⽅向垂直[ ]注意见P325 第⼆段表述,11.36式12. ⽤细导线均匀密绕成长为l、半径为a(l >>a)、总匝数为N的螺线管,管内充满相对磁导率为的均匀磁介质,线圈中载有电流I,则管中任⼀点(A) 磁感应强度⼤⼩为(B) 磁感应强度⼤⼩为(C) 磁场强度⼤⼩为(D) 磁场强度⼤⼩为[ ]⼆. 填空题13.如图,电流元在P点产⽣的磁感应强度的⼤⼩为___________________.14. 真空中有⼀载有电流I的细圆线圈,则通过包围该线圈的闭合曲⾯S的磁通量Φ=________________. 若通过S⾯上某⾯元的磁通为,⽽线圈中电流增加为2I时,通过该⾯元的磁通为,则_______________.0 ; 1︰215. 如图,两平⾏⽆限长载流直导线中电流均为I,两导线间距为a,则两导线连线中点P的磁感应强度⼤⼩,磁感应强度沿图中环路L的线积分_______________________.0 ;16. 恒定磁场中,磁感应强度对任意闭合曲⾯的积分等于零,其数学表⽰式是____________,这表明磁感应线的特征是_________________________. ;闭合曲线17. ⼀长直螺线管是由直径的导线密绕⽽成,通以的电流,其内部的磁感应强度⼤⼩B =_____________________.(忽略绝缘层厚度)18. 带电粒⼦垂直磁感应线射⼊匀强磁场,它做______________运动;带电粒⼦与磁感应线成300⾓射⼊匀强磁场,则它做__________________运动;若空间分布有⽅向⼀致的电场和磁场,带电粒⼦垂直于场⽅向⼊射,则它做__________________运动.圆周;螺旋线;变螺距的螺旋线19. 在霍尔效应实验中,通过导电体的电流和的⽅向垂直(如图).如果上表⾯的电势较⾼,则导电体中的载流⼦带___________电荷;如果下表⾯的电势较⾼,则导电体中的载流⼦带___________电荷.正;负20. 如图,⼀载流导线弯成半径为R的四分之⼀圆弧,置于磁感应强度为的均匀磁场中,导线所受磁场⼒⼤⼩为______________,⽅向为_____________.; y轴正向注意:积分IRBdθ,θ的积分上下限?21. 如图,半径为R的半圆形线圈通有电流I,线圈处在与线圈平⾯平⾏指向右的均匀磁场中,该载流线圈磁矩⼤⼩为___________,⽅向____________;线圈所受磁⼒矩的⼤⼩为_________________,⽅向_____________.;垂直纸⾯向外;;向上22. 磁场中某点,有⼀半径为R、载有电流I的圆形实验线圈,其所受的最⼤磁⼒矩为M,则该点磁感应强度的⼤⼩为_________________.注意见教材324页三. 计算题23. 如图,两长直导线互相垂直放置,相距为d,其中⼀根导线与z轴重合,另⼀与x轴平⾏且在Oxy平⾯内,设导线中皆通有电流I,求y轴上与两导线等距的P点处的磁感应强度.解:长直载流导线在距其r处的磁感应强度为两长直载流导线在P点产⽣的磁感应强度⽅向⼀沿z轴⽅向,⼀沿x轴负⽅向且⽅向平⾏于Oxz平⾯与Oxy⾯成45o,如图⽰。
《大学物理》11磁场习题解析共141页文档

25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
《大学物理》11磁场习题解 析
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。Байду номын сангаас—培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
11稳恒电流和稳恒磁场习题解答讲解

