天津重点中学高一下学期期末考试数学试卷
天津市南开区2024届高一数学第二学期期末达标测试试题含解析

天津市南开区2024届高一数学第二学期期末达标测试试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某几何体的三视图如图所示,则该几何体的表面积是( )A .2B .23+C .32+D .122.在数列{}n a 中,12a =,1221n n a a +-=,则101a 的值为: A .52B .51C .50D .493.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3, 6,10记为数列{}n a ,将可被5整除的三角形数,按从小到大的顺序组成一个新数列{}n b ,可以推测:19b =( ) A .1225B .1275C .2017D .20184.对于函数()f x ,在使()f x M ≥成立的所有常数M 中,我们把M 的最大值称为函数()f x 的“下确界”.若函数()3cos 213f x x π⎛⎫=-+ ⎪⎝⎭,,6x m π⎡⎫∈-⎪⎢⎣⎭的“下确界”为12-,则m 的取值范围是( ) A .,62ππ⎛⎤-⎥⎝⎦ B .,62ππ⎛⎫-⎪⎝⎭ C .5,66ππ⎛⎤-⎥⎝⎦ D .5,66ππ⎛⎫-⎪⎝⎭5.为了得到函数2sin 23y x π⎛⎫=-⎪⎝⎭的图象,可以将函数2sin 24y x π⎛⎫=+⎪⎝⎭的图象()A .向左平移724πB .向右平移724π C .向左平移712πD .向右平移712π6.已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 7.如图,四棱锥P ABCD -的底面ABCD 为平行四边形,2=NB PN ,则三棱锥-N PAC 与三棱锥D PAC -的体积比为( )A .1:2B .1:8C .1:3D .1:68.在四边形ABCD 中,AB DC =,且AC ·BD =0,则四边形ABCD 是( ) A .菱形B .矩形C .直角梯形D .等腰梯形9.函数3()arctan f x x x =+的定义域为R ,数列{}n a 是公差为d 的等差数列,若10091a =-,m =12320162017()()()()()f a f a f a f a f a +++++,则( )A .m 恒为负数B .m 恒为正数C .当0d >时,m 恒为正数;当0d <时,m 恒为负数D .当0d >时,m 恒为负数;当0d <时,m 恒为正数10.点M(4,m )关于点N (n, - 3)的对称点为P (6,-9)则( ) A .m =-3,n =10 B .m =3,n =10 C .m =-3, n =5D .m =3, n = 5二、填空题:本大题共6小题,每小题5分,共30分。
2019-2020学年天津一中高一下学期期末数学试卷 (解析版)

2019-2020学年天津一中高一第二学期期末数学试卷一、选择题(共10小题).1.若复数z1对应复平面内的点(2,﹣3),且z1•z2=1+i,则复数z2的虚部为()A.﹣B.C.﹣D.2.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若m∥α,m∥β,则α∥βB.若m⊥α,m⊥n,则n⊥αC.若m⊥α,m∥n,则n⊥αD.若α⊥β,m⊥α,则m∥β3.设x,y∈R,向量=(x,1),=(1,y),=(2,﹣4),且⊥,∥,则|+|=()A.B.C.D.104.某社区组织“学习强国”的知识竞赛,从参加竞赛的市民中抽出40人,将其成绩分成以下6组:第1组[40,50),第2组[50,60),第3组[60,70),第4组[70,80),第5组[80,90),第6组[90,100],得到如图所示的频率分布直方图.现采用分层抽样的方法,从第2,3,4组中按分层抽样抽取8人,则第2,3,4组抽取的人数依次为()A.1,3,4B.2,3,3C.2,2,4D.1,1,65.雕塑成了大学环境不可分割的一部分,有些甚至能成为这个大学的象征,在中国科学技术大学校园中就有一座郭沫若的雕像.雕像由像体AD和底座CD两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度()(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)A.4.0米B.4.2米C.4.3米D.4.4米6.如图,O是△ABC的重心,=,=,D是边BC上一点,且=3,则()A.=B.=C.=D.=7.在△ABC中,sin2=(a、b、c分别为角A、B、C的对应边),则△ABC的形状为()A.正三角形B.直角三角形C.等腰直角三角形D.等腰三角形8.下列各对事件中,不互为相互独立事件的是()A.掷一枚骰子一次,事件M“出现偶数点”;事件N“出现3点或6点”B.袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到白球”C.袋中有3白、2黑共5个大小相同的小球,依次不放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到黑球”D.甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M“从甲组中选出1名男生”,事件N“从乙组中选出1名女生”9.已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=,则球O的体积等于()A.B.C.D.10.已知边长为2的菱形ABCD中,点F为BD上一动点,点E满足=2,=﹣,则的最小值为()A.﹣B.﹣C.﹣D.﹣二、填空题11.i是虚数单位,则||的值为.12.掷一枚骰子的试验中,出现各点的概率均为,事件A表示“出现小于5的偶数点”,事件B表示“出现小于5的点数”,则一次试验中,事件(表示事件B的对立事件)发生的概率为.13.若一个圆柱的侧面展开图是正方形,则这个圆柱的全面积与侧面积的比是.14.在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中点,M是AO上一点,且,则的值是.15.在△ABC中,a、b、c分别为内角A、B、C的对边,若a2﹣b2=bc,sin C=2sin B,则A=.16.在△ABC中,∠BAC=60°,||=2,=2,||=,则||=;设=λ﹣(λ∈R),且•=4,则λ的值为.三、解答题17.在△ABC中,内角A、B、C的对边分别为a,b,c,.(Ⅰ)求角C的大小;(Ⅱ)若a=,b=2.求:(ⅰ)边长c;(ⅱ)sin(2B﹣C)的值.18.某校参加夏令营的同学有3名男同学A,B,C和3名女同学X,Y,Z,其所属年级情况如表:高一年级高二年级高三三年级男同学A B C女同学X Y Z现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)(Ⅰ)用表中字母写这个试验的样本空间;(Ⅱ)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,写出事件M的样本点,并求事件M发生的概率.19.如图,四棱锥S﹣ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SD=1.(1)求证:BC⊥SC;(2)求平面SBC与平面ABCD所成二面角的大小;(3)设棱SA的中点为M,求异面直线DM与SB所成角的大小.20.如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O﹣EF﹣C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.参考答案一、选择题1.若复数z1对应复平面内的点(2,﹣3),且z1•z2=1+i,则复数z2的虚部为()A.﹣B.C.﹣D.【分析】由已知求得z1,代入z1•z2=1+i,变形后利用复数代数形式的乘除运算化简得答案.解:由题意,z1=2﹣3i,又z1•z2=1+i,∴,∴复数z2的虚部为.故选:B.2.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若m∥α,m∥β,则α∥βB.若m⊥α,m⊥n,则n⊥αC.若m⊥α,m∥n,则n⊥αD.若α⊥β,m⊥α,则m∥β【分析】在A中,α与β相交或平行;在B中,n∥α或n⊂α;在C中,由线面垂直的判定定理得n⊥α;在D中,m与β平行或m⊂β.解:设m,n是两条不同的直线,α,β是两个不同的平面,则:在A中,若m∥α,m∥β,则α与β相交或平行,故A错误;在B中,若m⊥α,m⊥n,则n∥α或n⊂α,故B错误;在C中,若m⊥α,m∥n,则由线面垂直的判定定理得n⊥α,故C正确;在D中,若α⊥β,m⊥α,则m与β平行或m⊂β,故D错误.故选:C.3.