统计学第4章 参数估计和假设检验[精]
参数估计和假设检验

假设检验
实际中的假设检验问题
假设检验: 事先作出关于总体参数、分布形式、
相互关系等的命题(假设),然后通过样本信息 来判断该命题是否成立(检验) 。
产品自动生产线工作是否正常? 某种新生产方法是否会降低产品成本? 治疗某疾病的新药是否比旧药疗效更高? 厂商声称产品质量符合标准,是否可信?
两个正态总体均值差的检验(t检验) 两个正态总体方差未知但等方差时,比较两正态总体样 本均值的假设检验 函数 ttest2 格式 [h,sig,ci]=ttest2(X,Y) %X,Y为两个正态总体的样本,显 著性水平为0.05 [h,sig,ci]=ttest2(X,Y,alpha) %alpha为显著性水平 [h,sig,ci]=ttest2(X,Y,alpha,tail) %sig为当原假设为真时得 到观察值的概率,当sig为小概率时则对原假设提出质疑 ,ci为真正均值μ的1-alpha置信区间。
例:从某厂生产的滚珠中随机抽取10个,测得滚珠的
直径(单位:mm)如下 15.14 14.81 15.11 15.26 15.08 15.17 15.12 14.95 15.05 14.87 若滚珠直径满服从正态分布N(μ,σ2),其中μ,σ未知。试 求之并计算置信水平为90%的置信区间
x = [15.14 14.81 15.11 15.26 15.08 15.17 15.12 14.95 15.05 14.87]; % 定义样本观测值向量 % 调用normfit函数求正态总体参数的最大似然估计和置信区间 % 返回总体均值的最大似然估计muhat和90%置信区间muci, % 还返回总体标准差的最大似然估计sigmahat和90%置信区间sigmaci [muhat,sigmahat,muci,sigmaci] = normfit(x,0.1)
抽样分布参数估计和假设检验

抽样分布参数估计和假设检验一、抽样分布的理论及定理(一)抽样分布抽样分布是统计推断的基础,它是指从总体中随机抽取容量为n的若干个样本,对每一样本可计算其k统计量,而k个统计量构成的分布即为抽样分布,也称统计量分布或随机变量函数分布。
(二)中心极限定理中心极限定理是用极限的方法所求的随机变量分布的一系列定理,其内容主要反映在三个方面。
1.如果总体呈正态分布,则从总体中抽取容量为n的一切可能样本时,其样本均数的分布也呈正态分布;无论总体是否服从正态分布,只要样本容量足够大,样本均数的分布也接近正态分布。
均数()即2.从总体中抽取容量为n的一切可能样本时,所有样本均数的均数(某)等于总体某3.从总体中抽取容量为n的一切可能样本时,所有样本均数的标准差(某)等于总体标准差除以样本容量的算数平方根,即某n中心极限定理在统计学中是相当重要的。
因为许多问题都使用正态曲线的方法。
这个定理适于无限总体的抽样,同样也适于有限总体的抽样。
中心极限定理不仅给出了样本均数抽样分布的正态性依据,使得大多数数据分布都能运用正态分布的理论进行分析,而且还给出了推断统计中两个重要参数(即样本均数某与样本标准差某)的计算方法。
(三)抽样分布中的几个重要概念1.随机样本。
统计学是以概率论为其理论和方法的科学,概率又是研究随机现象的,因此进行统计推断所使用的样本必须为随机样本(randomample)。
所谓随机样本是指按照概率的规律抽取的样本,2.抽样误差。
从总体中抽取容量为n的k个样本时,样本统计量与总体参数之间总会存在一定的差距,而这种差距是由于抽样的随机性所引起的样本统计量与总体参数之间的不同,称为抽样误差。
3.标准误。
样本统计量分布的标准差或某统计量在抽样分布上的标准差,符号SE或某表示。
根据中心极限定理其标准差为某n★(問答爲什麽說標準誤是進行統計推斷可靠性高低的標準)正如标准差越小,数据分布越集中,平均数的代表性越好。
同理,在推断统计中,标准误越小,说明样本统计量与总体参数的之间越接近,即样本对总体的代表性越好,这时用样本统计量去推断总体就越可靠、越准确;相反,标准误越大,说明样本统计量与总体参数之间的差距越大,即样本对总体的代表性越差,这时用样本统计量去推断总体就越不可靠、越不准确。
参数估计和假设检验

参数估计和假设检验1.参数估计参数估计是指通过样本数据来推断总体参数的过程。
总体参数是指总体的其中一种性质,比如总体均值、总体方差等。
