统计学第七章 参数估计

合集下载

7 参数估计

7  参数估计

3个抽样实验结果图示
均数
均数
5. 15 5. 36 5. 57 5. 77 5. 98 6. 19
频数 100 150 200 250 300 350 400 450 50 0
n = 30; SX = 0.0920
均数
3. 71 3. 92 4. 12 4. 33 4. 54 4. 74 4. 95 5. 15 5. 36 5. 57 5. 77 5. 98 6. 19
t= X −µ X −µ = SX S/ n t变 换
σX
N(0,1) 0 t(ν) (
X
0
t 分布与正态分布的比较
t 分布:形状与 分布:形状与N(0,1)相似, 相似, 相似 分布中间较小, 但t分布中间较小,两侧较大。 分布中间较小 两侧较大。
随着v增大, 分布逼近 随着 增大,t分布逼近 增大 分布逼近N(0,1); ; v ∞时,t分布演变成 时 分布演变成 分布演变成N(0,1)。 。
参数估计
parameter estimation
统计学
统计描述
统计推断
参数估计
假设检验
总体、 总体、个体和样本
总体(population):调查研究的事物或现象的全体 个体(item unit):组成总体的每个元素 样本(sample):从总体中所抽取的部分个体 样本容量(sample size):样本中所含个体的数量
总体参数
µ、σ、π
可信区间(confidence interval, CI) 可信区间
可信区间
均 数

方差
σ2 未知
σ2 已知
总体均数的估计
点估计: 点估计:point estimation 区间估计: 区间估计:interval estimation 样本统计量 点估计) (点估计)

贾俊平《统计学》(第7版)考点归纳和课后习题详解(含考研真题)(第7章 参数估计)【圣才出品】

贾俊平《统计学》(第7版)考点归纳和课后习题详解(含考研真题)(第7章 参数估计)【圣才出品】

第7章参数估计7.1 考点归纳【知识框架】【考点提示】(1)置信区间的含义理解(选择题、简答题考点);(2)估计量的三个评价标准(判断题、填空题、简答题考点);(3)区间估计的步骤(简答题考点)、总体参数的区间估计选择恰当的统计量(计算题考点);(4)必要样本容量的影响因素、计算(简答题、计算题考点)。

【核心考点】考点一:参数估计的基本原理1.置信区间(1)置信水平为95%的置信区间的含义:用某种方法构造的所有区间中有95%的区间包含总体参数的真值。

(2)置信度愈高(即估计的可靠性愈高),则置信区间相应也愈宽(即估计准确性愈低)。

(3)置信区间的特点:置信区间受样本影响,具有随机性,总体参数的真值是固定的。

一个特定的置信区间“总是包含”或“绝对不包含”参数的真值,不存在“以多大的概率包含总体参数”的问题。

2.评价估计量的标准(1)无偏性:估计量抽样分布的期望值等于被估计的总体参数,即E(θ∧)=θ。

(2)有效性:估计量的方差尽可能小。

(3)一致性:随着样本量的增大,估计量的值越来越接近被估计总体的参数。

【提示】本考点常见考查方式:①直接考查置信水平为95%的置信区间的含义;②置信度、估计可靠性、置信区间的关系及应用;③置信区间的特点;④给出估计量的具体含义,判断体现了什么标准;⑤直接回答估计量的三个评价标准及具体含义(简答题)。

考点二:一个总体参数的区间估计表7-1 一个总体参数的区间估计【总结】一个总体参数的估计及所使用的分布见图7-1:图7-1 一个总体参数的估计及所使用的分布【真题精选】设总体X~N(μ,σ2),σ2已知,样本容量和置信水平固定,对不同的样本观测值,μ的置信区间的长度()。

[对外经济贸易大学2018研]A.变长B .变短C .保持不变D .不能确定 【答案】C【解析】在正态总体方差已知的条件下,μ的置信区间为/2x z ±ασ所以置信区间长度为/22Z α,当样本容量和置信水平固定时,置信区间长度保持不变。