设x,y∈R,向量=(x,1),=(1,y),=(2,﹣4),且⊥,∥,则|+|=()A.B.C.D.10【分析】由向量平行与垂直的充要条件建立关于x、y的等式,解出x、y的值求出向量的坐标,从而得到向量的坐标,再由向量模的公式加以计算,可得答案.解:∵,且,∴x•2+1•(﹣4)=0,解得x=2.又∵,且,∴1•(﹣4)=y•2,解之得y=﹣2,由此可得,,∴=(3,﹣1),可得==.故选:B.4.某社区组织“学习强国”的知识竞赛,从参加竞赛的市民中抽出40人,将其成绩分成以下6组:第1组[40,50),第2组[50,60),第3组[60,70),第4组[70,80),第5组[80,90),第6组[90,100],得到如图所示的频率分布直方图.现采用分层抽样的方法,从第2,3,4组中按分层抽样抽取8人,则第2,3,4组抽取的人数依次为()A.1,3,4B.2,3,3C.2,2,4D.1,1,6【分析】利用分层抽样的性质结合频率分布直方图能求出第2,3,4组抽取的人数.解:采用分层抽样的方法,从第2,3,4组中按分层抽样抽取8人,则第2抽取的人数为:8×=2人,第3组抽取的人数为:8×=2人,第4组抽取的人数为:8×=4人.故选:C.5.雕塑成了大学环境不可分割的一部分,有些甚至能成为这个大学的象征,在中国科学技术大学校园中就有一座郭沫若的雕像.雕像由像体AD和底座CD两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度()(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)A.4.0米B.4.2米C.4.3米D.4.4米【分析】在Rt△DBC中求出BC,再利用Rt△ABC的边角关系求出AC的值,即得AD 的大小.解:在Rt△DBC中,∠DBC=45°,且CD=2.3米,所以BC=CD=2.3米;在Rt△ABC中,∠ABC=70.5°,BC=2.3米,所以tan70.5°=,AC=BC tan70.5°=2.3×2.842=6.5366≈6.5(米),所有AD=AB﹣CD=6.5﹣2.3=4.2(米),即像体AD的高度为4.2米.故选:B.6.如图,O是△ABC的重心,=,=,D是边BC上一点,且=3,则()A.=B.=C.=D.=【分析】由O为△ABC的重心,则点E为BC的中点,且,又由=3,得:D是BC的四等分点,再利用平面向量的线性运算可得则=﹣+,故得解解:如图,延长AO交BC于E,由已知O为△ABC的重心,则点E为BC的中点,且由=3,得:D是BC的四等分点,则=﹣+,故选:A.7.在△ABC中,sin2=(a、b、c分别为角A、B、C的对应边),则△ABC的形状为()A.正三角形B.直角三角形C.等腰直角三角形D.等腰三角形【分析】直接利用二倍角的余弦函数以及余弦定理化简求解即可判断三角形的形状.解:因为sin2==,即,由余弦定理可得,可得a2+b2=c2,所以三角形是直角三角形.故选:B.8.下列各对事件中,不互为相互独立事件的是()A.掷一枚骰子一次,事件M“出现偶数点”;事件N“出现3点或6点”B.袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到白球”C.袋中有3白、2黑共5个大小相同的小球,依次不放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到黑球”D.甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M“从甲组中选出1名男生”,事件N“从乙组中选出1名女生”【分析】利用对立事件和互斥事件的概念求解.解:根据事件的特点易知,事件M是否发生对事情N发生的概率没有影响,故M与N 是相互独立事件,故A,B,D属于相互独立事件.对于C:由于第一次摸到球不放回,因此会对第二次摸到球的概率产生影响,所以这两个事件不是相互独立事件;故选:C.9.已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=,则球O的体积等于()A.B.C.D.【分析】根据直线平面的垂直问题得出Rt△SBC,Rt△SAC中AC的中点O,判断SC 为球O的直径,又可求得SC=2,球O的半径R=1,求解即可.【解答】解;∵SA⊥平面ABC,AB⊥BC,∴SA⊥BC,AB⊥BC,∴BC⊥面SAB,∵BS⊂面SAB,∴SB⊥BC,∴Rt△SBC,Rt△SAC中AC的中点O,∴OS=OA=OB=OC,∴SC为球O的直径,又可求得SC=2,∴球O的半径R=1,体积,故选:B.10.已知边长为2的菱形ABCD中,点F为BD上一动点,点E满足=2,=﹣,则的最小值为()A.﹣B.﹣C.﹣D.﹣【分析】根据=﹣,根据线性运算进行变换可求得∠DAB=;以菱形对角线交点为原点,对角线所在直线为坐标值建立平面直角坐标系,利用坐标表示出,得到关于t的二次函数,求得二次函数最小值即为所求.解:由题意知:=,设∠DAB=θ,所以=()•()=2=4cosθ﹣4cosθ=﹣,所以cosθ=,又θ∈(0,π),所以,以AC与BD交点为原点,AC为x轴,BD为y轴建立如图所示的直角坐标系,所以A(﹣,0),C(,0),D(0,1),B(0,﹣1),E(),设F(0,t),则=(,t),=(﹣,t+),所以=﹣2+t(t+)=t2=(t)2﹣,当t=时,取最小值,故选:D.二、填空题11.i是虚数单位,则||的值为.【分析】本题可根据复数定义及模的概念及基本运算进行计算.解:由题意,可知:===2﹣3i,∴||=|2﹣3i|==.故答案为:.12.掷一枚骰子的试验中,出现各点的概率均为,事件A表示“出现小于5的偶数点”,事件B表示“出现小于5的点数”,则一次试验中,事件(表示事件B的对立事件)发生的概率为.【分析】基本事件总数n=6,利用列举法求出事件(表示事件B的对立事件)包含的基本事件的个数,由此能求出一次试验中,事件(表示事件B的对立事件)发生的概率.解:掷一枚骰子的试验中,出现各点的概率均为,事件A表示“出现小于5的偶数点”,事件B表示“出现小于5的点数”,基本事件总数n=6,事件(表示事件B的对立事件)包含的基本事件有:2,4,5,6,共4个,则一次试验中,事件(表示事件B的对立事件)发生的概率为:P(A∪)==.故答案为:.13.若一个圆柱的侧面展开图是正方形,则这个圆柱的全面积与侧面积的比是.【分析】由圆柱的侧面展开图是正方形,我们易得圆柱的高与底面周长相等,设侧面的正方形边长为A后,易分别计算出侧面积和全面积,代入计算后,易得结果.解:可以设该侧面的正方形边长为A,则S侧面积=A2全面积S=A2+2π则圆柱的全面积与侧面积的比==故答案:14.在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中点,M是AO上一点,且,则的值是﹣.【分析】取基底为,,把所求向量转化为用基底表示,即可求出结论.解:因为△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中点,M是AO上一点,且,∴=﹣=﹣();则=(+)•(+)=(﹣)•(﹣)=﹣﹣+•=﹣×22﹣×12+×1×2×cos120°=﹣﹣﹣=﹣.故答案为:﹣.15.在△ABC中,a、b、c分别为内角A、B、C的对边,若a2﹣b2=bc,sin C=2sin B,则A=.【分析】由正弦定理得c=2b,再由余弦定理可得cos A=,把c=2b 代入化简可得cos A的值,从而求得A的大小.解:∵sin C=2sin B,∴c=2b,∴cos A=====,又0<A<π,∴A=,故答案为.16.在△ABC中,∠BAC=60°,||=2,=2,||=,则||=3;设=λ﹣(λ∈R),且•=4,则λ的值为.【分析】由=2可得,然后两边平方处理,结合平面向量的数量积运算,解方程即可;把和=λ﹣均代入•=4,化简整理后,代入已知数据,解关于λ的方程即可得解.解:∵=2,∴B、D、C三点共线,∴,两边平方,有,∴,解得,(舍负).∵•=4,∴(),化简整理,得,∴,解得.故答案为:3,.三、解答题17.在△ABC中,内角A、B、C的对边分别为a,b,c,.(Ⅰ)求角C的大小;(Ⅱ)若a=,b=2.求:(ⅰ)边长c;(ⅱ)sin(2B﹣C)的值.【分析】(I)利用正弦定理、和差公式化简即可得出.(II)(ⅰ)因为,,利用余弦定理即可得出.(ⅱ)由,可得cos B再利用倍角公式、和差公式即可得出.解:(Ⅰ)由已知及正弦定理得………∴,∴,∵0<C<π,…………∴…………………(Ⅱ)(ⅰ)因为,,由余弦定理得,∴…………………(ⅱ)由,…………………因为B为锐角,所以…………………,………………………18.某校参加夏令营的同学有3名男同学A,B,C和3名女同学X,Y,Z,其所属年级情况如表:高一年级高二年级高三三年级男同学A B C女同学X Y Z 现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)(Ⅰ)用表中字母写这个试验的样本空间;(Ⅱ)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,写出事件M的样本点,并求事件M发生的概率.