【精品试卷】第二学期高三二模数学试卷分析

合集下载

北京市海淀区2022届高三下学期二模数学试题 (解析版)

北京市海淀区2022届高三下学期二模数学试题 (解析版)

北京市海淀区2022届高三下学期二模数学试题一、单选题1.已知集合{}01A x x x =或,则A =R ð( )A .{}01x x <<B .{}01x x ≤<C .{}01x x <≤D .{}01x x ≤≤2.在()312x -的展开式中,x 的系数为( )A .2-B .2C .6-D .6【答案】C【分析】直接由二项展开式求含x 的项即可求解.【详解】由题意知:含x 的项为()13C 26x x ⋅-=-,故x 的系数为6-.故选:C.3.已知双曲线2222:1x y C a b -=的渐近线经过点()1,2,则双曲线的离心率为( )AB C .2D4.已知,x y ∈R ,且0x y +>,则( )A .11x y +>B .330x y +>C .lg()0x y +>D .sin()0x y +>5.若(),01,0x a x f x bx x +<⎧=⎨->⎩是奇函数,则( )A .1,1a b ==-B .1,1a b =-=C .1,1a b ==D .1,1a b =-=-6.已知F 为抛物线24y x =的焦点,点()(),1,2,3n n n P x y n =L ,在抛物线上.若11n n P F P F +-=,则( )A .{}n x 是等差数列B .{}n x 是等比数列C .{}n y 是等差数列D .{}n y 是等比数列【答案】A【分析】根据抛物线的定义:抛物线上的点到焦点的距离等于到准线的距离,即可求解.【详解】由题可知,抛物线的焦点为(1,0)F ,准线为=1x -,点()(),1,2,3n n n P x y n =L ,在抛物线上,由抛物线的定义可知,,7.已知向量(1,0)a =r ,(b =-.若,,c a c b =,则c r可能是( )A .2a b -r rB .a b+rrC .2a b+r r D b+r8.设函数()f x 的定义域为R ,则“()f x 是R 上的增函数”是“任意0a >,()()y f x a f x =+-无零点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【分析】由()f x 是R 上的增函数得()()f x a f x +>,即()()0y f x a f x =+>-无零点,满足充分性;反之若对任意0a >,()()f x a f x +<,满足()()y f x a f x =+-无零点,但不满足()f x 是R 上的增函数,不满足必要性,即可判断.【详解】若()f x 是R 上的增函数,则对任意0a >,显然x a x +>,故()()f x a f x +>,即()()0y f x a f x =+>-无零点,满足充分性;反之,若对任意0a >,()()f x a fx +<,即()()0f x a f x +<-,满足()()y f x a f x =+-无零点,但()f x 是R 上的减函数,不满足必要性,故“()f x 是R 上的增函数”是“任意0a >,()()y f x a f x =+-无零点”的充分而不必要条件.故选:A.9.从物理学知识可知,图中弹簧振子中的小球相对平衡位置的位移y 与时间t (单位:s )的关系符合函数()()sin 100y A t ωϕω=+<.从某一时刻开始,用相机的连拍功能给弹簧振子连拍了20张照片.已知连拍的间隔为0.01s ,将照片按拍照的时间先后顺序编号,发现仅有第5张、第13张、第17张照片与第1张照片是完全一样的,请写出小球正好处于平衡位置的所有照片的编号为( )A .9、15B .6、18C .4、11、18D .6、12、1810.在正方体ABCD A B C D -''''中,E 为棱DC 上的动点,F 为线段B E '的中点.给出下列四个①B E AD ''⊥;②直线D F '与平面ABB A ''所成角不变;③点F 到直线AB 的距离不变;④点F 到,,A D D A '',四点的距离相等.其中,所有正确结论的序号为( )A .②③B .③④C .①③④D .①②④【答案】C【点睛】(1)判定和动点相关的问题时,只要找出动点的轨迹,行判断;(2)判定与动直线相关的位置关系问题时,可找出动直线所在的平面进行判定;(3)根据定义作出线面角可用来解决运动型的问题二、填空题11.已知,a b 均为实数.若()i i i b a +=+,则a b +=_________.【答案】0【分析】直接由复数的乘法及复数相等求解即可.【详解】()i i i i 1b a a ==++-,故1,1a b ==-,0a b +=.故答案为:0.12.不等式112x⎛⎫> ⎪⎝⎭的解集为_________.13.在现实世界,很多信息的传播演化是相互影响的.选用正实数数列{}n a ,{}n b 分别表示两组信息的传输链上每个节点处的信息强度,数列模型:11(2,21,2)n n n n n n a a b b a b n ++=+=+=L ,描述了这两组信息在互相影响之下的传播演化过程.若两组信息的初始信息强度满足11a b >,则在该模型中,关于两组信息,给出如下结论:①*,n n n a b ∀∈>N ;②*11,,n n n n n a a b b ++∀∈>>N ;③*k ∃∈N ,使得当n k >时,总有10110nna b --<④*k ∃∈N ,使得当n k >时,总有101210n na a -+-<.其中,所有正确结论的序号是_________三、解答题14.如图,已知四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ABC ∠=︒,PA ⊥底面ABCD ,2PA =,点E 是PC 的中点.(1)求证://DC 面ABE ;(2)求DC 到平面ABE 的距离.由(1)知//DC 面ABE ,故DC 到平面连接,AE AC ,取AC 中点F ,连接BF 易得EF PA ∥且1=12EF PA =,则EF 2,23AC BD ==,故12ABC ABCD S S =V 又113,122BF BD AF AC ====,故15.在ABC V 中,76cos a b B =.(1)若3sin 7A =,求B ∠;(2)若8c =,从条件①、条件②这两个条件中选择一个作为已知,使ABC V 存在.求ABC V 的面积条件①:sin 47A =; 条件②:sin B16.PMI值是国际上通行的宏观经济监测指标之一,能够反映经济的变化趋势.下图是国家统计局发布的某年12个月的制造业和非制造业PMI值趋势图.将每连续3个月的PMI值做为一个观测组,对国家经济活动进行监测和预测(1)现从制造业的10个观测组中任取一组,(ⅰ)求组内三个PMI 值至少有一个低于50.0的概率;(ii )若当月的PMI 值大于上一个月的PMI 值,则称该月的经济向好.设X 表示抽取的观测组中经济向好的月份的个数(由已有数据知1月份的PMI 值低于去年12月份的PMI 值),求X 的分布列与数学期望;(2)用1,2)1(2j b j =L ,,表示第j 月非制造业所对应的PMI 值,b 表示非制造业12个月PMI 值的平均数,请直接写出j b b -取得最大值所对应的月份.所以随机变量X 的数学期望()121301225105E X =⨯+⨯+⨯=.(2)8月份,理由如下由某年12个月的非制造业PMI 值趋势图中的数据,得52.451.456.354.955.253.553.347.553.252.452.352.752.912b +++++++++++=≈根据某年12个月的非制造业PMI 值趋势图,可知当8j =时,j b b -取得最大值为847.552.9 5.4b b -=-=.17.椭圆2222:1(0)x y M a b a b +=>>的左顶点为()2,0A -(1)求椭圆M 的方程;(2)已知经过点⎛ ⎝的直线l 交椭圆M 于,B C 两点,D 是直线4x =-上一点.若四边形ABCD 为平行四边形,求直线l 的方程.2a )11224,),(,),(,)t B x y C x y -,又(2,0)A -,故AD k =-18.已知函数1()ln 2x af x x -=+.(1)当0a =时,求曲线()y f x =在点(1,(1))f --处的切线方程;(2)当12a =-时,求函数()f x 的单调区间;(3)当0x <时,()12f x ≥恒成立,求a 的取值范围.19.已知有限数列{}n a 共M 项(4)M ≥,其任意连续三项均为某等腰三角形的三边长,且这些等腰三角形两两均不全等.将数列{}n a 的各项和记为S .(1)若{1,2}(1,2,,)n a n M ∈=L ,直接写出,M S 的值;(2)若{}1,2,3,2,()1,n a n M ∈=L ,求M 的最大值;(3)若*(1,2,,),16n a n M M ∈==N L ,求S 的最小值【答案】(1)4,7M S ==;(2)8;(3)50【分析】(1)直接列举出数列{}n a ,即可求得,M S ;(2)先构造数列使8M =,再说明不同的等腰三角形只有6个,故628M ≤+=,即可求得M 的最大值;(3)先构造数列使50S =,再设T 为数列的每一组连续三项的和的和,得116215322S T a a a a =++++,列举出不同的等腰三角形,使T 和11621522a a a a +++最小,进而得到50S ≥,即可求解.【详解】(1)边长为1或2的等腰三角形只有1,1,1;1,2,2;2,2,2;若前三项为1,1,1,则该数列只有3项,不合题意;所以50S ≥.⑤由①④,S 的最小值为50.【点睛】本题关键点在于设T 为数列的每一组连续三项的和的和,得116215322S T a a a a =++++,将S 最小,转化为T 和11621522a a a a +++最小,列举出不同的等腰三角形,使T 和11621522a a a a +++最小,进而得到50S ≥,再构造数列使50S =即可求解.四、双空题20.已知圆22:20C x y x ++=,则圆C 的半径为_________;若直线y kx =被圆C 截得的弦长为1,则k =_________.21.已知()sin cos f x x x =+的图象向右平移()0a a >个单位后得到()g x 的图象,则函数()g x 的最大值为_________;若()()f x g x +的值域为{}0,则a 的最小值为_________.。