统计学参数估计

统计学参数估计

统计学参数估计参数估计是统计学中的一个重要概念,它是指在推断统计问题中,通过样本数据对总体参数进行估计的过程。

这一过程是通过样本数据来推断总体参数的未知值,从而进行总体的描述和推断。

在统计学中,参数是指总体的其中一种特征的度量,比如总体均值、总体方差等。

而样本则是从总体中获取的一部分观测值。

参数估计的目标就是基于样本数据来估计总体参数,并给出估计的精确程度,即估计的可信区间或置信区间。

常见的参数估计方法包括点估计和区间估计。

点估计是一种通过单个数值来估计总体参数的方法。

点估计的核心是选择合适的统计量作为估计量,并使用样本数据计算出该统计量的具体值。

常见的点估计方法包括最大似然估计和矩估计。

最大似然估计是一种寻找参数值,使得样本数据出现的概率最大的方法。

矩估计则是通过样本矩的函数来估计总体矩的方法。

然而,点估计只能提供一个参数的具体值,无法提供该估计值的精确程度。

为了解决这个问题,区间估计被引入。

区间估计是指通过一个区间来估计总体参数的方法。

该区间被称为置信区间或可信区间。

置信区间是在一定置信水平下,总体参数的真值落在该区间内的概率。

置信区间的计算通常涉及到抽样分布、标准误差和分位数等概念。

在实际应用中,参数估计经常用于统计推断、统计检验和决策等环节。

例如,在医学研究中,研究人员可以通过对患者进行抽样调查来估计其中一种药物的有效性和不良反应的发生率。

在市场调研中,市场研究人员可以通过抽取部分样本来估计一些产品的市场份额或宣传效果。

参数估计的准确性和可靠性是统计分析的关键问题。

估计量的方差和偏倚是影响估计准确性的主要因素,通常被称为估计量的精确度和偏倚性。

经典的参数估计要求估计量是无偏且有效的,即估计量的期望值等于真值,并且方差最小。

总之,参数估计是统计学中的一个重要概念,它通过样本数据对总体参数进行估计,并给出估计值的精确程度。

参数估计在统计推断、统计检验和决策等领域具有广泛的应用。

估计量的准确性和可靠性是参数估计的关键问题,通常通过方差和偏倚的分析来评价估计量的性质。

统计学第五版课后练答案(7-8章)

统计学第五版课后练答案(7-8章)

第七章 参数估计7.1 (1)x σ==(2)2x z α∆= 1.96=1.54957.2 某快餐店想要估计每位顾客午餐的平均花费金额。

在为期3周的时间里选取49名顾客组成了一个简单随机样本。

(1)假定总体标准差为15元,求样本均值的抽样标准误差。

x σ==(2)在95%的置信水平下,求估计误差。

x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=2z α 因此,x x t σ∆=⋅2x z ασ=⋅0.025x z σ=⋅=1.96×2.143=4.2 (3)如果样本均值为120元,求总体均值 的95%的置信区间。

置信区间为:2x z x z αα⎛-+ ⎝=()120 4.2,120 4.2-+=(115.8,124.2)7.322x z x z αα⎛-+ ⎝=104560±(87818.856,121301.144) 7.4 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。

要求:大样本,样本均值服从正态分布:2,x N n σμ⎛⎫ ⎪⎝⎭ 或2,s x N n μ⎛⎫⎪⎝⎭置信区间为:22x z x z αα⎛-+ ⎝=1.2 (1)构建μ的90%的置信区间。

2z α=0.05z =1.645,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(79.03,82.97)(2)构建μ的95%的置信区间。

2z α=0.025z =1.96,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(78.65,83.35)(3)构建μ的99%的置信区间。