【分析】(I)结合已知数据,直接利用列举法即可求解;(II)结合等可能事件的概率公式即可直接求解.解:(I)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(II)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件M发生的概率.19.如图,四棱锥S﹣ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SD=1.(1)求证:BC⊥SC;(2)求平面SBC与平面ABCD所成二面角的大小;(3)设棱SA的中点为M,求异面直线DM与SB所成角的大小.【分析】(1)先证明SD⊥BC,又BC⊥CD,证明BC⊥平面SDC,根据线面垂直的性质,得出结论;(2)根据题意∠SCD为所求二面角的平面角,根据几何法求出∠SCD;(3)根据题意,得到∠DMP为所求异面直线所成的角,根据勾股定理,求出结果.解:(1)∵底面ABCD是正方形,∴BC⊥CD,∵SD⊥底面ABCD,BC⊂底面ABCD,∴SD⊥BC,又DC∩SD=D,∴BC⊥平面SDC,∵SC⊂平面SDC,∴BC⊥SC;(2)由(1)知BC⊥SC,又CD⊥BC,∴∠SCD为所求二面角的平面角,在Rt△DSC中,∵SD=DC=1,∴∠SCD=45°;(3)取AB中点P,连结MP,DP,在△ABS,由中位线定理得MP∥SB,∴∠DMP或其补角是异面直线DM与SB所成角,∵,,所以△DMP中,有DP2=MP2+DM2,∴∠DMP=90°.20.如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O﹣EF﹣C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.【分析】(1)取AD的中点I,连接FI,证明四边形EFIG是平行四边形,可得EG∥FI,利用线面平行的判定定理证明:EG∥平面ADF;(2)建立如图所示的坐标系O﹣xyz,求出平面OEF的法向量,平面OEF的法向量,利用向量的夹角公式,即可求二面角O﹣EF﹣C的正弦值;(3)求出=(﹣,,),利用向量的夹角公式求出直线BH和平面CEF 所成角的正弦值.【解答】(1)证明:取AD的中点I,连接FI,∵矩形OBEF,∴EF∥OB,EF=OB,∵G,I是中点,∴GI∥BD,GI=BD.∵O是正方形ABCD的中心,∴OB=BD.∴EF∥GI,EF=GI,∴四边形EFIG是平行四边形,∴EG∥FI,∵EG⊄平面ADF,FI⊂平面ADF,∴EG∥平面ADF;(2)解:建立如图所示的坐标系O﹣xyz,则B(0,﹣,0),C(,0,0),E (0,﹣,2),F(0,0,2),设平面CEF的法向量为=(x,y,z),则,取=(,0,1)∵OC⊥平面OEF,∴平面OEF的法向量为=(1,0,0),∵|cos<,>|=∴二面角O﹣EF﹣C的正弦值为=;(3)解:AH=HF,∴==(,0,).设H(a,b,c),则=(a+,b,c)=(,0,).∴a=﹣,b=0,c=,∴=(﹣,,),∴直线BH和平面CEF所成角的正弦值=|cos<,>|==.。
2022-2023学年天津市部分区高一(下)期末数学试卷【答案版】

2022-2023学年天津市部分区高一(下)期末数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某校举行演讲比赛,9位评委分别给出一名选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉一个最低分和一个最高分,得到7个有效评分,则这7个有效评分与9个原始评分相比,不变的数字特征是( ) A .平均数B .众数C .中位数D .方差2.用斜二测画法画水平放置的平面图形的直观图时,下列结论正确的是( ) A .正方形的直观图是正方形 B .矩形的直观图是矩形C .菱形的直观图是菱形D .平行四边形的直观图是平行四边形3.已知向量a →=(−1,1),b →=(1,−2),则a →⋅b →=( ) A .﹣3B .﹣1C .2D .(﹣1,﹣2)4.若i 为虚数单位,则1−i 1+i=( )A .iB .﹣iC .1D .﹣15.抛掷两枚质地均匀的硬币,设事件A =“第一枚硬币正面朝上”,事件B =“第二枚硬币反面朝上”,则下列说法正确的是( ) A .A 与B 互为对立事件 B .P (A )=P (B )C .A 与B 相等D .A 与B 互斥6.将一个棱长为1cm 的正方体铁块磨成一个球体零件,则能制作的最大零件的体积为( ) 注:球的体积V =43πR 3,其中R 为球的半径. A .π6cm 3B .√2π3cm 3 C .√3π2cm 3 D .π3cm 37.在△ABC 中,角A ,BC ,的对边分别为a ,b ,c .若b =2,A =45°,C =75°,则a 的值为( ) A .2√2B .23√6C .√6D .43√38.甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人的能荣获一等奖的概率分别为23和34,甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为( ) A .34B .23C .57D .5129.设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的为( ) A .若n ⊥α,n ⊥β,则α⊥βB .若m ∥n ,m ∥β,则n ∥βC .若m ∥α,m ∥β,则α∥βD .若m ∥n ,n ⊥β,则m ⊥β10.在△ABC 中,AB =2,AC =3,∠A =60°.若P ,Q 分别为边AB ,AC 上的点,且满足AP →=λAB →,AQ →=(1−λ5)AC →,则BQ →⋅CP →的最大值为( ) A .−8615B .−295C .−234D .﹣6二、填空题:本大题共5小题,每小题4分,共20分.11.若事件A 与B 互斥,且P (A )=0.5,P (B )=0.3,则P (A ∪B )= .12.已知向量a →=(4,2),b →=(m ,3),若存在实数λ,满足a →=λb →,则实数m 的值为 . 13.某工厂对一批产品的长度(单位:mm )进行检验,将抽查的产品所得数据分为五组,整理后得到的频率分布直方图如图所示,若长度在20mm 以下的产品有30个,则长度在区间[20,30)内的产品个数为 .14.在长方体ABCD ﹣A 1B 1C 1D 1中,若AB =AD =12AA 1,E 是棱DD 1的中点,则直线A 1C 1与AE 所成的角的大小为 .15.在△ABC 中,∠A =90°,AB =3,AC =√3.若CM →=2MB →,AN →=λAC →+AB →(λ∈R),且AN →⋅AM →=8,则λ的值为 .三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤. 16.(12分)已知i 是虚数单位,复数z =(m 2﹣3m )+(m 2﹣5m +6)i ,m ∈R . (1)当m =1时,求|z |; (2)若z 是纯虚数,求m 的值;(3)若z 在复平面内对应的点位于第二象限,求m 的取值范围.17.(12分)甲、乙两位射击运动员在一次射击测试中各射靶10次,每次命中的成绩(环数)如下: 甲 7 8 7 9 5 4 9 10 7 4 乙 9 5 7 8 7 6 8 6 7 7(1)求甲运动员的样本数据的众数和第85百分位数; (2)分别计算这两位运动员射击成绩的方差;(3)如果选一位成绩稳定的运动员参加比赛,选谁较好?说明理由.注:一组数据x1,x2,…,x n的平均数为x,它的方差为s2=1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2] 18.(12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2asinB=√3b.(1)求A;(2)若a=√7,c=2,求△ABC的面积.19.(12分)一个袋子中装有标号分别为1,2的2个黑球和标号分别为3,4,5的3个白球,这5个球除标号和颜色外,没有其他差异.(1)若有放回的从中随机摸两次,每次摸出一个球,求第一次摸出黑球且第二次摸出白球的概率;(2)若不放回的从中随机摸出两个球,已知黑球的标号用x表示,白球的标号用y表示.求满足条件y﹣x>2的概率.20.(12分)如图,在多面体ABCDEF中,平面ADEF⊥平面ABCD,四边形ADEF为正方形,四边形ABCD为梯形,且AD∥BC,∠BAD=90°,AB=AD=12 BC.