高三二模考试试卷分析.doc

高三二模考试试卷分析.doc

抚顺市德才高中2010—2011学年上学期高三第二次模拟考试试题高三数学文科抚顺市徳才高中2010-2011学年上学期高三数学二模考试题,是采用抚顺市六校联合体高三第二次模拟考试试题,由十二中老师出题,出题范围依据《新课程标准》、《2011年数学科高考考试人纲》及说明,选择高考,在遵循“考查基础知识的同时,注重考查能力”等原则的基础上,进一步加大了改革的力度,融入了新课改的理念。

试题立意新颖、选材紧扣教材,从数学知识、思想方法、学科能力岀发,多层次、多角度、多视点地考查了学生的数学索养。

检测出目前我校高三数学教学的现状和我校学生的数学水平,体现了高三上学期数学教学成果的重要意义。

对以后高三数学教师合理高效地组织数学教学、高三学生更有效的学习数学能起到正确的导向和指导作用。

全卷共22道题,满分150分,1〜12为选择题,13〜16为填空题,17〜22 为解答题。

本次期末测试试卷分析选取的样本班级是高三二班,有36人参加考试,最高分:80分,垠低分:10分,垠高垠低分井为70分,班级平均分:39.49 分,平均分以上有16人,平均分以下有20人,0人达到优秀,有0人及格,及格率为0. 0%,比上次成绩有所下降。

数学总成绩统计表一、统计数据分析及问题分析1 •客观题每题5分,共60分,学生作答情况:分析:1.集合求交集。

属简单问题,考试前讲过原题,所以正确率91.4属正常,说明此题所要求学生理解关于相关性的概念的识别不是很清晰,容易让学生混淆概念并判断失误。

2.考察复数概念,答对率85.7属正常,错谋的原因是由于有些学生对复数的计算能力不够扎实,并且复习时没有认真按照老师布置的作业完成,假期作业中有原题的练习,还有些同学还没有养成细心答题的习惯,最后要求回答出共辘复数来,可是由于粗心没能得分。

3.简易逻辑用语的考察。

一般具冇一些生活常识的人都可以答对。

要注意条件的完整应用.4.儿何体三视图应用,要先有空间想象能力,将儿何休进行还原,考试前讲过原题,但是止确率22.9,说明有部分同学平时上课就不够专心认真,学习上不够上进,对上课的基木训练也达不到要求。

高三二诊数学试卷分析

高三二诊数学试卷分析

高三二诊数学试卷分析一、考点分布:文科文科试题考点分布全面系统,和高考考点分布一致,但函数与导数的分值略为偏多。

二、试题得分情况三、试题分析6①选择题5题容易出错,直线210x ay +-=与210bx y ++=平行等价于4ab =,且2a ≠-,很容易忽略2a ≠-,导致选A 。

7题,若函数()sin(2)(||)2f x x πϕϕ=+<的图象向左平移6π个单位后关于原点对称,平移变换出问题:()sin(2)6πϕ=++f x x ,6πϕ=-,()f x 在[0,]2π上的最小值为sin()6π-,三角函数值混淆:()f x 在[0,]2π上的最小值为1sin()32π-=-,容易选C 。

10选C 的很多,计算不准确,尤其三abc 关系搞错:222=-b a c理科选择题8题,有3个条件“生物课不排第1节,数学课要相邻,英语课与数学课不相邻”的排列组合问题,直接法做分情况太多,不容易弄清楚,间接法做,不好列对立事件的情况。

10题,213=-≤≤p (a ),容易粗心搞成最大值D ,而题目是求最小值。

②填空题:文科:12题基本都会做;11题函数()ln(1)f x x =-(1,2],学生出错在端点等号问题;14题计算出错的太多;15题基本不会做。

理科:11、12题学生基本都会做,13题不会把log 2log log 3a x x x a y ++=-转化为关于y 的函数;14题相似关系不会找;15题16题计算量太大,结果正确的很少。

③第一道大题文科16,数列题,学生对*11()2n n n S a a n N +=∈比较陌生,不会转化为22=-+n n a a ,或者转化后不能理解隔项成等差的式子22=-+n n a a ,其中计算出错的比较多。

理17,三角函数题,转化21()cos()cos sin ()22f x x x x ππ=----时诱导公式不熟悉,降幂公式符号用错,处理1(sin 2cos 2)2+x x 时辅助角公式不会用,或者计算三角函数值不管符号,甚至单调性记错。

2024届上海市长宁区高三下学期二模数学试卷(解析版)

2024届上海市长宁区高三下学期二模数学试卷(解析版)