第十一章 稳恒电流和稳恒磁场一 选择题1. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(如图)产生的磁感应强度B 的大小为( )A. l I μπ420B. lIμπ20 C .lIμπ20 D. 0 解:设线圈四个端点为ABCD ,则AB 、AD 线段在A 点产生的磁感应强度为零,BC 、CD 在A 点产生的磁感应强度由)cos (cos π4210θθμ-=dIB ,可得 lIl IB BC π82)2πcos 4π(cosπ400μμ=-=,方向垂直纸面向里lI l I B CD π82)2πcos 4π(cos π400μμ=-=,方向垂直纸面向里合磁感应强度 lIB B B CD BC π420μ=+=所以选(A )2. 如图所示,有两根载有相同电流的无限长直导线,分别通过x 1=1、x 2=3的点,且平行于y 轴,则磁感应强度B 等于零的地方是:( )A. x =2的直线上B. 在x >2的区域C. 在x <1的区域D. 不在x 、y 平面上 解:本题选(A )3. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大?( )A. Ⅰ区域B. Ⅱ区域 C .Ⅲ区域D .Ⅳ区域E .最大不止一个解:本题选(B )选择题2图Ⅰ Ⅱ Ⅲ Ⅳ 选择题3图选择题1图4. 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知:( )A. ∮L B ·d l =0,且环路上任意一点B =0B. ∮L B ·d l =0,且环路上任意一点B ≠0C. ∮L B ·d l ≠0,且环路上任意一点B ≠0D. ∮L B ·d l ≠0,且环路上任意一点B =常量解:本题选(B )5. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(r <R )的磁感应强度为B i ,圆柱体外(r >R )的磁感应强度为B e ,则有:( )A. B t 、B e 均与r 成正比B. B i 、B e 均与r 成反比C. B i 与r 成反比,B e 与r 成正比D. B i 与r 成正比,B e 与r 成反比解:导体横截面上的电流密度2πR IJ =,以圆柱体轴线为圆心,半径为r的同心圆作为安培环路,当r <R ,20ππ2r J r B i ⋅=⋅μ,20π2R IrB i μ=r <R ,I r B e ⋅=⋅0π2μ, rIB e π20μ=所以选(D )6. 有三个质量相同的质点a 、b 、c ,带有等量的正电荷,它们从相同的高度自由下落,在下落过程中带电质点b 、c 分别进入如图所示的匀强电场与匀强磁场中,设它们落到同一水平面的动能分别为E a 、E b 、E c ,则( )A. E a <E b =E cB. E a =E b =E cC. E b >E a =E cD. E b >E c >E a解:由于洛伦兹力不做功,当它们落到同一水平面上时,对a 、c 只有重力做功, 则E a =E c ,在此过程中,对b 不仅有重力做功,电场力也要做正功,所以E b >E a =E c所以选(C )7. 图为四个带电粒子在O 点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片,磁场方向垂直纸面向外,四个粒子的质量相等,电量大小也相等,则其中动能最大的带负电的粒子的轨迹是:( )A. OaB. ObC. Oc D . Od解:根据B F ⨯=v q ,从图示位置出发,带负选择题7图c dba B O• B× × × × × × Ea bc 选择题6图 选择题4图电粒子要向下偏转,所以只有Oc 、Od 满足条件,又带电粒子偏转半径Bqm R v=,22k 22qB m E R =∴,质量相同、带电量也相等的粒子,动能大的偏转半径大,所以选Oc 轨迹所以选(C )8. 如图,一矩形样品,放在一均匀磁场中,当样品中的电流I 沿X 轴正向流过时,实验测得样品A 、A '两侧的电势差V A -V A '>0,设此样品的载流子带负电荷,则磁场方向为:( )A . 沿X 轴正方向B .沿X 轴负方向C .沿Z 轴正方向D .沿Z 轴负方向 解:本题选(C )9. 长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将:( )A. 绕I 2旋转B. 向左运动C. 向右运动D. 向上运动E. 不动 解:圆形电流左半圆和右半圆受到长直电流安培力的方向均向右,所以圆形电流将向右运动所以选(C )二 填空题1. 成直角的无限长直导线,流有电流I =10A ,在直角决定的平面内,距两段导线的距离都是a =20cm 处的磁感应强度B = 。