(1)求证:AD∥平面BCEF;(2)求证:平面DCE⊥平面ABCD;(3)求直线BE与平面DCE所成的角的正切值.2022-2023学年天津市部分区高一(下)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某校举行演讲比赛,9位评委分别给出一名选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉一个最低分和一个最高分,得到7个有效评分,则这7个有效评分与9个原始评分相比,不变的数字特征是( ) A .平均数B .众数C .中位数D .方差解:根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分, 7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变, 故选:C .2.用斜二测画法画水平放置的平面图形的直观图时,下列结论正确的是( ) A .正方形的直观图是正方形 B .矩形的直观图是矩形C .菱形的直观图是菱形D .平行四边形的直观图是平行四边形解:根据题意,依次分析选项:对于A ,正方形的直观图可以是平行四边形,A 错误; 对于B ,矩形的直观图可以是平行四边形,B 错误;对于C ,正方形是特殊的菱形,其直观图不是菱形,C 错误; 对于D ,平行四边形的直观图是平行四边形,D 正确. 故选:D .3.已知向量a →=(−1,1),b →=(1,−2),则a →⋅b →=( ) A .﹣3B .﹣1C .2D .(﹣1,﹣2)解:由a →=(−1,1),b →=(1,−2),可得:a →⋅b →=−1×1+1×(﹣2)=﹣3. 故选:A .4.若i 为虚数单位,则1−i 1+i=( )A .iB .﹣iC .1D .﹣1解:1−i 1+i=(1−i)2(1+i)(1−i)=−2i 2=−i .故选:B .5.抛掷两枚质地均匀的硬币,设事件A =“第一枚硬币正面朝上”,事件B =“第二枚硬币反面朝上”,则下列说法正确的是( ) A .A 与B 互为对立事件 B .P (A )=P (B )C .A 与B 相等D .A 与B 互斥解:抛掷两枚质地均匀的硬币,设事件A =“第一枚硬币正面朝上”,事件B =“第二枚硬币反面朝上”, 事件A 与B 能同时发生,不是互斥事件,不是对立事件,故AD 均错误; P (A )=P (B )=12,故B 正确;事件A 与事件B 不是同一个事件,故C 错误. 故选:B .6.将一个棱长为1cm 的正方体铁块磨成一个球体零件,则能制作的最大零件的体积为( ) 注:球的体积V =43πR 3,其中R 为球的半径. A .π6cm 3B .√2π3cm 3C .√3π2cm 3D .π3cm 3解:正方体的棱长为1,要使制作成球体零件的体积最大,则球内切于正方体, 则球的直径为1cm ,半径为12cm ,∴可能制作的最大零件的体积为43π×(12)3=16πcm 3.故选:A .7.在△ABC 中,角A ,BC ,的对边分别为a ,b ,c .若b =2,A =45°,C =75°,则a 的值为( ) A .2√2B .23√6C .√6D .43√3解:因为b =2,A =45°,C =75°, 所以B =180°﹣A ﹣C =60°,由正弦定理a sinA =bsinB,可得a =b⋅sinA sinB =2×√22√32=2√63.故选:B .8.甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人的能荣获一等奖的概率分别为23和34,甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为( ) A .34B .23C .57D .512解:根据题意,恰有一人获得一等奖就是甲获得乙没有获得或甲没有获得乙获得, 则所求概率是23(1−34)+34(1−23)=512,故选:D .9.设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的为( ) A .若n ⊥α,n ⊥β,则α⊥β B .若m ∥n ,m ∥β,则n ∥β C .若m ∥α,m ∥β,则α∥βD .若m ∥n ,n ⊥β,则m ⊥β解:对于A ,若n ⊥α,n ⊥β,则α∥β,故A 错误. 对于B ,若m ∥n ,m ∥β,则n ∥β或n ⊂β,故B 错误; 对于C ,若m ∥α,m ∥β,则α∥β或α与β相交,故C 错误;对于D ,若m ∥n ,n ⊥β,由直线与平面垂直的性质可得m ⊥β,故D 正确. 故选:D .10.在△ABC 中,AB =2,AC =3,∠A =60°.若P ,Q 分别为边AB ,AC 上的点,且满足AP →=λAB →,AQ →=(1−λ5)AC →,则BQ →⋅CP →的最大值为( ) A .−8615B .−295C .−234D .﹣6解:∵BQ →=BA →+AQ →=(1−λ5)AC →−AB →,CP →=AP →−AC →=λAB →−AC →,AB →⋅AC →=|AB →||AC →|cosA =2×3×12=3,∴BQ →⋅CP →=[(1−λ5)AC →−AB →]⋅(λAB →−AC →)=λ(1−λ5)AC →⋅AB →−(1−λ5)AC →2−λAB →2+AB →⋅AC → =3λ(1−λ5)−9(1−λ5)−4λ+3 =−35λ2+45λ−6 =−35(λ−23)2−8615,∵P ,Q 分别为边AB ,AC 上的点,且满足AP →=λAB →,AQ →=(1−λ5)AC →, ∴{0≤λ≤10≤1−λ5≤1,∴0≤λ≤1,∴当λ=23时,BQ →⋅CP →有最大值为−8615.故选:A .二、填空题:本大题共5小题,每小题4分,共20分.11.若事件A 与B 互斥,且P (A )=0.5,P (B )=0.3,则P (A ∪B )= 0.8 .解:∵事件A 与B 互斥,∴P (A ∪B )=P (A )+P (B )=0.5+0.3=0.8. 故答案为:0.8.12.已知向量a →=(4,2),b →=(m ,3),若存在实数λ,满足a →=λb →,则实数m 的值为 6 . 解:∵a →=λb →,∴(4,2)=(m λ,3λ),∴{mλ=43λ=2,解得{m =6λ=23. 故答案为:6.13.某工厂对一批产品的长度(单位:mm )进行检验,将抽查的产品所得数据分为五组,整理后得到的频率分布直方图如图所示,若长度在20mm 以下的产品有30个,则长度在区间[20,30)内的产品个数为 55 .解:长度在20mm 以下的频率为5×(0.02+0.04)=0.3, 所以抽查的产品总数为300.3=100,所以长度在区间[20,30)内的产品个数为5×(0.08+0.03)×100=55. 故答案为:55.14.在长方体ABCD ﹣A 1B 1C 1D 1中,若AB =AD =12AA 1,E 是棱DD 1的中点,则直线A 1C 1与AE 所成的角的大小为π3.解:连接AC ,则A 1C 1∥AC ,连接AE 、EC ,则异面直线A 1C 1与AE 所成的角的平面角为∠EAC , 设AB =t ,又AB =AD =12AA 1,E 是棱DD 1的中点, 则AE =AC =EC =√2t , 则△AEC 为等边三角形, 即∠EAC =π3,即直线A 1C 1与AE 所成的角的大小为π3.故答案为:π3.15.在△ABC 中,∠A =90°,AB =3,AC =√3.若CM →=2MB →,AN →=λAC →+AB →(λ∈R),且AN →⋅AM →=8,则λ的值为 2 .解:根据题设,建立如图所示坐标系, 则A (0,0),B (0,3),C (√3,0), 由CM →=2MB →,可得M (√33,2), ∴AN →=λAC →+AB →=(√3λ,3), 又AN →⋅AM →=8, 则(√3λ,3)•(√33,2)=λ+6=8, 解得λ=2. 故答案为:2.三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤. 16.(12分)已知i 是虚数单位,复数z =(m 2﹣3m )+(m 2﹣5m +6)i ,m ∈R . (1)当m =1时,求|z |;(2)若z 是纯虚数,求m 的值;(3)若z 在复平面内对应的点位于第二象限,求m 的取值范围. 解:(1)当m =1时,z =﹣2+2i , 所以|z|=√(−2)2+22=2√2;(2)若复数是纯虚数,则{m 2−3m =0m 2−5m +6≠0,解得{m =0或m =3m ≠2且m ≠3,所以m =0;(3)复数z 在复平面内对应的点位于第二象限 则{m 2−3m <0m 2−5m +6>0;即{0<m <3m <2或m >3,所以实数m 的取值范围是(0,2).17.(12分)甲、乙两位射击运动员在一次射击测试中各射靶10次,每次命中的成绩(环数)如下: 甲 7 8 7 9 5 4 9 10 7 4 乙 9 5 7 8 7 6 8 6 7 7(1)求甲运动员的样本数据的众数和第85百分位数; (2)分别计算这两位运动员射击成绩的方差;(3)如果选一位成绩稳定的运动员参加比赛,选谁较好?