2024届长宁区二模2024.04.07一、填空题(1-6每小题4分,7-12每小题5分,共54分)1.已知集合{}{}1,2,1,,3A B a ==,且A B ⊆,则=a ______.【答案】2【解析】【分析】根据集合自己的概念即可求解.【详解】∵{}{}1,2,1,,3A B a ==,且A B ⊆,∴集合A 里面的元素均可在集合B 里面找到,∴a =2.故答案为:22.不等式|21|3x -<的解集为________.【答案】{|12}x x -<<【解析】【分析】根据绝对值定义化简求解,即得结果.【详解】∵|21|3x -<3213x ⇔-<-<12x ⇔-<<,∴不等式|21|3x -<的解集为{|12}x x -<<.故答案为:{|12}x x -<<.【点睛】本题考查解含绝对值不等式,考查基本分析求解能力,属基础题.3.在41x x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为_______.【答案】4【解析】【分析】利用二项式定理的通项公式即可求解.【详解】由二项式定理可知,41x x ⎛⎫+ ⎪⎝⎭的展开式的通项为4421441C C rr r r r r T x x x --+⎛⎫== ⎪⎝⎭,令422r -=,解得1r =,所以12224C 4T x x ==,所以二项式41x x ⎛⎫+ ⎪⎝⎭的展开式中含2x 项的系数为4.故答案为:4.4.在ABC ∆中,内角A,B,C 所对的边分别为a,b,c,若222a b bc c =++,则A =_____________.【答案】120︒【解析】【分析】根据已知可化为余弦定理的形式,从而求出A 的余弦,进而求出A.【详解】由题意可知,2221cos 222b c a bc A bc bc +--===-,所以120A =︒.【点睛】本题主要考查了利用余弦定理公式求三角形的角,属于中档题.5.已知236a b ==,则11a b +=________.【答案】1【解析】【分析】首先利用指数和对数互化得到2log 6a =,3log 6b =,再利用换底公式即可得到答案.【详解】由236a b ==可知2log 6a =,3log 6b =,所以66611log 2log 3log 61a b+=+==.故答案为:16.直线230x y --=与直线350x y --=的夹角大小为_______.【答案】π4##45︒【解析】【分析】先由斜率的定义求出两直线的倾斜角,然后再利用两角差的正切展开式计算出夹角的正切值,最后求出结果.【详解】设直线230x y --=与直线350x y --=的倾斜角分别为,αβ,则1tan 2,tan 3αβ==,且[),0,παβ∈,所以αβ>,因为()12tan tan 3tan 121tan tan 13αβαβαβ---===++,所以π4αβ-=,即两条直线的夹角为π4,故答案为:π4.7.收集数据,利用22⨯列联表,分析学习成绩好与上课注意力集中是否有关时,提出的零假设为:学习成绩好与上课注意力集中_______(填:有关或无关)【答案】无关【解析】【分析】根据题意,由零假设的定义,即可得到结果.【详解】零假设等价于两个变量相互独立,所以此题中的零假设为:学习成绩好与上课注意力集中无关.故答案为:无关8.已知函数()y f x =是定义域为R 的奇函数,当0x >时,()2log f x x =,若()1f a >,则实数a 的取值范围为_______.【答案】{1|02a a -<<或}2a >【解析】【分析】由已知结合奇函数的定义可求出0x <及0x =时的函数解析式,然后结合对数函数性质即可求解不等式.【详解】因为函数()y f x =是定义域为R 的奇函数,所以()00f =,当0x >时,()2log f x x =,当0x <时,0x ->,所以()()()2log f x x f x -=-=-,所以()()2log f x x =--,若()1f a >,当0a >时,可得2log 1a >,解得2a >,当a<0时,可得()2log 1a -->,解得102a -<<,当0a =时,可得01>,显然不成立,故a 的取值范围为{1|02a a -<<或}2a >.故答案为:{1|02a a -<<或}2a >.9.用铁皮制作一个有底无盖的圆柱形容器,若该容器的容积为π立方米,则至少需要_______平方米铁皮【答案】3π【解析】【分析】由柱体的体积公式可得21r h ⋅=,再求出圆柱形容器的表面积,由基本不等式求解即可.【详解】设圆柱形容器的底面半径为r ,高为h ,所以圆柱形容器的体积为2ππV r h =⋅=,所以21r h ⋅=,所以圆柱形容器的表面积为:()22π2ππ3π3πS r rh r rh rh =+=++≥⋅,当且仅当2r rh =,又21r h ⋅=,即1r h ==时等号成立,故至少需要3π平方米铁皮.故答案为:3π.10.已知抛物线2Γ:4y x =的焦点为F ,准线为l ,点M 在Γ上,,30MN l NFM ⊥∠=︒,则点M 的横坐标为_______.【答案】13【解析】【分析】过点F 作FH NM ⊥于点H ,由抛物线定义以及三角函数可用含M 的横坐标M x 的式子表示,NM HM ,注意到()112MN MH NH +==--=,由此即可列方程求解.【详解】如图所示:过点F 作FH NM ⊥于点H ,显然抛物线2Γ:4y x =的焦点为()1,0F ,准线为:l =1x -,由抛物线定义有MF MN =,结合30NFM ∠=︒得180230120NMF ∠=︒-⨯︒=︒,而()11,cos 6012M M MF MN x MH MF x ==+=︒=+,所以()()111111223M M M MN MH x x x +=+++=--=⇔=.故答案为:13.11.甲、乙、丙三辆出租车2023年运营的相关数据如下表:甲乙丙接单量t (单)783182258338油费s (元)107150110264110376平均每单里程k (公里)151515平均每公里油费a (元)0.70.70.7出租车空驶率=出租车没有载客行驶的里程出租车行驶的总里程;依据以述数据,小明建立了求解三辆车的空驶率的模型(),,,u f s t k a =,并求得甲、乙、丙的空驶率分别为23.26%21.68%%x 、、,则x =_______(精确到0.01)【答案】20.68【解析】【分析】根据题意得到出租车空驶率的模型,检验甲、乙两辆出租车的空驶率,满足题意,从而利用该模型求得丙的空驶率,从而得解.【详解】依题意,因为出租车行驶的总里程为s a,出租车有载客时行驶的里程为tk ,所以出租车空驶率1s tk tka a u s s a -==-,对于甲,7831150.710.232623.26%107150⨯⨯-≈=,满足题意;对于乙,8225150.710.216821.68%110264⨯⨯-≈=,满足题意;所以上述模型满足要求,则丙的空驶率为8338150.7%10.206820.68%110376x ⨯⨯=-≈=,即20.68x =.故答案为:20.68.12.已知平面向量,,a b c 满足:2a b c === ,若()()0c a c b -⋅-= ,则a b - 的最小值为_______.【答案】2【解析】【分析】先利用()2214a b a b a b ⋅=+-- 和()()2240a b a b ++-= 证明228a b --≤ ,再解不等式得到22824a b --≤ ,从而有2a b -≥ ,再验证()3,1a = ,()3,1b =- ,()2,0c =时2a b -= ,即得到a b - 的最小值是2.【详解】由于()()()()()()()2222222211122444a b a b a b a b a b a b a b a b a b ⋅=++⋅-+-⋅=+--=+-- ,且()()()()()()222222222222101040a b a b a b a b a b a b a b ++-=++⋅++-⋅=+=+= ,故有()()0c a c b =-⋅- ()2c a b c a b =-+⋅+⋅ 2c a b c a b ≥-++⋅ 42a b a b =-++⋅ ()()()221424a b a b a b =-+++-- ()()21424024a b a b =-++-- ()2144024a b =-+--21142a b =--- ,所以228a b --≤ ,记228a b x --= ,则有x ≤,从而120x -≤≤或()21612x x ≤+,即120x -≤≤或824x ≤≤.