大学物理习题答案第十一章

[习题解答]11-7 在磁感应强度大小为B = 0.50 T 的匀强磁场中,有一长度为l = 1.5 m 的导体棒垂直于磁场方向放置,如图11-11所示。
如果让此导体棒以既垂直于自身的长度又垂直于磁场的速度v 向右运动,则在导体棒中将产生动生电动势。
若棒的运动速率v = 4.0 m ⋅s -1 ,试求:(1)导体棒内的非静电性电场K ;(2)导体棒内的静电场E ;(3)导体棒内的动生电动势ε的大小和方向;(4)导体棒两端的电势差。
解(1)根据动生电动势的表达式,由于()的方向沿棒向上,所以上式的积分可取沿棒向上的方向,也就是d l 的方向取沿棒向上的方向。
于是可得.另外,动生电动势可以用非静电性电场表示为.以上两式联立可解得导体棒内的非静电性电场,为,方向沿棒由下向上。
图11-11(2)在不形成电流的情况下,导体棒内的静电场与非静电性电场相平衡,即,所以,E 的方向沿棒由上向下,大小为.(3)上面已经得到,方向沿棒由下向上。
(4)上述导体棒就相当一个外电路不通的电源,所以导体棒两端的电势差就等于棒的动生电动势,即,棒的上端为正,下端为负。
11-8 如图11-12所表示,处于匀强磁场中的导体回路ABCD ,其边AB 可以滑动。
若磁感应强度的大小为B = 0.5 T ,电阻为R = 0.2 Ω,AB 边长为 l = 0.5 m ,AB 边向右平移的速率为v = 4 m ⋅s -1 ,求:(1)作用于AB 边上的外力;(2)外力所消耗的功率;(3)感应电流消耗在电阻R 上的功率。
解(1)当将AB 向右拉动时,AB 中会有电流通过,流向为从B 到A 。
AB 中一旦出现电流,就将受到安培力F 的作用,安培力的方向为由右向左。
所以,要使AB 向右移动,必须对AB施加由左向右图11-12的力的作用,这就是外力F外。
在被拉动时,AB中产生的动生电动势为,电流为.AB所受安培力的大小为,安培力的方向为由右向左。
外力的大小为,外力的方向为由左向右。
川师大学物理第十一章-恒定电流的磁场习题解

第十一章 恒定电流的磁场11–1 如图11-1所示,几种载流导线在平面内分布,电流均为I ,求它们在O 点处的磁感应强度B 。
(1)高为h 的等边三角形载流回路在三角形的中心O 处的磁感应强度大小为 ,方向 。
(2)一根无限长的直导线中间弯成圆心角为120°,半径为R 的圆弧形,圆心O 点的磁感应强度大小为 ,方向 。
…解:(1)如图11-2所示,中心O 点到每一边的距离为13OP h =,BC 边上的电流产生的磁场在O 处的磁感应强度的大小为012(cos cos )4πBC I B dμββ=-^IB21图11–2图11–1…B(a )AE(b )0(cos30cos150)4π/3Ih μ︒︒=-=方向垂直于纸面向外。
另外两条边上的电流的磁场在O 处的磁感应强度的大小和方向都与BC B 相同。
因此O 处的磁感应强度是三边电流产生的同向磁场的叠加,即3BC B B ===方向垂直于纸面向外。
(2)图11-1(b )中点O 的磁感强度是由ab ,bcd ,de 三段载流导线在O 点产生的磁感强度B 1,B 2和B 3的矢量叠加。
由载流直导线的磁感强度一般公式012(cos cos )4πIB dμββ=- 可得载流直线段ab ,de 在圆心O 处产生的磁感强度B 1,B 3的大小分别为01(cos0cos30)4cos60)IB R μ︒=︒-︒π(0(12πI R μ=-031(cos150cos180)4πcos60IB B R μ︒==︒-︒0(12πI R μ=-】方向垂直纸面向里。
半径为R ,圆心角α的载流圆弧在圆心处产生的磁感强度的大小为04πI B Rμα=圆弧bcd 占圆的13,所以它在圆心O 处产生的磁感强度B 2的大小为00022π34π4π6II I B R R Rμμαμ===方向垂直纸面向里。
因此整个导线在O 处产生的总磁感强度大小为000012333(1)(1)0.212π22π26I I I I B B B B R R R Rμμμμ=++=-+-+=方向垂直纸面向里。
普通物理学第五版第11章磁场答案题.