2z α=0.005z =2.576,置信区间为:()81 2.576 1.2,81 2.576 1.2-⨯+⨯=(77.91,84.09)7.5 (1)2x z α±=25 1.96±=(24.114,25.886)(2)2x z α±119.6 2.326±=(113.184,126.016)(3)2x z α± 3.419 1.645±(3.136,3.702)7.6 (1)2x z α±=8900 1.96±=(8646.965,9153.035)(2)2x z α±8900 1.96±=(8734.35,9065.65)(3)2x z α±8900 1.645±=(8761.395,9038.605)(4)2x z α±8900 2.58±=(8681.95,9118.05)7.7 某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取36人,调解:(1)样本均值x =3.32,样本标准差s=1.611α-=0.9,t=2z α=0.05z =1.645,x z α± 3.32 1.645±=(2.88,3.76)1α-=0.95,t=z α=0.025z =1.96,x z α± 3.32 1.96±(2.79,3.85)1α-=0.99,t=z α=0.005z =2.576,2x z α± 3.32 2.76±(2.63,4.01)7.82x t α±=10 2.365±7.9 某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是:10 3 14 86 9 12 117 5 1015 9 16 13 2假定总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。

概率论与数理统计-参数估计

概率论与数理统计-参数估计

第七章 参数估计
例:
引言
设总体 X 是服从参数为 的指数分布,其中参数
未 知 ,
0 .X1 ,,
X
是总体
n
X
的一个样本,
我们的任务是根据样本,来估计 的取值,从
而估计总体的分布.
这 是 一 个 参 数 估 计 问 题.
第七章 参数估计
§1 点估计 §2 估计量的评选标准 §3 区间估计
第七章 参数估计 §1 点估计
2

A1
A2
, (
2
1)
.
第七章 参数估计
例6(续)
解此方程组,得
§1 点估计
ˆ
A1 2 A2 A12
,
ˆ
A2
A1 A12
.
ˆ X 2 ,

B2
ˆ X .
B2
其中 B2
1 n
n i 1
Xi X
2 为样本的二阶中心矩.
第七章 参数估计(第二十二讲) 三、 极大似然法
§1 点估计
1
第七章 参数估计
例6(续)
EX 2 x 2 f
x dx x 2
x 1e x dx
0
§1 点估计
2 2 x ( e 2)1 x dx
2 0 2
2 2
1 2
1
2
因此有
EX
,
EX
2
1 .
⑵ 在不引起混淆的情况下,我们统称估计量
与估计值为未知参数 的估计.
第七章 参数估计
二、 矩估计法
§1 点估计
设X为连续型随机变量,其概率密度为
f ( x;1 ,, k ), X为离散型随机变量,其分布列为

参数估计在数理统计学中总体的分布是未知的包括两种情形

参数估计在数理统计学中总体的分布是未知的包括两种情形
第12页
第七章 参数估计
1、 矩估计法原理: 以样本矩作为相应地总体矩的估计量; 以样本矩的连续函数作为相应地总体矩的连续函数 的估计量.
设总体 X的 l阶矩 : l E ( X )(l 1,2, , k )存在时 ,
l
由辛钦大数定理知:
1 n l Al X i n i 1
参数估计问题是利用从总体抽样得到的信息来估 计总体的某些参数或者参数的某些函数. 估计新生儿的体重 估计废品率 估计湖中鱼数 在参数估计问题 中,假定总体分 估计降雨量 布形式已知,未 … 知的仅仅是一个 … 或几个参数.
第 2页
第七章 参数估计
参数估计方法:
(1)根据抽自总体的样本 X 1 , X 2 , , X n 去确定参数 空间 中的一点作为 的值
l x p( x;1 ,, k ), l 1,2,, k.
第14页
第七章 参数估计
这是包含 k个未知参数 1, , k 的联立方程组,
1 1 1 , 2 , , k , , , 2 2 1 2 k k k 1 , 2 , , k
其中 1 , , k 是待估参数 , X 1 , , X n为来自 X的样本 .
1) 求总体 X 的 l 阶矩 :
l E ( X ) x f ( x;1 ,, k )dx, l 1,2,, k .
l l