总之有24x ≤,故22824a b --≤ ,即2a b -≥ .存在()3,1a = ,()3,1b =- ,()2,0c = 时条件满足,且此时2a b -= ,所以a b - 的最小值是2.故答案为:2.【点睛】关键点点睛:对于a b - 的最小值问题,我们先证明2a b -≥ ,再给出一个使得2a b -= 的例子,即可说明a b - 的最小值是2,论证不等关系和举例取到等号两个部分都是证明最小值的核心,缺一不可.二、选择题(13-14每小题4分,15-16每小题5分,共18分)13.设C z ∈,则“z z =”是“R z ∈”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】【分析】由充分条件和必要条件的定义结合复数的定义求解即可.【详解】设i z a b =+,则i z a b =-,由z z =可得0b =,所以R z a =∈,充分性成立,当R z ∈时,即z a =,则z a =,满足z z =,故“z z =”是“R z ∈”的充要条件.故选:C .14.已知直线,a b 和平面α,则下列判断中正确的是()A.若//,//a b αα,则//a bB.若//,//a b b α,则//a αC.若//,a b αα⊥,则a b⊥ D.若,//a b b α⊥,则a α⊥【答案】C【解析】【分析】利用空间线线线面的位置关系判断A 错误;举反例判断B 错误;利用线面平行的性质定理和线面垂直性质得到C 正确;由线面平行和线线垂直的性质判断D 错误.【详解】A :若//,//a b αα,则两直线平行或异面或相交,故A 错误;B :若//,//a b b α,当直线a 在平面α内时,则直线a 不平行于平面α,故B 错误;C :若//a α,设过a 的平面与α相交于c ,则//a c ,又因为b α⊥,c α⊂,所以b c ⊥,所以b a ⊥,所以a b ⊥ ,故C 正确;D :若,//a b b α⊥,则a α⊥或//a α或a α⊂,故D 错误;故选:C.15.某运动员8次射击比赛的成绩为:9.6、9.7、9.5、9.9、9.4、9.8、9.3、10.0;已知这组数据的第x 百分位为m ,若从这组数据中任取一个数,这个数比m 大的概率为0.25,则x 的取值不可能是()A.65B.70C.75D.80【答案】D【解析】【分析】先利用古典概型分析m 的取值范围,再利用百分位数的定义逐一分析各选项,从而得解.【详解】将该运动员8次射击比赛的成绩从小到大排列:9.3、9.4、9.5、9.6、9.7、9.8、9.9、10.0,因为从这组数据中任取一个数,这个数比m 大的概率为0.25,一共有8个数,所以比m 大的数有两个,则9.89.9m ≤<,对于A ,因为80.65 5.2⨯=,所以第65百分位为第6个数,即9.8,满足题意;对于B ,因为80.7 5.6⨯=,所以第70百分位为第6个数,即9.8,满足题意;对于C ,因为80.756⨯=,所以第75百分位为第6,7个数的平均数,即9.89.99.852+=,满足题意;对于D ,因为80.8 6.4⨯=,所以第80百分位为第7个数,即9.9,不满足题意.故选:D.16.设数列{}n a 的前n 项和为n S ,若存在非零常数c ,使得对任意正整数n ,都有n a c =+,则称数列{}n a 具有性质p :①存在等差数列{}n a 具有性质p ;②不存在等比数列{}n a 具有性质p ;对于以上两个命题,下列判断正确的是()A.①真②真B.①真②假C.①假②真D.①假②假【答案】B【解析】【分析】直接构造21n a n =-和()11n n a -=-,说明存在等差数列{}n a 具有性质p ,且存在等比数列{}n a 具有性质p ,从而得到①真②假.【详解】一方面,对21n a n =-,知{}n a 是等差数列.而()211212n S n n n =⋅+-=,令1c =就有2211n n n a c ==-+=+,所以{}n a 具有性质p ,这表明存在等差数列{}n a 具有性质p ;另一方面,对()11n n a -=-,知{}n a 是等比数列.当n 为奇数时,1n a =;n 为偶数时,1n a =-.故当n 为奇数时,1n S =;n 为偶数时,0n S =.故当n为奇数时,2111n a ==+=+;n为偶数时,0111n a ==-+=+.这表明1n a =+恒成立,再令1c =就有n a c =+,所以{}n a 具有性质p ,这表明存在等比数列{}n a 具有性质p .综上,①正确,②错误,故B 正确.故选:B.【点睛】关键点点睛:构造21n a n =-和()11n n a -=-作为例子,直接判断命题的真假,是判断选项正确性的简单有效的方法.三、解答(共78分)17.某同学用“五点法”画函数()()sin (0)f x x ωϕω=+>在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0π2π3π22πx ∆π65π122π311π12()sin x ωϕ+01∆1-0(1)请在答题卷上将上表Δ处的数据补充完整,并直接写出函数()y f x =的解析式;(2)设()()()2ππ1,0,0,22g x f x f x fx x ωϕ⎛⎫⎛⎫⎡⎤===+-∈ ⎪ ⎪⎢⎝⎭⎣⎦⎝⎭,求函数()y g x =的值域;【答案】(1)补充表格见解析,()πsin 26f x x ⎛⎫=+⎪⎝⎭(2)10,2⎡⎤+⎢⎥⎢⎥⎣⎦【解析】【分析】(1)由表得ππ622π3π32ωϕωϕ⎧⋅+=⎪⎪⎨⎪⋅+=⎪⎩,解方程组即可得,ωϕ,进一步可据此完成表格;(2)由题意结合二倍角公式、诱导公式以及辅助角公式先化简()g x 的表达式,进一步通过整体换元法即可求解.【小问1详解】由题意ππ622π3π32ωϕωϕ⎧⋅+=⎪⎪⎨⎪⋅+=⎪⎩,解得π2,6ωϕ==,所以函数()y f x =的解析式为()πsin 26f x x ⎛⎫=+ ⎪⎝⎭,令π206x +=时,解得π12x =-,当5π12x =时,ππ2π,sin 2066x x ⎛⎫+=+= ⎪⎝⎭,将表中Δ处的数据补充完整如下表:x ωϕ+0π2π3π22πx π12-π65π122π311π12()sin x ωϕ+0101-0【小问2详解】若1,0ωϕ==,则()22πsin sin sin sin sin cos 2g x x x x x x x ⎛⎫=+-=+ ⎪⎝⎭1cos 212π1πsin 2sin 20,222422x x x x ⎛⎫-⎛⎫⎡⎤=+=-+∈⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭,因为π0,2x ⎡⎤∈⎢⎥⎣⎦,所以ππ3π2,444x⎡⎤-∈-⎢⎥⎣⎦,进而πsin 2,142x ⎡⎤⎛⎫-∈-⎢⎥ ⎪⎝⎭⎣⎦,所以函数()y g x =的值域为10,2⎡⎤+⎢⎢⎥⎣⎦.18.如图,在长方体1111ABCD A B C D -中,12,1AB AD AA ===;(1)求二面角1D AC D --的大小;(2)若点P 在直线11A C 上,求证:直线//BP 平面1D AC ;【答案】(1)6arccos 3(2)见解析【解析】【分析】(1)以A 为原点,建立空间直角坐标系,分别求得平面1ACD 和平面ACD 的一个法向量()1,1,2n =- 和()0,0,1m =,结合向量的夹角公式,即可求解.(2)设()11101A P A C λλ=≤≤ ,求出()2,2,1P λλ,则()22,2,1BP λλ=- ,再由0BP n ⋅=可证明直线//BP 平面1D AC .【小问1详解】以A 为坐标原点,建立如图所示的空间直角坐标系,所以()()()()0,0,0,0,2,0,2,0,0,2,2,0A D B C ,()()()()11110,0,1,0,2,1,2,0,1,2,2,1A D B C ,因为()()12,2,0,0,2,1AC AD ==,设平面1ACD 的法向量为(),,n x y z = ,则122020n AC x y n AD y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1y =-,可得1,2x z ==,所以()1,1,2n =-,设平面ACD 的法向量为()0,0,1m =所以6cos ,361m nn m n m ⋅===⨯,所以二面角1D AC D --的大小为6arccos3.