结束
目录
11-5 如图所示的被折成钝角的长导线 中通有20A的电流。求:A点的磁感应强度。 设 d = 2cm, a =1200
Q
A
a
d
O
I
P
结束
目录
已知: I = 20A d = 2cm 求:B A 解: B A = B OP + B OQ
a = 120
Q d
0
A
B OP =0
0
a P O I
I1
I2
结束
目录
已知:I 1 = I 2 = 10A 求:B P
解:
m I1 B 1P = B 2P = πa 2
0
P I 1 P I 2 a = 0.5m B 2P P BP a B 2P a I1 I2
2 B P = B 1P +B 2 P = 2 B 1P 2
-7×10 × 10 2×4 π -6 T 5.66 × 10 = = π× 0.50 2 B 2P q = arc tg 45 = B 1P
结束
目录
已知: B=1 求: Φ 解:
Wb/m2
S = 2m
2
(1) Φyz = B . S = B S = 1×2 = 2Wb
(2) Φxz = B . S = B S cos 900 y n
45 0
(3) Φ y = B . S = B S cos 45 0 2 =1×2 × 2 = 1.41Wb
11-1 在地球北半球的某区域,磁感应强 度的大小为4×10-5 T,方向与铅直线成600角 求: (1)穿过面积为1m2的水平面的磁通量; (2)穿过面积为1m2的竖直平面的磁通量的 最大值和最小值
第十一章稳恒电流的磁场(一)作业解答

一、利用毕奥—萨法尔定律计算磁感应强度毕奥—萨法尔定律:304r rl Id B d⨯=πμ1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a IB πμ20=半无限长载流直导线a IB πμ40=,直导线延长线上0=B2. 圆环电流的磁场232220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθμ220∙=R I B电荷转动形成的电流:πωωπ22q q T q I === 【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B的大小为(A))(20b a I+πμ. (B)b b a aI +πln20μ.(C) b b a b I +πln 20μ. (D) )2(0b a I+πμ. 解法:【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:根据直线电流的磁场公式和圆弧电流产生磁场公式可得【 】自测提高7、边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为 (A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2. (D) B 1 = B 2 /4. 解法:设正方形边长为a ω 相同,所以每个点电荷随着正方形旋转时形成的等效电流相同, 为当正方形绕AC 轴旋转时,一个点电荷在O 旋转产生电流,在O 点产生的总磁感小为O 点产生的磁感应强度的大小为基础训练12、一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l Id ,则该电流元在(a ,0,0)点处的磁感强度的大小为 ,方向为 。
利用“分解磁场”解题的方法

利用“分解磁场”解题的方法1. 磁场的分解原理磁场可以被分解为平行分量和垂直分量。
平行分量指的是磁场沿着特定方向的分量,垂直分量指的是磁场与特定方向垂直的分量。
通过将磁场分解为这两个分量,我们可以更好地理解和处理磁场问题。
2. 问题的分解与解答在解题过程中,我们可以根据具体问题的要求将磁场进行适当的分解,并分别分析和处理每个分量。
以下是一些常见问题的解答示例:2.1. 磁场的叠加问题当有多个磁场同时存在时,我们可以将它们的分量分别求和得到最终的结果。
假设有两个磁场A和B,它们的磁场矢量分别为A和B。
我们可以将每个磁场的矢量分解为平行分量Ax、Bx和垂直分量Ay、By。