或 l E ( X l )
xR X
------点估计
(2)确定中的某一小部分作为 的取值的范围
------区间估计
第 3页
第七章 参数估计 §1 点估计 §3 估计量的评选标准 §4 区间估计 §5 正态总体均值与方差的区间估计 §6 (0-1)分布参数的区间估计 §7 单侧置信区间

07心理统计学-第七章 参数估计

07心理统计学-第七章 参数估计

犯错误的概率,常用α(或p)表示。则1-α为置信 度。(显著性水平越高表示的是α值越小,即犯错误的可
能性越低) α为预先设定的临界点,常用的如.05、.01、.001;p 为检验计算所得的实际(犯错误)概率。
第一节 点估计、区间估计与标准误
三、区间估计与标准误
3、区间估计的原理与标准误
转换成比率为
p

n
p, SE p

n

pq n
同理可得公式7-17。自习[例7-12、例7-13]
1、从某地区抽样调查400人,得到每月人均文化消费为 160元。已知该地区文化消费的总体标准差为40元。试 问该地区的每月人均文化消费额。(α=.05,总体呈正态
分布)
2、上题中总体方差未知,已知Sn-1=44元。 3、已知某中学一次数学考试成绩的分布为正态分布,总 体标准差为5。从总体中随机抽取16名学生,计算得平 均数为81、标准差为Sn=6。试问该次考试中全体考生成 绩平均数的95%置信区间。 4、上题中总体方差未知,样本容量改为17人。 5、假定智商服从正态分布。随机抽取10名我班学生测 得智商分别为98、102、105、105、109、111、117、 123、124、126(可计算得M=112,Sn≈9.4),试以95% 的置信区间估计我班全体的智商平均数。 返回
值表,求tα /2(df)。
5、计算置信区间CI。
σ2已知,区间为M-Zα /2 SE <μ< M+Zα /2 SE;
σ2未知,区间为M-tα /2(df)SE <μ< M+tα /2(df)SE。
6、对置信区间进行解释。
二、σ2已知,对μ的区间估计(Z分布,例7-1 & 2) 三、σ2未知,对μ的区间估计(t分布,例7-3 & 4)

统计学原理:第7章 参数估计

统计学原理:第7章 参数估计
7 - 25
一个总体参数的区间估计
总体参数 均值 比例 方差
7 - 26
符号表示 样本统计量
x
p
2
s2
7.2.1 总体均值的区间估计
1、正态总体、2已知,
非正态总体、大样本
2、正态总体、2未知,小样本
7 - 27
总体均值的区间估计
(1、Z分布)
1. 假定条件
总体服从正态分布,且方差(2) 已知
量进行监测,企业质检部门经常要进行抽检,以分析每袋重 量是否符合要求。现从某天生产的一批食品中随机抽取了25 袋,测得每袋重量如下表所示。已知产品重量的分布服从正 态分布,且总体标准差为10g。试估计该批产品平均重量的 置信区间,置信水平为95%
这表明一个具体的点估计值无法给出估计的可 靠性的度量,一个点估计量的可靠性是由它的 抽样标准误差来衡量的。
7 -9
抽样分布回顾
Xi ~
, 2
..X
~
,
2
n
p Z Z Z 1
2
2
p Z 2
X
X
Z 2
1
p
Z 7 - 10
2
X
X
Z
2
X
1
抽样分布回顾
p
Z
2
X
X
7 - 12
实际情况是,样本均值已知,而总体均值未知 。
x
样本均值与总体均值的距离是对称的,
若某个样本均值落在总体均值的两个标准差范围以内, 则总体均值就会被包括在以样本均值为中心左右两个标 准差的范围之内。
7 - 13
区间估计
(interval estimate)
1. 总体参数估计的一个区间: 样本统计量 加减 估计误差
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标准正态分布
标准正态分布
t (df = 13)
t 分布
t (df = 5)
z
x
t 分布与标准正态分布的比较
不同自由度的t分布
t
总体均值的区间估计
(例题分析)
【例】已知某种灯泡的寿命服从正态分布,现从一 批灯泡中随机抽取 16只,测得其使用寿命(小时)如 下。建立该批灯泡平均使用寿命95%的置信区间
(interval estimate)
在点估计的基础上,给出总体参数估
计的一个区间范围,该区间由样本统计 量加减抽样误差而得到的
根据样本统计量的抽样分布能够对样
本统计量与总体参数的接近程度给出一 个概率度量
区间估计的基本原理
以总体均值的区间估计为例: 样本均值在重复抽样或无限总体抽样的情况下 , X ~N(μ,σ2/n)。 由正态分布的3 原则: P(- ≤ X ≤ +)=0.6827 P(-2 ≤ X ≤ +2)=0.9545 P(-3≤ X ≤ +3)=0.9973 实际上,我们可以求出 X 落在总体均值的两侧 任何倍数的标准误差范围内的概率。