【小问2详解】设(),,P x y z ,则设()11101A P A C λλ=≤≤ ,()()111,,1,2,2,0A P x y z A C =-=,所以2,2,1x y z λλ===,所以()2,2,1P λλ,()22,2,1BP λλ=-平面1ACD 的法向量为()1,1,2n =-,22220BP n λλ⋅=--+=,因为BP ⊄平面1D AC ,所以直线//BP 平面1D AC .19.盒子中装有大小和质地相同的6个红球和3个白球;(1)从盒子中随机抽取出1个球,观察其颜色后放回,并同时放入与其颜色相同的球3个,然后再从盒子随机取出1个球,求第二次取出的球是红球的概率;(2)从盒子中不放回地依次随机取出2个球,设2个球中红球的个数为X ,求X 的分布、期望与方差;【答案】(1)23(2)分布见解析,期望()()47,318E X D X ==【解析】【分析】(1)由独立乘法公式、互斥加法公式即可运算求解古典概型概率;(2)X 的所有可能取值为0,1,2,它服从超几何分布,结合超几何分布概率的求法求得相应的概率进而可得X 的分布,结合期望、方差计算公式即可求解.【小问1详解】第一次取出红球的概率为23,取出白球的概率为13,第一次取出红球,第二次取出红球的概率为231342⨯=,第一次取出白球,第二次取出红球的概率为111326⨯=,所有第二次取出的球是红球的概率为112263+=;【小问2详解】X 的所有可能取值为0,1,2,()()()21123636222999C C C C 1150,12C 12C 2C 12P X P X P X =========,所以X 的分布为01211512212⎛⎫ ⎪ ⎪ ⎪⎝⎭,它的期望为()1154012122123E X =⨯+⨯+⨯=,它的方差为()22214145470121232312318D X ⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.20.已知椭圆22Γ:1,63x y O +=为坐标原点;(1)求Γ的离心率e ;(2)设点()1,0N ,点M 在Γ上,求MN 的最大值和最小值;(3)点()2,1T ,点P 在直线3x y +=上,过点P 且与OT 平行的直线l 与Γ交于,A B 两点;试探究:是否存在常数λ,使得2PA PB PT λ⋅= 恒成立;若存在,求出该常数的值;若不存在,说明理由;【答案】(1)22(2)MN 的最大值为1+(3)54λ=【解析】【分析】(1)利用椭圆方程即可直接求得其离心率;(2)利用椭圆的几何性质,结合两点距离公式与二次函数的性质即可得解;(3)分别利用向量的模与线性运算的坐标表示求得2,,PT PA PB,再联立直线l 与椭圆方程得到1212,x x x x +关于a 的表达式,进而化简PA PB ⋅ 得到PA PB ⋅ 与2PT 的关系,由此得解.【小问1详解】设Γ的半长轴长为a ,半短轴长为b ,半焦距为c ,则a b ==,则c =22c e a ===.【小问2详解】依题意,设(,)M x y,则x ≤≤22163x y +=,故2232x y =-,则MN ==所以由二次函数的性质可知,当2x =时,MN取得最小值为,当x =时,MN1=+【小问3详解】设()()1122(,3),,,,P a a A x y B x y -,又()2,1T,易得12OT k =,则直线l 为()()132y a x a --=-,即13322y x a =+-,而()()22222312(2)PT a a a =-+--=- ,()111111131,3,33,2222a PA x a y a x a x a a x a x ⎛⎫⎛⎫=--+=-+--+=-- ⎪ ⎪⎝⎭⎝⎭ ,()222222131,3,33,2222a PB x a y a x a x a a x a x ⎛⎫⎛⎫=--+=-+--+=-- ⎪ ⎪⎝⎭⎝⎭ ,联立2213322163y x a x y ⎧=+-⎪⎪⎨⎪+=⎪⎩,消去y ,得222(2)3(2)40x a x a +-+--=则()222Δ4(2)43(2)48420a a a a ⎡⎤=--⨯--=--+>⎣⎦,得22a -<<+所以212122(2),3(2)4x x a x x a +=--=--,故()()()()121214PA PB x a x a x a x a ⋅=--+--()()()21212125544x a x a x x a x x a =--=-++()2253(2)4224a a a a =--+-+252(2)4a =-,所以25||||4PA PB PT ⋅= ,故存在54λ=,使得2||||PA PB PT λ⋅= 恒成立.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.21.设函数()y f x =的定义域为D ,若存在实数k ,使得对于任意x D ∈,都有()f x k ≤,则称函数()y f x =有上界,实数k 的最小值为函数()y f x =的上确界;记集合n M ={()()nf x f x y x =在区间()0,∞+上是严格增函数};(1)求函数2(26)1y x x =<<-的上确界;(2)若()3212ln f x x hx x x M =-+∈,求h 的最大值;(3)设函数()y f x =一定义域为()0,∞+;若()2f x M ∈,且()y f x =有上界,求证:()0f x <,且存在函数()y f x =,它的上确界为0;【答案】(1)2(2)4(3)证明见解析【解析】【分析】(1)由函数的单调性求出值域再根据题意可得;(2)求出()f x y x=的表达式,求导,再利用()nf x y x=在()0,∞+上严格递增得到导函数大于等于零恒成立,然后利用基本不等式求出最小值即可;(3)假设存在,由单调性可得()()102210f x f x xx>>,再取21x x >,且2x >可得()()212221f x f x x x >,推出①②互相矛盾,然后令()1,0f x x x=->,根据题意求出值域最后确定上确界即可.【小问1详解】因为函数21y x =-在区间()2,6上严格递减,所以函数2(26)1y x x =<<-的值域为2,25⎛⎫ ⎪⎝⎭,所以函数2(26)1y x x =<<-的上确界为2.【小问2详解】()22ln f x y x hx x x==-+,22,0y x h x x'=-+>,因为记集合n M ={()()nf x f x y x =在区间()0,∞+上是严格增函数},所以0y '≥恒成立,因为224x h h h x -+≥=-,当且仅当1x =时取等号,所以4h ≤,所以h 的最大值为4.【小问3详解】证明:因为函数()y f x =有上界,设()f x k ≤,假设存在()00,x ∈+∞,使得()00f x ≥,设10x x >,因为()2y f x M =∈,所以()2f x y x=在()0,∞+上严格递增,进而()()102210f x f x xx>>,得()10,0f x k >>,取21x x >,且2x >,由于21x x >,得到()()212221f x f x xx>,①由2x >,得()()12222122f x f x k x x x >≥,②显然①②两式矛盾,所以假设不成立,即对任意()0,x ∈+∞,均有()0f x <,令()1,0f x x x =->,则()231f x y x x==-,因为当0x >时,430y x'=>,所以()2f x y x=在()0,∞+上严格递增,()2y f x M =∈,因为()1,0f x x x=->的值域为(),0∞-,所以函数()1f x x=-的上确界为零.【点睛】关键点点睛:(1)第二问的关键是导函数大于等于零恒成立,用基本不等式求解;(2)第三问关键是根据不等式的结构能够想到取2x >,再得到()()12222122f x f x k x x x >≥与当21x x >,得到()()212221f x f x x x >矛盾.。