然后,将平行分量和垂直分量分别求和得到最终的结果,即A = Ax + Ay,B = Bx + By。
通过这种方式,我们可以简化叠加磁场的问题。
2.2. 磁场的影响问题当一个磁场对物体产生影响时,我们可以将该磁场分解为平行分量和垂直分量,并分别对它们的影响进行分析。
通过这种方式,我们可以更好地理解和解答磁场的影响问题。
2.3. 磁场的计算问题在某些情况下,我们需要计算磁场的大小和方向。
利用“分解磁场”的方法,我们可以将磁场分解为不同方向的分量,并利用相应的计算公式求解每个分量的大小。
然后,将每个分量的大小和方向合并,得到最终的结果。
3. 注意事项在利用“分解磁场”解题的过程中,需要注意以下几点:- 确保正确地分解磁场为平行分量和垂直分量,避免出现计算错误。
- 理解和运用磁场的相关知识和公式,以便正确地处理每个分量。
- 仔细分析和理解问题的要求,将磁场进行适当的分解,以便更好地解答问题。
总结利用“分解磁场”解题的方法是物理学中常用且有效的策略之一。
通过将磁场分解为不同部分,我们可以更好地理解和处理磁场问题,解答各种与磁场相关的问题。
在运用该方法时,需要正确地分解磁场,理解磁场的特性,并仔细分析问题的要求。
这样,我们可以更好地应用“分解磁场”解题的方法,提高解决问题的效率和准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11-1 求图中各种情况下O 点处的磁感应强度B 。
解:图a 的电流可以看成是由1、2两个电流合成的。
故合场强为 直线电流,和矩形电流产生的磁感应强度的矢量和。
直线电流1在O 点产生的磁感应强度)2/(20a Iπμ,方向垂直纸面向外。
矩形电流2由两条长度为a 、两条长度为b 的直线电流组成在O 点产生的磁感应强度为:)]2/sin()2/[sin()2/(42)]2/sin()2/[sin()2/(4200ααπμϕϕπμ--+--b Ia I2202200022)2/sin(2)2/sin(2ba a bI ba b a Ib I a I +++=+=πμπμαπμϕπμ)(2220b aa b b a I++=πμ方向垂直纸面向内。
O 点的磁感应强度为:220022002)(2b a abI a I b aa b b a I a I B +-=++-=πμπμπμπμ 这里利用了载流直导线外的磁感应强度公式:]sin )[sin 4120ββπμ-=rIB电流b 由两条直线电流,和一个圆弧组成:)0sin 90(sin 42360135200-︒+=RIR I B πμμ RIR I R I 00035.02163μπμμ=+=电流c 中两条直线电流的延长线都过圆心,由毕-萨定律知道在圆心处产生的磁感应强度为0,圆弧产生的磁感应强度为RlR I R l R I B πμπμ2222220110-=由于两端的电压相同有2211I SlI S l V ρρ==带入上式得到B=0 11-2.如图所示,一扇形薄片,半径为R ,张角为θ,其上均匀分布正电荷,电荷密度为σ,薄片绕过角顶O 点且垂直于薄片的轴转动,角速度为ω,求O 点处的磁感应强度。
解答1:将扇形薄片分割成半径为r 的圆弧形面积元,电荷量为:dr r dq θσ=转动时相当于园电流,对应的电流强度为: rdr dr r T dq dI σωπθωπθσ2/2===产生的磁场为 dr rdIdB σωμπθμ0042==圆心处的磁场为R dr B Rσωμπθσωμπθ00044==⎰ 解答2:以o 为圆心,采用极坐标系将扇形薄片分割成小的面积元 dr rd ds dq θσσ==利用运动电荷产生磁场的公式 dr d rdrr rd r dqv dB θσωπμωθσπμπμ44402020===对上式积分得:πσωθμθσωπμθσωπμθ44400000R dr d dr d B R===⎰⎰⎰⎰ 11-3 在半径cm 0.1=R 的无限长半圆柱形金属薄片中,自下而上地通有电流A I 0.5=,求圆柱轴线上任一点P 处的磁感应强度。
(这里把自上而下改为自下而上,求解时对应右图。
如不改时方向相反。