2
x z
x z

2
n

2
2
n
x t
2
n
x z

2
n
三、总体比率的区间估计

1. 假定条件
总体服从二项分布
可以由正态分布来近似

使用正态分布统计量 z p z= ~ N (0,1) p(1 p) n 总体比率在1-置信水平下的置信区间为
p z 2
置信区间
(confidence interval)
说明: 1 用一个具体的样本所构造的区间是一个特定的 区间,我们无法知道这个样本所产生的区间是 否包含总体参数的真值 我们只能是希望这个区间是大量包含总体参数真
值的区间中的一个,但它也可能是少数几个不包 含参数真值的区间中的一个
置信区间与置信水平
三、评价估计量的标准
无偏性
(unbiasedness)
无偏性:估计量抽样分布的数学期望等于被估计的
总体参数
ˆ) P(
无偏 有偏
A
B

ˆ
有效性
(efficiency)
有效性:对同一总体参数的两个无偏点估计
量,有更小标准差的估计量更有效
ˆ) P(
的抽样分布
B A
的抽样分布

ˆ
一致性

+1.65x
+2.58x
x
-1.96x
+1.96x
90%的样本 95% 的样本 99% 的样本
置信区间
1.
2.
由样本统计量所构造的总体参数的估计区间称为 置信区间
统计学家在某种程度上确信这个区间会包含真正 的总体参数,所以给它取名为置信区间
区间估计
(interval estimate)
样本均值的抽样分布
/2
x
1–
/2
x =
(1 - ) % 区间包含了
x
% 的区间未包含
置信区间
(95%的置信区间)
点估计值