数学二模试卷分析

数学二模试卷分析

沈阳市高三质量监测(二)理科试卷分析二模整体比一模难度有所增加,主要体现在中等偏上的题目类型中。

知识点难易程度有所一些新变化,这些变化需要引起重视1-2题题目类型没有变化,难度也没有变化。

数学文化方面的考察以新算法理解为主,流程图部分要注意运算和判断语句的先后顺序。

对于数据的统计与分析部分,考察有所增加,相应内容需要提高重视程度,本次考试一个填空题一个大题,所考试内容与之前所考内容有所不同,完整的掌握数据统计部分的解题方法成为一个重要的内容。

向量部分问题,提高对向量问题本质的理解,运用好坐标运算,将不容易理解的几何部分运算,转化为算式运算。

数列考察重点增加,位于第17题,只需要提高计算的准确度即可得到这部分分数。

立体几何方面,一个选择题,一个大题,难度一般偏上,解题思路可以按照固定套路进行。

圆锥曲线部分,还是要提高运算能力,基本条件的理解和数学表达加上韦达定理成为解题基本套路,可以作为定式应用。

选择题解题时可以选择特殊位置解法,对应好相应概念,注意解题过程。

函数部分,三角函数考察度偏低,但是应该自己重视起来,因为去年考试考的就是三角函数,不能保证今年考题不选。

三角函数部分解题套路比较固定,第一问求角,第二问求面积或者周长。

对于函数性质和导数部分,毋庸置疑肯定是考察的重难点,题目位置一般位于12和21题。

12题解题时注意数形结合思想的应用,不能通过计算求的就马上转换思路把函数的性质拿来作为突破点。

第21题,解题时关键是对于导数对函数性质的判断来进行的,构造合理的函数能够方便解决问题。

构造函数是解决问题的关键。

构造函数的方法和方向一定是以函数的四则运算为基础,以问题形式为导向。

选做题部分,坐标系与参数方程宣讲部分难度不大,第二问形式比较新颖,与向量进行结合。

解题时还是按照一般解曲线方程的思路进行即可,全国二卷的选做题一般难度不大,而且与20题解题思路有一定的重合性,所以按照圆锥曲线的解题思路进行即可。

高三模考数学试卷分析与反思

高三模考数学试卷分析与反思

高三模考数学试卷分析与反思
一、试卷概况
高三模考数学试卷一共包括选择题和解答题两部分。

整份试卷共有5道选择题和3道解答题, 总分为150分。

试卷内容涵盖了高三教学的重点难点知识,并以综合能力测试为主。

二、选择题分析
选择题部分的设计主要考查了学生对基础知识的掌握和运用能力。

其中,有一部分题目侧重于考察学生对概念理解的深度,另一部分则注重检验学生解题的技巧和逻辑思维能力。

整体而言,选择题难度适中,符合高三学生的知识水平。

三、解答题分析
解答题部分主要考查了学生对知识点的深度理解和综合运用能力。

其中,第一题要求学生运用导数计算函数在某点的切线斜率,考验了学生的微积分知识掌握情况;第二题涉及到概率统计,考查了学生的数据分析能力;第三题是一道较为综合性的题目,要求学生结合几何知识进行证明,考验了学生的逻辑推理和证明能力。

整体来看,解答题难度适中,但对学生的综合能力提出了更高的要求。

四、试卷反思
通过对这份高三模考数学试卷的分析,我们发现试卷内容较为全面,既涵盖了基础知识的考查,也注重了综合能力的培养。

但同时,也有一些可以改进的地方。

例如,在选择题设计上,可以增加一定的拓展性题目,来引导学生进行更深层次的思考;在解答题部分,可以适当增加一些实际问题,帮助学生将数学知识与生活实际联系起来,提高学生的综合运用能力。

综合而言,高三模考数学试卷是一份比较全面的试卷,既考查了学生的基础知识掌握情况,也注重了学生的综合能力培养。

希望通过此次试卷分析与反思,可以为今后试卷的设计提供一定的参考,帮助学生更好地提升数学学科的学习兴趣和能力。

高三二模试卷分析

高三二模试卷分析一、试题分析:1、试题特征:试题分选择题、填空题和解答题三种,其中选择题12个,填空题4个,解答题6个,共计22道试题。

2、试题命制对知识的考察,重视对基础知识和基本理论的考察,同时又突出重点,体现了重点知识在数学科中的主干地位。

全部试题突出考察了集合、函数、不等式、数列,三角函数与向量,概率与统计、空间直线与平面,解析几何,极限导数等重点内容,使数学主干知识内容的试题成为数学试题的主题。

3、数学试题命制突出考察了数学思想方法。

4、数学试题命制重视对学生能力的考察,每道数学题都需要学生认真阅读,仔细分析,由题目条件和所需解决的问题联系理论,解决问题,因而试题首先要求学生有较强的逻辑思维能力,同时试题要求学生必须有一定的运算能力,如第3题,第10题,第12题,第22题,第21题,学生感到运算量有些大,但若真正掌握了基本运算方法,并能熟练进行运算,这些题也不难解决。