)解:从电流的顶上看是个半圆形,在其上取一段圆弧(对应于一无限长载流直导线), 电流强度为:πθθπId Rd R I dI ==产生的磁场方向如图,由此可见合磁场方向沿水平向右为:θπθμθππθμπμsin 2)2/cos(2220200RId R Id R dI dB x =-==磁感应强度为:R I R I RId B B x 200200202sin 2πμπμθπθμππ=-===⎰=6.37×10-5T方向在x 轴正向。
11-4 图中所示为实验室中用来产生均匀磁场的亥姆霍兹圈。
它由两个完全相同的匝数为N 的共轴密绕短线圈组成(N 匝线圈可近似视为在同一平面内)。
两线圈中心12O O ,间的距离等于线圈半径R ,载有同向平行电流J 。
以12O O ,连线中点为坐标原点,求轴线上在1O 和2O 之间、坐标为x 的任一点P 处的磁感应强度B 的大小,并算出02010B B B 、、进行比较。
解:由园电流在轴线上一点的磁感应强度公式:2/32220)(2x R IR B +=μ用到上式 线圈1产生的磁感应强度2/322201))2/((2R x R NIR B ++=μ线圈2产生的磁感应强度2/322202))2/((2R x R NIR B -+=μRNIRNIR R NIR B B x 02/302/32220010715.0)4/5())2/((2μμμ==+===RNI R NI R R NIR RNIB B 02/302/3222000201678.0))2(2121()(22μμμμ=+=++== 两个圆环之间的磁场变化缓慢。
11-5 有一半径为R 的半圆形电流,求在过圆心O 垂直于圆面的轴线上离圆心距离为x 处P 点的磁感应强度。
解:如右图利用毕-萨定律分析可知z 方向的B 分量为0:204r IRd dB πθμ=x 轴分量为:απθμαππθμsin 4)2/cos(42020rIRd r IRd dB x =-=320202/2/204sin 4)2/cos(4r IR r IR rIRd B x μαμαππθμππ==-=⎰- y 轴分量为:θπθμθαπθμθαππθμcos 4cos cos 4cos )2/sin(4202020rxr IRd r IRd r IRd dB y ==-= 302/2/302/2/202cos 4cos 4r IRxd r IRx r x rIRd B y πμθθπμθπθμππππ===⎰⎰-- j rIRx i r IR B3032024πμμ+= 这里 22x R r +=是圆环到轴线的距离。
11-6 半径为R 的均匀带电球面的电势为U ,圆球绕其直径以角速度ω转动,求球心处的磁感应强度。
由球面的电势表示式Rq U 04πε=得到球面电荷量RU q 04πε= 电荷面密度 R U R q 024επσ==取求坐标系,将圆球分割成圆环,圆环带电量为ϕπσrRd dq 2=等效的电流为ϕσωωπϕπσrRd rRd T dq dI ===/22 利用园电流轴线上的磁感应强度公式2/32220)(2x R IR B +=μ这里R 是圆环的半径,在本例中为r ,可以得到2/32220)(2)(x r r rRd dB +=ϕσωμx 是圆环的圆心到轴线上一点的距离,在本例中为y.。
则有;sin ϕR r = ϕc o s R y = ϕϕσωμϕσωμd Rx r r rRd dB 302/32220sin 2)(2)(=+=⎰⎰⎰--===πππϕϕσωμϕϕσωμϕϕσωμ020030030cos )cos 1(2sin 2sin 2d R d R d RB U R R Rωεμσωμσωμϕϕσωμπ00000303232)311(22)cos 31(cos 2==-=--=11-7 地球上某处的磁感应强度水平分量为T 5107.1-⨯,试计算该处沿水平方向的磁场强度。
解:由m A HB /5.13104107.1750=⨯⨯==--πμ 11-8 螺线环中心周长cm l 10=,环上线圈匝数200=N 匝,线圈中通有电流mA I 100=。