说明理由.注:一组数据x 1,x 2,…,x n 的平均数为x ,它的方差为s 2=1n[(x 1−x)2+(x 2−x)2+⋯+(x n −x)2] 解:(1)根据题意,把甲的数据按从小到大排列如下:4 4 5 7 7 7 8 9 9 10, 则甲的数据里的众数是7,因为85%×10=8.5,所以第9个数据是第85百分位数,即第85百分位数为9; (2)x 甲=110(7+8+7+9+5+4+9+10+7+4)=7, 则S 2甲=110[(7﹣7)2+…+(4﹣7)2]=4;x 乙=110(5+6+6+7+7+7+7+8+8+9)=7, 则S 2乙=110[(9﹣7)2+…+(7﹣7)2]=1.2; (3)由(2)结论:x 甲=x 乙=7,但有S 2甲>S 2乙,即甲的成绩离散程度大,乙的成绩离散程度小故乙的成绩较稳定,所以选乙参加比赛.18.(12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2asinB=√3b.(1)求A;(2)若a=√7,c=2,求△ABC的面积.解:(1)因为2a sin B=√3b,由正弦定理可得2sin A sin B=√3sin B,因为sin B≠0,所以sin A=√32,因为△ABC是锐角三角形,所以A=π3;(2)因为a=√7,c=2,由余弦定理a2=b2+c2﹣2ac cos A,整理可得:b2﹣2b﹣3=0,解得b=3,所以S△ABC=12bc sin A=12×3×2×√32=3√32.19.(12分)一个袋子中装有标号分别为1,2的2个黑球和标号分别为3,4,5的3个白球,这5个球除标号和颜色外,没有其他差异.(1)若有放回的从中随机摸两次,每次摸出一个球,求第一次摸出黑球且第二次摸出白球的概率;(2)若不放回的从中随机摸出两个球,已知黑球的标号用x表示,白球的标号用y表示.求满足条件y﹣x>2的概率.解:(1)记摸一次得到黑球的事件为A,得到白球的事件为B,则P(A)=25,P(B)=35,又事件A与B相互独立,所以P(AB)=P(A)P(B)=25×35=625;(2)从中摸两个球,所得样本空间为Ω={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)},共包含10个样本点,满足条件y﹣x>2的样本点有(1,4),(1,5),(2,5)共3个,满足条件y﹣x>2的事件的概率为310.20.(12分)如图,在多面体ABCDEF中,平面ADEF⊥平面ABCD,四边形ADEF为正方形,四边形ABCD为梯形,且AD∥BC,∠BAD=90°,AB=AD=12 BC.(1)求证:AD∥平面BCEF;(2)求证:平面DCE⊥平面ABCD;第11页(共11页) (3)求直线BE 与平面DCE 所成的角的正切值.(1)证明:因为AD ∥BC ,AD ⊄平面BCEF ,BC ⊂平面BCEF ,所以AD ∥平面BCEF .(2)证明:因为四边形ADEF 为正方形,所以ED ⊥AD ,又平面ADEF ⊥平面ABCD ,ED ⊂平面ADEF ,平面ADEF ∩平面ABCD =AD , 所以ED ⊥平面ABCD ,因为ED ⊂平面DEC ,所以平面DCE ⊥平面ABCD .(3)解:连接BD ,设AB =1,因为∠BAD =90°,AB =AD =12BC ,所以BD =√2,∠ADB =45°,BC =2, 因为AD ∥BC ,所以∠DBC =45°,在△BCD 中,由余弦定理得,DC 2=BD 2+BC 2﹣2BD ×BC ×cos45°=2+4﹣2×√2×2×√22=2, 所以DC =√2,所以DC 2+BD 2=BC 2,即BD ⊥DC ,由(2)知ED ⊥平面ABCD ,则BD ⊥ED ,而DE ∩DC =D ,所以BD ⊥平面DCE ,所以∠BED 就是直线BE 与平面DCE 所成的角,在Rt △BDE 中,tan ∠BED =BD DE =√2,所以直线BE 与平面DCE 所成的角的正切值为√2.。
天津市第一中学2022-2023学年高一下学期期末数学试题

( A2, B2 ),( A3, B1 ), ( A3, B2 ), ( B1, B2 )},
共 10 个样本点,且每个样本点出现的可能性相等,
记事件
A
表示“2
件都是一级品”,包含
3
个样本点,则
P
(
A)
=
3 10
.
记事件
B
表示“2
件都是二级品”,包含
1
个样本点,则
P
(
B
)
=
1 10
.
记事件
C
表示“2
件中
1
件一级品、1
件二级品”,包含
6
个样本点,则
P(C)
=
6 10
=
3 5
.
事件
A,B,C
两两互斥,所以
P(B)
+
P(C)
=
P(B
U
C)
=
7 10
,
又由 B È C 表示“至少有 1 件二级品”. 故选:D. 5.C 【分析】根据学生的成绩都在 50 分至 100 分之间的频率和为 1 可求得 x 值,以此判断 A; 计算成绩在区间[70,80)的学生频率,然后可计算该区间学生数,以此判断 B;按照频率频 率分布直方图中平均数计算公式计算可判断 C;按照频率分布直方图中百分位数的计算方 法计算可判断 D. 【详解】定义 A:根据学生的成绩都在 50 分至 100 分之间的频率和为 1,可得
则 m // n ;③若 m / /a , m Ì b ,a I b = n ,则 m // n ;④若a ^ g , b ^ g ,a I b = m ,
则 m ^ g .其中所有正确命题的编号是( )
2022-2023学年天津市高一(下)期末数学试卷【答案版】

2022-2023学年天津市高一(下)期末数学试卷参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.本大题共8小题,每小题4分,共32分.1.为帮助乡村学校的学生增加阅读、开阔视野、营造更浓厚的校园读书氛围,南开中学发起了“把书种下,让梦发芽”主题捐书活动,现拟采用按年级比例分层抽样的方式随机招募12名志愿者,已知我校高中部共2040名学生,其中高一年级680名,高二年级850名,高三年级510名,那么应在高三年级招募的志愿者数目为()A.3B.4C.5D.6解:该校高中部共2040名学生,其中高一年级680名,高二年级850名,高三年级510名,采用按年级比例分层抽样的方式随机招募12名志愿者,则应在高三年级招募的志愿者数目为12×5102040=3.故选:A.2.一组数据:16,21,23,26,33,33,37,37的第85百分位数为()A.34B.35C.36D.37解:0.85×8=6.8,则一组数据:16,21,23,26,33,33,37,37的第85百分位数为:37.故选:D.3.已知三个不同的平面α,β,γ和两条不重合的直线m,n,则下列四个命题中正确的是()A.若m∥α,α∩β=n,则m∥nB.若α∩β=n,m⊂α,m⊥n,则α⊥βC.若α⊥β,γ⊥β,则α∥γD.若α∩β=m,m⊥γ,则α⊥γ解:对于A,m∥α,α∩β=n,则m∥n,错误,原因是β不一定是经过直线m的平面;故A错误;对于B,若α∩β=n,m⊂α,m⊥n,则α⊥β错误,如下图所示,原因是由题设条件无法推出一个平面经过另一个平面的垂线,故无法判定是否α与β一定垂直,故B错误;对于C ,若α⊥β,γ⊥β,则α∥γ,错误,例如教室的墙角,不妨设α为东墙面,γ为北墙面,β 为地面,满足α⊥β,γ⊥β,但α与γ相交,故C 错误;对于D ,因为α∩β=m ,m ⊥γ,由面面垂直的判定定理得:α⊥γ,故D 正确. 故选:D .4.从装有4个白球和3个红球的盒子里摸出3个球,则以下哪个选项中的事件A 与事件B 互斥却不互为对立( )A .事件A :3个球中至少有1个红球;事件B :3个球中至少有1个白球 B .事件A :3个球中恰有1个红球;事件B :3个球中恰有1个白球C .事件A :3个球中至多有2个红球;事件B :3个球中至少有2个白球D .事件A :3个球中至多有1个红球;事件B :3个球中至多有1个白球解:对于A ,事件A 与事件B 可能同时发生,例如摸出2个白球和1个红球,所以事件A 与事件B 不是互斥事件,故A 错误;对于B ,事件A 与事件B 不可能同时发生,但不是一定有一个发生,还有可能是3个白球或3个红球,所以事件A 与事件B 互斥却不互为对立,故B 正确;对于C ,事件A 与事件B 可能同时发生,例如摸出2个白球和1个红球,所以事件A 与事件B 不是互斥事件,故C 错误;对于D ,事件A 与事件B 不可能同时发生,但必有一个发生,所以事件A 与事件B 是互斥事件也是对立事件,故D 错误. 故选:B .5.为弘扬民族精神、继承传统文化,某校高二年级举办了以“浓情端午,粽叶飘香”为主题的粽子包制大赛.