二、试卷分析:1、部分学生卷面不够整洁,字迹不够工整,写错后墨成一片,有的学生没有用黑色签字笔,答卷而用蓝颜色笔答卷,不符合高考答题要求。

2、部分学生对一些较简单的基础性问题的解答较差,如第17题第(五)问,反映了学生缺乏对基础知识和基本方法灵活运用的能力。

3、部分学生对一些问题的解答反映出学生扎实的基本功,如第19题,标准答案用空间向量理论给出,但仍有不少学生能用传统办法正确解答而得全分。

三、教学建议:1、重视基础知识和基本思想方法理论的教学。

2、抓落实,教学上一定要把学生的练落到实处,让学生多练,去体会如何答卷如何表达;让学生多练去体会如何思考,如何分析;让学生多练去体会如何最大限度地提高数学科成绩。

3、要做好题后反思与总结。

做题后,一定要认真反思,仔细分析,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用知识的。

题目是如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。

能不能把题解过程概括归纳成几个步骤。

高三第二次模拟考试数学试题分析

第二次模拟考试试题分析数学(理科)乌兰浩特市第六中学陶峰高三第二次模拟考试数学(理)试题是全盟统一命题,试题对指导教师和学生进行普通高考备考,更好地把握高考命题的走向,及时调整复习策略起到了重要的作用。

对这次考试理科数学试卷作如下的分析。

一、试卷的基本情况分析1.试卷形式考试评价采用闭卷考试的形式。

整个试卷由选择、填空和解答三大部分组成,其中,选择题共12小题,60分;填空题共4小题,20分;解答题共6小题,70分;全卷满分150分,考试时间120分钟。

2.知识点分布3.得分情况二、选择题情况分析选择题第2题是简单题,送分题,考查集合的概念及其运算,学生应该是拿分的,但是还有个别的学生选错,造成学生失分的原因之一是还有部分学生概念不清楚,复习中好高骛远。

学生的审题不仔细,运算错误也是丢掉这5分原因。

第4题尽管学生看懂了三视图,但无法正确的算出,这说明学生在计算方面还存在问题。

第4、5、6、7、8、9、10题学生得分较高,这六题失分原因主要是不等式解法和计算错误。

第11题得分较高,说明本题学生在数形结合方面有了良好的基础。

第12题得分最低,说明学生没有掌握好圆锥曲线的定义和性质三、填空题情况分析选择题得分情况表第13、14、15题,公式记错或者运算错误。

第16题得分低,部分同学给出了一个答案,转化的能力有待提高!建议后面的复习需要经常加强学生规范书写的意识;强调填空题的结果必须是“最简结果”,要注意回归课本,对一些基础内容、基本知识点的复习。

四、解答题情况分析第17题是三角函数的题目。

主要考察的知识点有:考到了三角函数的公式的转化,运用到了倍角公式,降幂公式。

得分率不高,主要原因有,在三角形中,忽视角的范围,步骤不完整丢分,对三角的基本公式不熟悉。

角的化简、变形中都出现了错误;另外,在第二小题中,许多学生对三角函数性质的应用不熟练,所以学生的运算能力有待提高。

第18题.本题为概率问题,学生对题目分析不透彻,不能联系概率的基本知识和方法。

高三二模数学科试卷质量分析

高三二模数学科试卷质量分析第一篇:高三二模数学科试卷质量分析高三二模数学科试卷质量分析选择题与填空题具有题小量大、适度、全面考查的特点。

呈现基础、全面、核心、人文、和谐的特征。

试题简约、凝练、直击核心,留有恰当的思维、探究、应用、操作空间,有一定的综合度、开放度和创新度。

呈现方式多样化,价值取向明确。

选择题是针对学生薄弱点设置干扰点,又适当设置提示项为学生灵活解题提供条件。

选择题中的大多数题具有多种解法。

为基础扎实、思维活跃的学生提供了充分发挥聪明才智、快速灵活解题的平台。

选择题这一题型在培养和发展学生的思维能力上有其独特和不可替代的教育功能和评价功能。

填空题作为基本题型,与选择题共同肩负起基础、全面、核心、简约、和谐评价功能的同时,从解题过程看,已兼具解答题的特征。

从某种意义上说,具有更大的思维空间和开放度。

关注填空题的命题特点及设计走向、分析解题思路、总结归纳常用的解法和技能很有必要。

其功能是比较全面地、高效地对学生基本核心的学段学习目标进行考查,同时,由试题的立意、定位、取材、背景、问题设置、呈现方式共同蕴含的题感,渲染着一种氛围,学生的心理情绪和思维状态都会渐入佳境,为顺利完成解答题做好了准备。

第11题,常规题,难度小,学生得分率高。

第12小题,难度较小,只是部分学生粗心大意,把把-写成了,导致失分。

第13小题也是一道常规题,学生得分率较高。

第14题是一个归纳推理题,部分学生的归纳总结能力较差,把1+ + +…+﹤弄成了1+ + +…+﹤,反映出他们没有明确对应关系。

第15小题,常规题,以考查学生的基础知识和基本技能为主。

学生失分率较小。

文科的填空题都是一些基础题,以考查学生的基础知识为主。

第16题,第一问得分较高,考查等差数列通项公式的简单运用,个别学生计算错误,大部分为全分6分。

第二小问考查分组组合法求数列和,部分学生与错位相减法和相混淆,且运算能力不太过关。

结论错误本题平均可达9分左右。

高三省二模数学试题分析及今后备考措施

广东省二模数学试题分析一.考点分布及得分情况试卷符合全国卷大纲,与全国卷命题风格相近,总体难度中档偏下,大部分题目基本贴近高考卷难度。

本次考试注重基础知识与技能的考查,同时还考察数学思想和解法的灵活运用。

从试卷内容上看,选择填空题考查的知识点比较全面,同时还注重中国古代的数学思想和实际的场景,例如第7题就考查了利用数学家阿基米德的“逼近法”求椭圆方程;解答题考查解三角形、概率统计、立体几何线面关系与体积、圆锥曲线、函数导数、坐标系与参数方程等高中数学的主干知识,以常规题出现。

二.各班考情分析三.下一阶段复习备考建议1.查漏补缺、回归基础高考是选拔性的考试,所以题目难度是分阶梯性的,有些题型就是比较简单的,甚至有些“送分题”。

比如集合、复数的运算,这两个是最基础的题目,把概念了解清楚,再用到简单的计算就能解决。

还有向量的线性运算、数量积运算也是一个常考的基础题型,这部分是必须完全掌握的拿分点,包括它的垂直平行应用经常要用到圆锥曲线中。

因此,提醒学生今后的复习中要注重基础知识特别是定义的理解。

2.加强学生计算能力训练,提炼解题方法与技巧文科高考在某些题型上相对比较考核学生的计算能力,而大部分文科生普遍在计算能力上是比较薄弱的,提升计算能力和技巧不仅有助于活跃学生思维,提高学生思维敏锐性,也能在考试中提高做题速度,节省整体做题时间。

所以提高计算能力是二轮复习过程中一项自我突破至关重要的环节。

例如19题,求均值求概率算列联表,都是比较考验学生计算能力的,提高计算能力不仅可以更快解决此题,也能提高此题的准确性。

又如12题,善用排除法,代入特殊值可以很快得到答案,这是高三做选择题在区间选项上的排除,普遍比较提倡的一种方式。

所以后期复习要着重计算能力方面的提高,同时活用相应的解题技巧以提高做题速度。

3.提高学生做题时分析问题和思考问题的素养做题时如何去分析所给的每个已知条件,它想间接告诉我们什么以及如何去充分转化和使用它,这是我们教师需要帮助学生培养的能力,特别是在例题的讲解过程中,教师要多让学生想,不仅要告知学生怎么解,更要让学生知道为什么这样解;不要以解题方法为出发点,而是要以为什么想到这个方法为落脚点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x2