(1)求管内的磁感应强度B ,及磁场强度H ;(2)若管内充满相对磁导率4200=r μ的铁磁质时,管内的磁感应强度和磁场强度为多大?(3)铁磁质内由传导电流I 产生的磁场B ,与由磁化电流产生的磁场'B 各为多大? 解:(1)由安培环路定律 ∑⎰=∙ii I l d H选择螺线环中心为环路路径:NI Hl l d H ==∙⎰得到磁场强度m A l NI H /2001.01.0200=⨯==磁感应强度 T lNIB 4700105.2200104--⨯=⨯⨯==πμ(2)管内充满相对磁导率4200=r μ的铁磁质时磁场强度不变,磁感应强度为T lNIB r 06.1105.2420040=⨯⨯==-μμ(3)传导电流I 产生的磁场0B 为:T lNIB 400105.2-⨯==μ磁化电流产生的磁场'B 为:T B B B 06.1'0≈-=11-9 在半径为R 的长圆柱导体内与轴线平行地挖去一个半径为r的圆柱形空腔.两圆柱形轴线之间的距离为)(r d d >。
电流I 在截面内均匀分布,方向平行于轴线。
求: (1)实心圆柱轴线上磁感应强度的大小;(2)空心部分中任一点的磁感应强度。
解:这个电流可以看成是:在空腔内补上同样电流密度的电流,在于同一位置再加上一条方向相反的电流,这时磁场是这两个电流各自产生的磁场的矢量和。
柱体的电流密度为)(22r R Ij -=π在实心圆柱轴线上大圆柱产生的磁感应强度为0,小园柱产生的磁感应强度由安培环路定律求解为:圆柱内的电流密度为:)(22r R Ij -=π202r j d B l d B πμπ=⨯=∙⎰可求得:)(22222020r R d Ir djr B -==πμμ空心部分的磁感应强度由大圆柱与小园柱各自产生的磁感应强度的矢量和 大圆柱产生的磁感应强度可以由安培环路定律求解为2101112r j r B l d B πμπ=⨯=∙⎰10121r j B μ=1r 是由大圆柱的圆心指向场点的位置适量的模,同样可得小园柱的磁感应强度20221r j B μ=下图表示的是小的那个圆柱的截面 合场强为:)cos (sin 21)cos (sin 21201021j i r j j i r j B B B ββμααμ+++=+=j jd j r x d i r y r j j r x i r y r j 022*******1)(21)(21μμμ=-+-++= j r R Id)(2220-=πμ方向在y 轴向上。
11-11 根据安培环路定理0B dl I μ=∑⎰, 求得磁感应强度为:020()2()2Irr R R B I r R rμπμπ⎧≤⎪⎪=⎨⎪>⎪⎩ 方向垂直纸面向里,取矩形法线方向为垂直纸面向里2000020ln 22242RRRIr I I IB dS dr dr R r μμμμφππππ==+=+⎰⎰⎰ 11-12 把圆盘割成许多圆环,其中对单个小圆环,设它的半径为r ,宽为dr ,带电为dq ,则,32 dq rdrdqdI rdr dm r drdtσπσωπσω=∴=== 则整个圆盘的磁矩为5345R RRk r m dm r dr k r dr πωπσωπω====⎰⎰⎰ 垂直纸面向外, 所以55k r M B πω=平行于纸面且垂直于B 向上11-13 根据霍尔效应51928311200 1.52.5310()1.6107.410110HIB IB V R b qn bV ---==⨯==-⨯-⨯⨯⨯⨯电场强度53122.5310 1.2710(.)2.010V E N C a ----⨯===⨯⨯ 11-1436.6510()A A AA U U V -''=-=-⨯所以这块导体是n 型,又1,A A HA AIB IB IB U R n b qn b bqU ''==∴=, 带入数据,得2032.8210()n m =⨯11-15:由安培力公式可知,当两条导线电流方向相同时,两导线相互吸引,如下图,导线2对导线1单位长度的引力的大小为:2001212f 22I I I r aμμππ==,导线3对导线1单位长度的引力2013f 2I a μπ=,引力13f 和12f 正好在等边三角形的两条边上,它们之间的夹角为060,而且在数值上大小相等,所以合力的大小为204011312f f cos30f cos30cos30 3.4610/I N cm aμπ-=+==⨯ 方向如图11-16.在线圈的上下两段弧da 和bc 上,因长直电流1I 产生的磁场与和电流2I 方向平行,所以圆弧da 和bc 受力为零。