样本数据是从总体中随机抽取的一部分数据,用来代表总体。
参数估计的目标是使用样本数据来估计总体参数的值。
常见的参数估计方法有点估计和区间估计。
(1)点估计点估计是通过一个统计量来估计总体参数的值。
常见的点估计方法有样本均值、样本方差等。
点估计的特点是简单、直观,但是估计值通常是不准确的。
这是因为样本的随机性导致样本统计量有一定的误差。
因此,点估计通常会伴随着误差界限,即估计值的置信区间。
(2)区间估计区间估计是通过一个统计量构建总体参数的估计区间。
常见的区间估计方法有置信区间和可信区间。
置信区间是指当重复抽样时,包含真实总体参数的概率。
置信区间的计算方法是在样本统计量的基础上,加减一个合适的误差界限,得到一个估计区间。
可信区间是指在一次抽样中,包含真实总体参数的概率。
可信区间的计算方法同样是在样本统计量的基础上,加减一个合适的误差界限,得到一个估计区间。
参数估计的应用非常广泛,可以用于各个领域的数据分析和决策。
例如,经济学家可以通过样本数据估计失业率,政治学家可以通过样本数据估计选举结果,医学研究者可以通过样本数据估计药物的疗效等。
2.假设检验假设检验是指通过样本数据来判断总体参数的其中一种假设是否成立。
在假设检验中,我们先提出一个原假设(H0),然后使用样本数据来检验该假设的合理性。
在假设检验中,我们需要确定一个统计量,该统计量在原假设成立时,其分布是已知的。
然后,我们计算该统计量在样本数据下的取值,并通过比较该取值与已知分布的临界值,来判断原假设是否成立。
假设检验包含两种错误,即第一类错误和第二类错误。
第一类错误是指在原假设成立的情况下,拒绝原假设的错误概率。
第二类错误是指在原假设不成立的情况下,接受原假设的错误概率。
常见的假设检验方法有单样本假设检验、双样本假设检验、方差分析等。
第4章 假设检验(田间试验与统计分析 四川农业大学)

2 2
2
s2 1
s2 2
Hale Waihona Puke s2 es2 e
df1
s2 1
df1
df
2
s
2 2
df2
s2 e
5 2.412 4 3.997 54
3.1164
1.提出假设
H0 :1=2; HA :1≠2 。
2、计算t值
t x1 x2 s x1 x2
s x1 x2
第二节 单个样本平均数的假设检验
在实际研究工作中,常常要检验某样本
所属总体平均数与已知的总体平均数 0 是 否有差异。已知的总体平均数 0 一般为一些
公认的理论数值、经验数值或期望数值。
若σ2已知
u x 0 x
x
n
u检验
s2 若σ2未知
t x 0
sx
sx
s n
x2 1 ( x)2
x x 30.3667(g) s
n
n
2.5328 (g)
n 1
sx
s 0.8443 (g) n
t x 0 30.3667 27.5 3.395
sx
0.8443
df=n-1=9-1=8
t0.05(8) =2.306 t0.01(8) =3.355 | t |=3.395 > t0.01(8)
第四章 假设检验
第一节 假设检验的基本原理 第二节 单个样本平均数的假设检验 第三节 两个样本平均数的假设检验 第四节 百分率资料的假设检验 第五节 参数的区间估计
假设检验(test of hypothesis)又叫显著性 检验 (test of significance),是统计学中的一 个重要内容 。假设检验的方法很多 ,常用的
参数估计和假设检验

STATISTICS (第三版)
第 4 章 参数估计和假设检验
作者:西南大学商贸系
庞新军
1-1
2021/8/113
统计学
STATISTICS 第 4 章 参数估计和假设检验 (第三版)
§4.1 抽样调查的基本概念 §4.2 抽样估计的基本原理 §4.3 参数估计 §4.4 样本容量的确定 §4.5 假设检验
1 - 33
2021/83/313
统计学
STATISTICS (第三版)
2分布
(2 distribution)
1. 由阿贝(Abbe) 于1863年首先给出,后来由海尔墨特 (Hermert)和卡·皮尔逊(K·Pearson) 分别于1875年 和1900年推导出来
2. 设 X ~ N (, 2 ) ,则
合格品(或不合格品) 与全部产品总数之比
2. 总体比例可表示为
N0 或 1 N1
N
N
3. 样本比例可表示为
P n0 或 1 P n1