重复构造出的20个置信区间
置信区间
(confidence interval)
2.如果用95%的置信区间得到的某班的学生考试成绩 的置信区间是(60,80)。 不可以说(60,80)这个区间以95%的概率包含 全班学生平均考试成绩的真值。
25袋食品的重量 112.5
102.6 100.0 116.6 136.8
101.0
107.5 123.5 95.4 102.8
103.0
95.0 102.0 97.8 101.5
102.0
108.8 101.6 108.6 98.4
100.5
115.6 102.2 105.0 93.3
总体方差的区间估计
x z
2
s 7.77 = 39.5 1.645 n 36 = 39.5 2.13 = 37.37,41.63
投保人平均年龄的置信区间为37.37岁~41.63岁
二、总体均值的区间估计
(小样本)
1.
假定条件
总体服从正态分布,且方差(2) 未知
小样本 (n < 30)
25 1 93.21 2 25 1 93.21
12.401
该企业生产的食品总体重量标准差的的置信区 间为7.54g~13.43g
例如, P(-1.96≤
X
≤ +1.96)=0.95
这意味着, P( X -1.96≤ ≤ X +1.96)=0.95
上式说明,如果抽取100个样本来估计均值,由 100个样本均值所构造的100个区间中,约有95 个区间包含总体的均值。
区间估计的图示
- 2.58x
-1.65 x
16灯泡使用寿命的数据 1510 1520 1480 1500
1450
1480 1460
1480
1490 1460
1510
1530 1470
1520
1510 1470
总体均值的区间估计
(例题分析)
解:已知X~N(,2),n=16, 1- = 95%,t/2=2.131 根据样本数据计算得:x = 1490 , s = 24.77 总体均值在1-置信水平下的置信区间为
第 7 章 参数估计
7.1 参数估计的一般问题
7.2 一个总体参数的区间估计 7.3 两个总体参数的区间估计
7.4 样本容量的确定
学习目标
1.
2. 3.
4.
5. 6.
1、估计量与估计值的概念 2、点估计与区间估计的区别 3、评价估计量优良性的标准 4、一个总体参数的区间估计方法 5、两个总体参数的区间估计方法 6、样本容量的确定方法
解:已知 n=100,p=65% , 1- = 95%, z/2=1.96
p z
2
p (1 p ) n
= 65% 1.96
65%(1 65%) 100
= 65% 9.35% = 55.65%,74.35%
该城市下岗职工中女性比率的置信 区间为55.65%~74.35%
(例题分析)
解:已知n=25,1-=95% ,根据样本数据计算得 s2 =93.21 2 (n 1) = 02.025 (24) = 39.364 12 (n 1) = 02.975 (24) = 12.401 2置信度为95%的置信区间为
2 2
39.364 = 56.83 2 180.39
四、总体方差的区间估计
1、 估计一个总体的方差或标准差 2、 假设总体服从正态分布 3、总体方差 2 的点估计量为s2,且 n 1s 2 ~ 2 n 1 2 4、总体方差在1- 置信水平下的置信区间为
n 1s 2 2 n 1s 2 2 2
2 1 2
(consistency)
一致性:随着样本容量的增大,估计量的值越来
越接近被估计的总体参数
较大的样本容量
ˆ) P(
B A
较小的样本容量

ˆ
7.2 一个总体参数的区间估 计
一、总体均值的区间估计 二、总体比率的区间估计 三、总体方差的区间估计
一个总体参数的区间估计
总体参数 符号表示 样本统计量
使用 t 分布统计量 x t= ~ t (n 1) s n
总体均值 在1-置信水平下的置信区间为
x t 2
s n
t 分布
t 分布是类似正态分布的一种对称分布,它通常要比 正态分布平坦和分散。一个特定的分布依赖于称之 为自由度的参数。随着自由度的增大,分布也逐渐 趋于正态分布
x t
2
s 24.77 = 1490 2.131 n 16 = 1490 13.2 = 1476.8,1503.2
该种灯泡平均使用寿命的置信区间为1476.8小时~ 1503.2小时
总体分布
样本容量
σ已知
σ未知
x z S n
S n
大样本 正态分布 小样本 非正态分布x z S大样本
25袋食品的重量
112.5
102.6 100.0
101.0
107.5 123.5
103.0
95.0 102.0
102.0
108.8 101.6
100.5
115.6 102.2
116.6
136.8
95.4
102.8
97.8
101.5
108.6
98.4
105.0
93.3
总体均值的区间估计
(例题分析)
解:已知X~N(,102),n=25, 1- = 95%,z/2=1.96。根据 样本数据计算得: x = 105.36 总体均值在1-置信水平下的置信区间为
总体均值的区间估计
(例题分析)
【 例 】一家食品生产企业以生产袋装食品为主,为对产量 质量进行监测,企业质检部门经常要进行抽检,以分析每袋 重量是否符合要求。现从某天生产的一批食品中随机抽取了 25袋,测得每袋重量如下表所示。已知产品重量的分布服从 正态分布,且总体标准差为 10g 。试估计该批产品平均重量 的置信区间,置信水平为95%
x z

2
10 = 105.36 1.96 n 25 = 105.36 3.92 = 101.44,109.28
该食品平均重量的置信区间为101.44g~109.28g
总体均值的区间估计
(例题分析)
【例】一家保险公司收集到由 36 投保个人组成的随 机样本,得到每个投保人的年龄(周岁)数据如下表。 试建立投保人年龄90%的置信区间
相关文档
最新文档