已知甲、乙、丙三位同学在比赛中成功包制一个粽子的概率分别为12,34,25,且三人成功与否互不影响,那么在比赛中至少一人成功的概率为( ) A .1720B .3140C .3740D .1920解:由题意,甲、乙、丙三位同学在比赛中成功包制一个粽子的概率分别为12,34,25, 则甲、乙、丙三位同学在比赛中不能成功包制一个粽子的概率分别为12,14,35.则没有一人成功的概率为12×14×35=340,∴至少一人成功的概率为1−340=3740. 故选:C .6.如图,A ,B 是以CD 为直径的半圆圆周上的两个三等分点,AN →=23AB →,点M 为线段AC 中点,则DM →=( )A .13DC →+12DN →B .12DC →+23DN →C .12DC →+13DN →D .23DC →+12DN →解:由圆的几何性质知,2AB =CD 且AB ∥CD ,因为AN →=23AB →,点M 为线段AC 中点,所以DM →=12(DC →+DA →)=12DC →+12(DN →+NA →)=12DC →+12DN →+12×23BA →=12DC →+12DN →+13BA →=12DC →+12DN →+13×12DC →=23DC →+12DN →. 故选:D .7.如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,点E 在棱A 1B 1(不含端点)上运动,现有如下命题: ①平面AA 1D 1D 内不存在直线与DE 垂直; ②平面A 1DE 与平面ABCD 所成的锐二面角为π4;③当点E 运动到棱A 1B 1的中点时,线段A 1C 上存在点P ,使得BC ∥平面AEP ; ④设点P 为线段A 1C 的中点,则三棱锥E ﹣PBC 1的体积为定值. 其中真命题的个数为( )A .1B .2C .3D .4解:对①,如图,易知DE 在平面AA 1D 1D 内的射影为A 1D ,而AD1⊥A1D,∴根据三垂线定理可知AD1⊥DE,∴①错误;对②,如图,由正方体的性质易知:平面A1DE即为对角面A1DCB1,又易知DC⊥平面B1CB,∴平面A1DE与平面ABCD所成的锐二面角即为∠B1CB=π4,∴②正确;对③,如图,当点E运动到棱A1B1的中点时,设AE∩A1B=F,则易知F为线段A1B上靠近A1的三等分点,∴在A1C上取靠近A1的三等分点P,连接FP,则FP∥BC,连接PE,P A,又BC⊄平面AEP,FP⊂平面AEP,∴BC∥平面AEP,∴③正确;对④,如图,当点P为线段A1C的中点时,由正方体的性质易知:平面PBC 1即为对角面ABC 1D 1, 又易知A 1B 1∥对角面ABC 1D 1,∴E 到平面ABC 1D 1的距离为定值,又三角形PBC 1的面积也为定值, ∴三棱锥E ﹣PBC 1的体积为定值,∴④正确. 故②③④为真命题,共计3个. 故选:C .8.月明天是我校一位登山爱好者,某天傍晚,她登上一座山尖(图中点A 处),刚好望到另一座远山,瞬间想起《送别》中“夕阳山外山”的歌词,在这诗意的时刻,她正眺望到远山上一座凉亭(位于点B 处),于是她想测算出凉亭到那座山顶(点C 处)的距离,她在点A 处利用测角仪器测得点B 的俯角为5°,点C 的仰角为40°,此后,她沿山坡下行100米至点D 处,测得点A ,B ,C 的仰角分别为80°,25°,55°,根据这些数据,明天同学计算得到了凉亭到山顶的距离BC =( )A .50(√3+1)米B .50(√3−1)米C .50(√6+√2)米D .50(√6−√2)米解:由题意知,AD =100,∠BAC =45°,∠BAD =75°,∠ADC =45°,∠BDC =30°, 在△ABD 中,∠ADB =∠ADC +∠BDC =75°,∠ABD =180°﹣(∠BAD +∠ADB )=30°, 由正弦定理知,AB sin∠ADB=AD sin∠ABD,所以AB =100⋅sin75°sin30°=100sin(45°+30°)sin30°=100⋅√22⋅(√32+12)12=50√2(√3+1),在△ACD 中,∠ACD =180°﹣(∠BAC +∠BAD +∠ADC )=15°, 由正弦定理知,AC sin∠ADC=AD sin∠ACD,所以AC =100sin45°sin15°=100sin45°sin(45°−30°)=100⋅√22√22(√32−12)=100(√3+1),在△ABC 中,由余弦定理知,BC 2=AB 2+AC 2﹣2AB •AC cos ∠BAC =5000(√3+1)2, 所以BC =50√2(√3+1)=50(√6+√2)米. 故选:C .二、填空题:本大题共6小题,每小题4分,共24分.试题中包含两个空的,答对1个的给2分,全部答对的给4分.9.i 为虚数单位,若复数z =2i+1i−2,则|z |= 1 . 解:z =2i+1i−2, 则|z |=|1+2i −2+i |=|1+2i||−2+i|=√22√(−2)+1=1.故答案为:1.10.已知正四面体ABCD 的棱长为1,则直线AB 与平面BCD 所成角的余弦值为 √33.解:如图所示:在正四面体ABCD 中,点A 在等边△BCD 的投影为△BCD 的中心O , 则AB 与平面BCD 所成角为∠ABO , 因为正四面体ABCD 的棱长为1, 所以BE =√32,BO =23⋅BE =√33, 所以cos ∠ABO =BOAB =√33.故答案为:√33.11.已知向量a →=(4,3),向量a →在向量b →上的投影向量c →=(2,4),则|a →−b →|的最小值为 √5 .解:向量a →在向量b →上的投影向量c →=(2,4), 则b →∥c →,可设b →=λc →=(2λ,4λ),a →=(4,3),则a →−b →=(4−2λ,3−4λ),故|a →−b →|2=(4﹣2λ)2+(3﹣4λ)2=20(λ﹣1)2+5, 当λ=1时,|a →−b →|的最小值为√5. 故答案为:√5.12.在5袋牛奶中,有2袋已经过了保质期,从中任取2袋,则取到的全是未过保质期的牛奶的概率为310.解:记2袋已经过了保质期的牛奶为A ,B ,3袋未过保质期的牛奶为a ,b ,c ,从5袋牛奶中任取2袋,所有情况为:AB ,Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,ab ,ac ,bc ,共10种情况, 其中全是未过保质期的牛奶的情况为:ab ,ac ,bc ,共3种情况, 所以所求概率为310.故答案为:310.13.设三角形ABC 是等边三角形,它所在平面内一点M 满足AM →=13AB →+23AC →,则向量AM →与BC →夹角的余弦值为 √714.解:设△ABC 边长为1,AM →=13AB →+23AC →,则|AM →|2=(13AB →+23AC →)2=19AB →2+49AB →⋅AC →+49AC →2=19+49×1×1×cos60°+49=79, 所以|AM →|=√73,因为AM →⋅BC →=(13AB →+23AC →)(AC →−AB →)=−13AB →2+23AC →2−13AB →⋅AC →=−13+23−13×1×1×cos60°=16,设向量AM →与BC →夹角为θ, 则cos θ=AM →⋅BC →|AM →||BC →|=16√73=√714.故答案为:√714. 14.为迎接我校建校120周年校庆,数学学科在八角形校徽中生发灵感,设计了一枚“立体八角形”水晶雕塑,寓意南开在新时代中国“保持真纯初心,骏骏汲汲前行”,以下为该雕塑的设计图及俯视图,它由两个中心重合的正四棱柱组合而成,其中一个正四棱柱可看作由另一个正四棱柱旋转45°而成,已知正四棱柱的底面边长为1,侧棱长为2,设该雕塑的表面积为S 1,该雕塑内可容纳最大球的表面积为S 2,该雕塑外接球表面积为S 3,则S 1=1189,S 2:S 3= 1:6 .解:由题意,该雕塑的表面积是16个矩形及两个正方形与8个等腰直角三角形的面积的和,所以S 1=13×2×16+2×1×1+8×12×13×13=1189; 该雕塑内可容纳最大球的半径为12,表面积为S 2=4π×(12)2=π,该雕塑外接球的半径为√12+(22)2=√62,表面积为S 3=4π×(√62)2=6π,所以S 2:S 3=1:6. 故答案为:1189,1:6.三、解答题:本大题共3小题,共44分.解答应写出文字说明,证明过程或演算步骤.15.(14分)某校从高一年级学生中随机抽取40名,将他们的期中考试数学成绩(满分100分,所有成绩均为不低于40分的整数)分为6组:[40,50),[50,60),…,[90,100],绘制出如图所示的频率分布直方图.(Ⅰ)求出图中实数a 的值;(Ⅱ)若该校高一年级共有学生640名,试估计该校高一年级期中考试数学成绩不低于60分的人数; (Ⅲ)若从成绩来自[40,50)和[90,100]两组的学生中随机选取两名学生: (i )写出该试验的样本空间:(ii )求这两名学生数学成绩之差的绝对值不大于10的概率.