n
n
1 - 29
2021/82/913
统计学
STATISTICS (第三版)
样本比例的抽样分布
1. 容量相同的所有可能样本的样本比例的概 率分布
2. 当样本容量很大时,样本比例的抽样分布 可用正态分布近似
统计学
STATISTICS (第三版)
抽样分布
(sampling distribution)
1. 样本统计量的概率分布
2. 是一种理论概率分布 3. 随机变量是 样本统计量
样本均值, 样本比例,样本方差等
4. 结果来自容量相同的所有可能样本
5. 提供了样本统计量长远我们稳定的信息,是进 行推断的理论基础,也是抽样推断科学性的重 要依据
假设检验《统计学原理》课件

X=X1>X0
H0为伪
从上图可以看出,如果临界值沿水平方向右移,α将变小而β变大,即若减小 α错误,就会增大犯β错误的机会;如果临界值沿水平方向左移,α将变大而 β变小,即若减小β错误,也会增大犯α错误的机会,
a 错误和 错误的关系
在样本容量n一定的情况下,假设检验不能同时做到犯α和 β两类错误的概率都很小,若减小α错误,就会增大犯β错误 的机会;若减小β错误,也会增大犯α错误的机会,要使α和 β同时变小只有增大样本容量,但样本容量增加要受人力、 经费、时间等很多因素的限制,无限制增加样本容量就会 使抽样调查失去意义,因此假设检验需要慎重考虑对两类 错误进行控制的问题,
参数假设检验举例
例2:某公司进口一批钢筋,根据要求,钢筋的 平均拉力强度不能低于2000克,而供货商强 调其产品的平均拉力强度已达到了这一要 求,这时需要进口商对供货商的说法是否真 实作出判断,进口商可以先假设该批钢筋的 平均拉力强度不低于2000克,然后用样本的 平均拉力强度来检验假设是否正确,这也是 一个关于总体均值的假设检验问题,
假设检验的两类错误
正确决策和犯错误的概率可以归纳为下表:
假设检验中各种可能结果的概率
H0 为真
接受H0
1-α 正确决策
拒绝H0,接受H1
α 弃真错误
H0 为伪
β 取伪错误
1-β 正确决策
•假设检验两类错误关系的图示
以单侧上限检验为例,设H0 :X≤X0 , H1:X>X0
图a X≤X0 H0为真
a
H0值
样本统计量 临界值
观察到 的样本 统计量
5、假设检验的两类错误
根据假设检验做出判断无非下述四种情况:
1、原假设真实, 并接受原假设,判断正确; 2、原假设不真实,且拒绝原假设,判断正确; 3、原假设真实, 但拒绝原假设,判断错误; 4、原假设不真实,却接受原假设,判断错误, 假设检验是依据样本提供的信息进行判断,有犯错误的可 能,所犯错误有两种类型: 第一类错误是原假设H0为真时,检验结果把它当成不真而 拒绝了,犯这种错误的概率用α表示,也称作α错误 αerror 或弃真错误, 第二类错误是原假设H0不为真时,检验结果把它当成真而 接受了,犯这种错误的概率用β表示,也称作β错误 βerror 或取伪错误,
参数估计和假设检验

参数估计和假设检验参数估计和假设检验是统计学中常用的两种方法,用于根据样本数据对总体的特征进行推断和判断。
参数估计是通过样本数据估计总体参数值的方法,而假设检验则是基于样本数据对总体参数假设进行判断的方法。
下面将详细介绍这两种方法以及它们的应用。
1.参数估计参数是指总体特征的度量,比如总体均值、总体方差等。
在实际应用中,我们往往无法得到总体数据,只能通过抽样得到样本数据。
参数估计的目标是利用样本数据去估计总体参数的值。
最常用的参数估计方法是点估计和区间估计:-点估计是使用样本统计量来估计总体参数的值,常用的样本统计量有样本均值、样本方差等。
-区间估计是利用样本数据构建一个置信区间,用来估计总体参数的取值范围。
置信区间的计算方法通常是基于样本统计量的分布进行计算。
在进行参数估计时,需要注意以下几个要点:-选择适当的样本容量和抽样方法,确保样本具有代表性,并满足参数估计的要求。
-选择适当的样本统计量进行参数估计,并对其进行合理的解释与限制。
-利用抽样分布特性和统计理论,计算参数估计的标准误差和置信区间,对参数估计结果进行解释和判断。
2.假设检验假设检验是基于样本数据对总体参数假设进行判断的方法。
在实际问题中,我们常常需要根据样本数据来判断一些总体参数是否达到一些要求或存在其中一种关系。
假设检验的基本步骤:-建立原假设(H0)和备择假设(H1)。