2mx
+
m2

4

0
知,
⎧m
⎨ ⎩
m
− +
2 2
= ≥
0 3

m
=
2

(2)由 CR B = {x | x < m − 2,或x > m + 2}, A ⊆ CR B, m − 2 > 3,或m + 2 < −1,解
得 m > 5或 m < −3.
在解答(1)问中,方法二比较简洁方便。 4.解答失误及成因分析 ①求 B 集合出错;
1 2
+
1 3
+⋯+
1 2n −1
>
n 2
或1+
1 + 1 +⋯+ 23
1 n(n + 1)
>
n 或1+ 2
1 2
+
1 3
+

+
1
+
2
+
1 3+

+
2
n
>
n ,未能正确的考 2
查出第 n 项与指数的关系。
第 13 题,把[ 2 −1,1) 错误写成 ( 2 −1,1) 或 (1, 2 −1] 。计算上的错误。
三棱柱图形的放置很不适应;18 题是一道与三角有关的应用题,很好地考查了学生的分析
问题解决问题的能力,对信息数据的处理能力,建立函数模型的能力,用导数方法求函数的
最值问题。第 19 题的设计难度比较适中,考查了零点极值的概念。第 20 题考查了数列问题
及恒成立问题,难度控制得很好,有一定的坡度。该试卷考查的知识点全面,重基础,对考
2、试卷分布
考查 集合与 函数、 数 不等 三角 空间几 解析 概率、统
复数 算法
内容 逻辑词 导数 列 式 向量 何 几何

分值
12
26 16 17
25
20
24
10
55
所占 比率
7.5﹪
16.25 10 10.6 15.6
3.1 3.1
12.5﹪ 15﹪ 6.25﹪
﹪ ﹪﹪

﹪﹪
3、各题得分情况
题号
第 16 题 1.考查基础知识与基本技能 基础知识:直线与圆,直线与圆的位置关系,以及圆的性质;
基本技能:考查了直线与圆的相切、相交问题,点到直线的距离问题及基本的运算能力。
2.考查数学思想、方法及能力 数学方法:数形结合的思想方法。
3.解答方法小结
(1)方法一:根据圆心 M (−1,1) 到直线 CD: x + y − a = 0 的距离 d = | −a | = 2 ,解
1.考查基础知识与基本技能 ①集合之间的关系:交集、子集、补集 ②不等式的解法 2.考查数学思想、方法及能力 数形结合的思想 3.解答方法小结
(1)方法一:0 为方程 x 2 − 2mx + m2 − 4 = 0 的解,解得 m = ±2 ,检验知 m = 2 。
方法二:由
A

B
=
[0,1],及不等式
36﹪
二、试卷总体评价
本次数学试题,意在检测学生二轮复习效果,检测学生对基础知识、基本技能、基本方法
和数学思想掌握的情况,检测学生灵活运用数学知识的能力和识别数学符号、阅读理解数学
语言的能力,检查学生的运算能力、空间想象能力、逻辑思维能力、分析问题解决问题的能
力。在这一思想的指导下,试题的命题特点注重基础,重通性、通法,重视对数学思想和方
第二学期高三二模数学试卷分析
必修 160 分(120 分钟)
一、试卷的基本情况
1、试卷形式
考试评价采用闭卷考试的形式。整个试卷由填空题、解答题两部分组成,共 20 题。其
中,填空题 14 小题,70 分;解答题共 6 小题,90 分;全卷满分 160 分,考试时间 120 分钟。
选理方向考生还需加试 30 分钟,加试 4 道解答题,共 40 分。
第 14 题,把结果为 42 错写为 44 或 2008,审题出错。 5、试题评价与教学反思 评价:①填空题的试卷设计整体上由浅入深,有一定的坡度,能很好地考查学生对基础 知识的掌握情况。②试卷在后两道题的难度设计很好,区分度不明显,平均得分率不高。 反思:①认真审题,不能答非所问。②书写规范,要避免不必要的失分。③加强基础题的基 本技能的训练,要总结解答填空题的技巧,提高解题速度与正确率。 第 15 题
试说明中 C 级要求的知识考查比较到位。
三、试卷各题具体分析 填空题 1-14 1、考查基础知识与基本技能 (1)复数的加法及复数的模(2)三角函数单调性(3)逻辑用语中的命题(4)解几中 的双曲线(5)算法(6)空间几何的球的体积(7)三角函数求值(8)向量及求三角面积(9) 统计中线性回归方程(10)概率(11)推理证明与不等式(12)函数及基本不等式(13)解 几中的椭圆(14)不等式及最值问题 2、考查数学思想、方法及能力 考查的数学思想、方法及能力有:数形结合、分类讨论、等价转化、函数与方程及算法 的思想。分离参数法,特值法,公式法等。检查学生的运算能力、空间想象能力、逻辑思维 能力分析问题解决问题能力 3、解答方法小结(略) 4、解答失误及成因分析 第 3 题,把存在量词错误地写成“E”
第 4 题,双曲线的准线方程 x = ± 5 错误写成 y = ± 5 x ,或 y = ± 5 。审题不清
5
5
5
所致。
第 7 题,把 sin 2α = − 24 错写为 sin 2α = 24 ,忽视了角范围的限制。
25
25

11
题,把1 +
1 2
+
1 3
+⋯+
1 2n −1
>
n 2
错误的写成1 +
法的考查,重视考查学生的数学基本功和数学素质。试卷在整体上的难度比较平缓,前面
14 道填空题注重基础,第 13、14 道有一定的难度,特别是 14 题很有新意,考查学生对信
息的分析处理能力;解答题的设计既重基础又注重考查学生的各种能力,区分度明显。16
题考查了直线与圆的位置关系,很具基础性;17 题空间几何题设计得很好,部分学生对正
1
2
3
分值
得分率 95﹪ 95﹪ 90﹪
题号 分值
11 12 13 填空题
得分率 80﹪ 70﹪ 50﹪
4 85﹪ 14
50﹪
5
6填空题Biblioteka 90 90﹪﹪15 16 10 8.6
71 61﹪

7
85﹪ 17
10.4 69﹪
8
90﹪ 18 8.8 59﹪
9
90﹪ 19 6.1
38﹪
10
90﹪ 20 5.8
②直接得出 m=2,未检验 m + 2 ≥ 3.
③求 CR B 出错;
④未注意 CR B 的解集是开区间,而得出错误的结果 m ≤ −3或m ≥ 5.
5.试题评价与教学反思 评价:该题设计的比较基础,很好地考查了学生有关解不等式、集合等基础知识。
反思:①注意解题时,等价条件的完备性。
②要注意借助于数轴表示集合或区间,注意数与形的结合。
相关文档
最新文档