解:(Ⅰ)因为图中所有小矩形的面积之和等于1, 所以10×(0.005+0.01+0.02+a +0.025+0.01)=1, 解得a =0.03;(Ⅱ)根据频率分布直方图,成绩不低于60分的频率为1﹣10×(0.005+0.01)=0.85, 由于该校高一年级共有学生640名,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为640×0.85=544;(Ⅲ)成绩在[40,50)分数段内的人数为40×0.05=2,成绩在[90,100]分数段内的人数为40×0.1=4,则记在[40,50)分数段的两名同学为A 1,A 2,在[90,100]分数段内的同学为B 1,B 2,B 3,B 4, (i )从这6名学生中随机抽取2人样本空间Ω={(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4),(B 1,B 2),(B 1,B 3),(B 1,B 4),(B 2,B 3),(B 2,B 4),(B 3,B 4)};(ii )如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10;如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10,则所取2名学生的数学成绩之差的绝对值不大10的取法有(A 1,A 2),(B 1,B 2),(B 1,B 3),(B 1,B 4),(B 2,B 3),(B 2,B 4),(B 3,B 4),共7种取法, 所以所求概率为P =715. 16.(15分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a cosA=b+c cosB+cosc.(Ⅰ)求A ; (Ⅱ)已知a =3, (i )若△ABC 的面积为√32,求△ABC 的周长: (ii )求△ABC 周长的取值范围.解:(Ⅰ)由题意及正弦定理可得:sinAcosA =sinB+sinCcosB+cosC,整理可得:sin A cos B﹣cos A sin B=sin C cos A﹣cos C sin A,即sin(A﹣B)=sin(C﹣A),在三角形中,可得A﹣B=C﹣A,即2A=B+C=π﹣A,解得A=π3;(Ⅱ)(i)因为S△ABC=12bc sin A=12bc•√32=√32,可得bc=2,由余弦定理可得a2=b2+c2﹣2bc cos A=(b+c)2﹣3bc,而a=3,即(b+c)2=15,解得b+c=√15,所以三角形的周长为a+b+c=3+√15;(ii)a2=b2+c2﹣2bc cos A=(b+c)2﹣3bc,而a=3,所以(b+c)2=a2+3bc≤9+3•(b+c2)2,当且仅当b=c时取等号,解得b+c≤6,而b+c>a=3,所以b+c∈(3,6].所以三角形的周长为a+b+c∈(6,9].17.(15分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD为平行四边形,∠DAB=60°,AB=AD=AA1,过A1作底面的垂线,垂足在线段AC上,点M,N分别为棱AB和C1D1的中点.(Ⅰ)证明D,M,B1,N四点共面,且AD1∥平面DMB1N;(Ⅱ)证明直线A1C与平面DMB1N不垂直;(Ⅲ)若AC1⊥平面A1BD,求∠BAA1的大小.(Ⅰ)证明:取A1B1的中点E,连接EM,ED1,因为点M,N分别为棱AB和C1D1的中点,所以D1N∥B1E,D1N=B1E,DD1∥EM,DD1=EM,所以四边形B1ED1N和四边形DD1EM是平行四边形,第11页(共11页) 所以B 1N ∥D 1E ∥DM ,所以D ,M ,B 1,N 四点共面,因为D 1N ∥AM ,D 1N =AM ,所以四边形D 1AMN 是平行四边形,所以AD 1∥MN ,又AD 1⊄平面DMB 1N ,MN ⊂平面DMB 1N ,所以AD 1∥平面DMB 1N .(Ⅱ)证明:因为过A 1作底面的垂线,垂足在线段AC 上,且垂线在平面ACC 1A 1上, 所以平面ACC 1A 1⊥平面ABCD ,所以A 1C 在底面ABCD 上的投影为AC ,假设直线A 1C 与平面DMB 1N 垂直,因为DM ⊂平面DMB 1N ,所以A 1C ⊥DM ,所以AC ⊥DM ,因为底面ABCD 为平行四边形,∠DAB =60°,AB =AD ,所以四边形ABCD 是菱形,所以AC ⊥BD ,所以点M 与点B 重合,这与题意相矛盾,故假设不成立,即直线A 1C 与平面DMB 1N 不垂直.(Ⅲ)解:若AC 1⊥平面A 1BD ,因为A 1D ⊂平面A 1BD ,所以AC 1⊥A 1D ,因为AC 1→=AB →+AD →+AA 1→,A 1D →=AD →−AA 1→,所以AC 1→•A 1D →=(AB →+AD →+AA 1→)•(AD →−AA 1→)=AB →⋅AD →−AB →⋅AA 1→+AD →2−AD →⋅AA 1→+AD →⋅AA 1→−AA 1→2=AB →⋅AD →−AB →⋅AA 1→=|AB →|2cos60°−|AB →|2cos ∠BAA 1=0,所以cos ∠BAA 1=12,又∠BAA 1∈(0°,90°),所以∠BAA 1=60°.。
天津市第一百中学2023-2024学年高一下学期期末考试数学试卷

天津市第一百中学2023-2024学年高一下学期期末考试数学试卷一、单选题1.已知复数z 满足2i 1i z +=+,则z =( )A .1i --B .1i -C .1i +D .1i -+2.已知平面向量()2,1a =r ,()4,=-r b x ,若a r 与()2a b +r r 共线,则实数x =( ) A .2- B .1- C .1 D .23.有一个人在打靶中,连续射击2次,事件“至少有1次中靶”的对立事件是( ). A .至多有1次中靶B .2次都中靶C .2次都不中靶D .只有1次中靶4.一组数据4.3,6.5,7.8,6.2,9.6,15.9,7.6,8.1,10,12.3,11.2,3,则它们的75%分位数是( )A .10.3B .10.4C .10.5D .10.65.设a ,b 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ) A .若αβP ,a α⊂,b β⊂,则a b P B .若a b P ,αβP ,a α⊥,则b β⊥C .若αβ⊥,a α⊂,b β⊂,则a b ⊥r rD .若a αβ⋂=,b a P ,则b αP6.在ABC V 中,AD 为边BC 上的中线,若2AE ED =u u u r u u u r ,则BE =u u u r ( )A .1566AB AC -+u u u r u u u r B .1566AB AC -u u u r u u u r C .5166AB AC -u u u r u u u r D .5166AB AC -+u u u r u u u r 7.向量a r ,b r 满足2a =r ,1b =r ,且()b a b ⊥+r r r ,则向量2a b +r r 在向量b r 上的投影向量为( ) A .b r B .b -r C .12b -r D .12b r 8.在ABC V 中,a x =,2b =,60B =︒,若三角形有两解,则x 的取值范围是( )A .2x <<B .2x <<C 2x <D .2x <<9.已知M 是ABC V 内一点且AB AC ⋅=u u u r u u u r 30BAC ∠=︒,若M B C V ,MCA △和MAB △的面积分别为12,x ,y ,则18x x y+的最小值是( )A .16B .10C .8D .610.若向量a r ,b r 满足3a =r ,5a b -=r r ,2a b ⋅=r r ,则b =r .二、填空题11.已知正方体1111ABCD A B C D -的棱长为4,除面ABCD 外,该正方体其余器面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为.12.某学校有男生400人,女生600人.为了调查该校全体学生每天体育锻炼时间,采用分层抽样的方法抽取样本,计算得男生每天体育锻炼时间均值为2.5小时,方差为1,女生每天体育锻炼时间为1小时,方差为0.5.若男、女样本量按比例分配,则可估计总体方差为. 13.为迎接2022年北京冬奥会,某工厂生产了一批滑雪板,这批产品中按质量分为一等品,二等品,三等品.从这批滑雪板中随机抽取一件滑雪板检测,已知抽到不是三等品的概率为0.97,抽到一等品或三等品的概率为0.88,则抽到一等品的概率为.14.已知圆柱的两个底面的圆周都在表面积为40π的球面上,则该圆柱的侧面积的最大值为.15.已知ABC V 中,0AC AB ⋅=u u u r u u u r ,2BD CA =u u u r u u u r ,记(),CD CA CB R λμλμ=+∈u u u r u u u r u u u r ,则λμ-=;若2CA =u u u r ,当BCD ∠最大时,AB =u u u r .