原假设通常是对总体参数取值的一种假设,备择假设则是原假设的对立假设。
-选择适当的统计量用来检验假设,并计算样本统计量的检验统计量。
-根据样本数据计算得出的检验统计量,利用抽样分布特性和统计理论计算P值。
-根据P值与事先设置的显著性水平进行比较,如果P值小于显著性水平,则拒绝原假设;反之,接受原假设。
在进行假设检验时,需要注意以下几个要点:-显著性水平的选择:显著性水平(α)是进行假设检验过程中设置的一个临界值,它反映了能够容忍的错误发生的概率。
常用的显著性水平有0.05和0.01-选择适当的统计量与检验方法:根据问题的性质和数据类型选择适当的统计量和检验方法。
数理统计学中的参数估计和假设检验

数理统计学中的参数估计和假设检验在现代统计学中,参数估计和假设检验是非常重要的概念。
这些概念互相关联,但是又有不同的应用。
在此,我们将讨论这两个概念的基本原则以及它们在现实生活中的应用。
参数估计可以被描述为研究一组数据的基本特征。
通过这个过程,我们试图推断出这个数据集的平均值、标准差和其他的参数。
这些参数会充当我们对整个数据集的总体特征的代表,是基于样本数据和概率等数学方法来实现的。
数理统计学中有两种常见的参数估计方法:点估计和区间估计。
点估计法指的是通过现有的样本数据,确定整体数据集的一个参数值。
这个参数值是一个点,代表了这个总体数据的典型特征。
例如,一个统计学家可能会利用一个样本数据集的均值来估计整个数据集的均值。
这个方法非常简单,但是也有缺点,因为单个点可能不能完整地反映出整个总体的信息。
相对于点估计方法,区间估计法则是根据样本数据并结合概率论提供一个充分范围内的参数估计值。
以信心水平的方式,给出估计结果的范围和信心度。
这样的区间被称为可信区间,其中的参数值处于一定的置信度内,一般用百分之几的置信度表示。
例如,一个样本数据的均值在一定的置信度下是x到y之间的。
区间估计法是一种更加准确的方法,因为它允许我们知道参数值的变化范围,而不仅仅是一个单点。
但是,这种技术会带来更多的复杂性,需要一些基本的统计技能。
另一方面,假设检验则是一种帮助我们确定一个假设是否正确的方法。
这个方法通常用于对两个数据组的统计分析中,并且可以用于比较一个数据集的平均值是否等于一个已知的值。
简单说就是,假设检验能够让我们确定样本数据是否足够代表总体,并且也让我们确认样本数据能否代表以前的观测和研究。
在假设检验中,我们制定一个假设被称为研究假设,并组对比之前已知的信息,提出一个对立假设。
之后,我们会挑选一个随机样本并采取测量行动。
我们利用这个测量行动来确定样本数据是否属于已知的总体比例,或者是否对研究假设做出了支持。
如果样本数据足够代表总体,并且不同于已知的比例,则我们可以拒绝研究假设并接受对立假设。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点估计
点估计: 用估计量的数值作为总体参数的估 计值。
一个总体参数的估计量可以有多个 。例如, 在估计总体方差时,
n
(xi x)2 和
i 1
n 都可以作为估计量。
n
(xi x)2
i 1
n 1
中央财经大学统计学院 4
点估计量的常用评价准则:无偏性
抽样分布:几个要点
抽样分布是统计量的分布而不是总体或样本的 分布。
在统计推断中总体的分布一般是未知的,不可 观测的(常常被假设为正态分布)。
样本数据的统计分布是可以直接观测的,最直 观的方式是直方图,可以用来对总体分布进行 检验。
抽样分布一般利用概率统计的理论推导得出, 在应用中也是不能直接观测的。其形状和参数 可能完全不同于总体或样本数据的分布。
简单随机抽样、不重复抽样时,样本均值
抽样分布的方差略小于重复抽样的方差,
等于
2 Nn
n N 1
N n 这一系数称为有限总体校正系数。
N 1
当抽样比(n/N)<0.05时可以忽略有限总 体校正系数。
中央财经大学统计学院 19
4.2 总体均值和比例的区间估计
中央财经大学统计学院 20
n
(xi x)2
2 i1 x
M
M为样本数目
(1.02.5)2
(4.02.5)2
2
0.625
16
n
1. 样本均值的均值(数学期望)等于总体均值
2. 样本均值的方差等于总体方差的1/n
中央财经大学统计学院 14
样本均值的抽样分布与总体分布的 比较
总体分布
.3 .2 .1 0
相关理论
是
否
总体正态?
σ2已知?
是
否
n≥30?
是
否
x Z 2 n
s x t 2
n
x Z 2 n
增大n?数学 变换?
实际中总体方差总是未知的, 因而这是应用最多的公式。在 大样本时t值可以用z值来近似。
根据中心极限定理得 到的近似结果。 σ未知时用s来估计。
无偏性:估计量的数学期望与总体待估参 数的真值相等: E(ˆ)
P(ˆ )
无偏
有偏
A
B
ˆ
中央财经大学统计学院 5
区间估计
根据事先确定的置信度1 - 给出总体参数 的一个估计范围。
置信度1 - 的含义是:在同样的方法得到 的所有置信区间中,有100(1- )% 的区间 包含总体参数。
小样本
x
X
标准误(Standard Error)
简单随机抽样、重复抽样时,样本均 值抽样分布的标准差等于 ,这
n
个指标在统计上称为标准误。 统计软件在对变量进行描述统计时一
般会输出这一结果。
中央财经大学统计学院 18
有限总体校正系数
Finite Population Correction Factor
=10
n=4
x 5
n =16
x 2.5
= 50 X
总体分布
x 50
X
抽样分布
中央财经大学统计学院 16
中心极限定理
从均值为,方差为 2的一个任意总体中抽取容量 为n的样本,当n充分大时,样本均值的抽样分布近 似服从均值为μ、方差为σ2/n的正态分布。
x
n
f(X)
大样本(n 30)
2,2
2,3
2,4
3
3,1
3,2
3,3
3,4
4
4,14,2Fra bibliotek4,34,4
中央财经大学统计学院 12
抽样分布的一个演示:重复抽 样时样本均值的抽样分布(3)
各样本的均值如下表,并给出样本均值的抽样分布
16个样本的均值(x)
第一个
第二个观察值
观察值 1 2 3 4
1 1.0 1.5 2.0 2.5
2 1.5 2.0 2.5 3.0
中央财经大学统计学院 10
抽样分布的一个演示:重复抽样 时样本均值的抽样分布(1)
设一个总体含有4 个个体,分别为X1=1、X2=2、X3=3 、X4=4 。总体的均值、方差及分布如下。
均值和方差
总体的频数分布
N
Xi
.3
i1 2.5
N
.2
N
.1
(Xi )2
0
2 i1
1.25
1
234
= 2.5
σ2 =1.25
.3 P ( x )
抽样分布
.2
.1
0
1.0 1.5 2.0 2.5 3.0 3.5 4.0
样本均值的抽样分布
x 2.5
2 x
0.625
中央财经大学统计学院 15
样本均值的抽样分布
一般的,当总体服从 N(μ,σ2 )时,来自该总体 的容量为n的样本的均值X也服从正态分布,X 的 期望为μ,方差为σ2/n。即X~N(μ,σ2/n)。
参数估计与假设检验
4.1参数估计 4.2假设检验
中央财经大学统计学院
4.1 参数估计
4.1.1参数估计的基本概念 4.1.2总体均值和比例的区间估计 4.1.3必要样本容量的确定
中央财经大学统计学院 2
4.1.1 参数估计的基本概念
总体
样本
参数
?
统计量
算术平均数 x
用来推断总体参数的统计量称为估计量(estimator), 其取值称 为估计值(estimate) 。 同一个参数可以有多个不同的估计量。 参数是唯一的,但估计量(统计量)是随机变量,取值是不确 定的。
抽样分布是区间估计的理论基础。
置信区间
置信下限
估计值(点估计)
中央财经大学统计学院 8
置信上限
抽样分布 Sampling Distribution
从总体中抽取一个样本量为n的随机样本, 我们可以计算出统计量的一个值。
如果从总体中重复抽取样本量为n的样本, 就可以得到统计量的多个值。
统计量的抽样分布就是这一统计量所有可 能值的概率分布。
1
N
中央财经大学统计学院 11
234
抽样分布的一个演示:重复抽样 时样本均值的抽样分布(2)
现从总体中抽取n=2的简单随机样本,在重复
抽样条件下,共有42=16个样本。所有样本的结果 如下表.
所有可能的n = 2 的样本(共16个)
第一个
第二个观察值
观察值
1
2
3
4
1
1,1
1,2
1,3
1,4
2
2,1
3 2.0 2.5 3.0 3.5
4 2.5 3.0 3.5 4.0
.3 P ( x ) .2 .1 0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
样本均值的抽样分布
中央财经大学统计学院 13
所有样本均值的均值和方差
n
xi M 1xi 1.01.5 1 64.02.5