三、解答题16.已知复数()21i 3i 2i 4z m m =+-+-,m 为实数.(1)若z 是纯虚数,求m 的值;(2)若复数z 在复平面上对应的点在第二象限,求m 的取值范围;(3)若0m =,求1iz -的值. 17.三棱台111ABC A B C -中,若1A A ⊥平面ABC ,AB AC ⊥,12AB AC AA ===,111AC =,M ,N 分别是BC ,BA 中点.(1)求证:1//B B 平面1C MA ;(2)求面1AC M 与面1C MN 夹角的正弦值;(3)求点C 到平面1C MA 的距离.18.为了了解学生的数学学习情况,方便计划下一阶段的教学重心,某校对高一年级学生进行了数学测试.根据测试成绩(总分100分),将所得数据按照[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100分成6组,其频率分布直方图如图所示.(1)求a 的值,并估计本次数学测试成绩的平均分;(同一组中的数据用该组区间的中点值作代表)(2)求样本成绩的第75百分位数;(3)该校准备对本次数学测试成绩优异(将成绩从高到低排列,排在前12%的为优异)的学生进行嘉奖,则受嘉奖的学生分数应不低于多少(精确到0.001)19.如左图所示,在直角梯形ABCD 中,//BC AD ,AD CD ⊥,4BC =,6AD =,CD =边AD 上一点E 满足2DE =.现将ABE V 沿BE 折起到1A BE V 的位置,使平面1A BE ⊥平面BCDE ,如右图所示.(1)求证:1AC BE ⊥; (2)求直线1AC 与面1A BE 所成角的正弦值;(3)求平面1A BE 与平面1ACD 所成锐二面角的余弦值.20.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知()cos cos 0c A a C +=.(1)求角A 的大小;(2)若2a =,1b c +=+ABC V 的面积;(3)若ABC V 锐角三角形,且外接圆直径为22232b a b +的取值范围.。
天津市第100中学2024届数学高一下期末检测试题含解析

天津市第100中学2024届数学高一下期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设向量a ,b 满足10a b +=,6a b -=,则•a b =( )A .1B .2C .3D .52.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//m α,//m β,则//αβ B .若m α⊥,m n ⊥,则n α⊥ C .若m α⊥,//m n ,则n α⊥D .若αβ⊥,m α⊥,则//m β3.直线10ax by ++=(a ,0b >)过点(-1,-1),则14a b+的最小值为 ( ) A .9B .1C .4D .104.已知向量()()3443a b =-=,,,,则a 与b ( ). A .垂直B .不垂直也不平行C .平行且同向D .平行且反向5.根据下面茎叶图提供了甲、乙两组数据,可以求出甲、乙的中位数分别为( )A .24和29B .26和29C .26和32D .31和296.为了得到函数的图像,只需将函数的图像( )A .向右平移个单位B .向右平移个单位C .向左平移个单位D .向左平移个单位7.已知向量OA a OB b OC c ===,,,且4AC CB =-,则( ).A .1322c a b =+ B .3122c a b =- C .1322c a b =-D .1433c a b =-+8.如果直线l 与平面α不垂直,那么在平面α内( )A .不存在与l 垂直的直线B .存在一条与l 垂直的直线C .存在无数条与l 垂直的直线D .任意一条都与l 垂直9.函数()sin(2)(0)f x x ϕϕπ=+<<的图象如图所示,为了得到()sin 2g x x =的图象,可将()f x 的图象( )A .向右平移6π个单位 B .向右平移12π个单位C .向左平移12π个单位D .向左平移6π个单位 10.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,若,1,3A b π==ABC ∆的面积为32,则a 的值为( ) A .2B 3C 3D .1二、填空题:本大题共6小题,每小题5分,共30分。
天津市部分区2023-2024学年高一下学期期末练习数学试题(含答案)

天津市部分区2023~2024学年度第二学期期末练习高一数学Mike2024.7.8第I 卷(非选择题共40分)一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i是虚数单位,则复数( )A. B. C.D.2.对于两个事件M ,N ,则事件表示的含义是( )A.与同时发生B.与不能同时发生C.与有且仅有一个发生D.与至少有一个发生3.如图,是水平放置的的直观图,若,,则的面积是()B.C.1D.24.已知,,则( )A. B. C. D.5.下列说法正确的是( )A.在圆柱的上、下底面的圆周上各取一点,则这两点的连线是该圆柱的母线B.直四棱柱是长方体C.将一个等腰梯形绕着较长的底边所在的直线旋转一周,所得的几何体是一个圆锥D.正棱锥的侧面是全等的等腰三角形6.某校要从高一某班5名班干部(其中2名男生,3名女生)中抽调2人,主持国旗下讲话活动,则被抽调的班干部都是女生的概率为( )A.B.C.D.7.在中,若,,,则()21i=+1i-1i+11i 22+11i 22-M N M N M N M N M N A B C '''△ABC △12A O ''=1B OC O ''''==ABC △12()1,2a = ()2,1b =-a b += 0a b ⋅= //a b ||||a b > 110310710910ABC △BC =2AC =60A =︒B =A.B.C.或 D.8.已知m ,n 表示两条不同的直线,,为两个不同的平面,则( )A.若,,则B.若,,则C.若,,则D.若,,则9.在四边形中,,,且,则与的夹角为( )A.B.C.D.10.在正方体中,E ,F ,H 分别是,,的中点,给出下列结论:①平面;②平面;③直线EF 与直线所成的角为;④平面与底面所成二面角的大小为.其中正确的结论有( )A.①③B.②④C.②③④D.①②④第II 卷(非选择题 共80分)二、填空题:本大题共6个小题,每小题4分,共24分.试题中包含两个空的,答对1个的给2分,全部答对的给4分.11.甲、乙两人破译同一个密码,已知他们能破译出该密码的概率分别为和,若甲、乙两人是否译出该密码相互独立,则甲、乙都译出该密码的概率为__________.12.一个射击运动员打靶6次的环数为:9,5,7,6,8,7,则这组数据的方差为__________.注:一组数据,,…,的平均数为,它的方差为.13.已知,是两个不共线的向量,且向量与共线,则实数的值为__________.14.已知正方体的外接球的表面积为,点为棱BC 的中点,则三棱锥的体积为__________.注:球的表面积,其中为球的半径15.在中,,,为CD 上一点,且满足,则的值为__________;若,,则的值为__________.三、解答题:本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤π6π4π65π6π3αβ//m α//n α//m n m α⊥m n ⊥//n α//m αm n ⊥n α⊥m α⊥m β⊂αβ⊥ABCD AB DC = AD =||||AB AD AB AD +=- AB CAπ6π32π35π61111ABCD A B C D -AB 1DD 1BC 11//C D ABH AC ⊥BDF 1BC π3ABH ABCD π413141x 2x n x x ()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎣⎦ a b 2a b - 5a b λ+λ1111ABCD A B C D -36πE 1C AED -24πS R =R ABC △π3BAC ∠=2AD DB =P 3()5AP x AC AB x =+∈ x 3AC =4AB =AP CD ⋅16.(本题满分12分)已知是虚数单位,复数,.(I )当时,求;(II )若z 是纯虚数,求的值;(III )若在复平面内对应的点位于第三象限,求的取值范围.17.(本题满分12分)抽取某车床生产的8个零件,编号为,,...,,测得其直径(单位:cm )分别为:1.51,1.49,1.49,1.51,1.49,1.48,1.47,1.53,其中直径在区间内的零件为一等品.(1)求从上述8个零件中,随机抽取一个,求这个零件为一等品的概率;(I )从上述一等品零件中,不放回地依次随机抽取2个,用零件的編号列出所有可能的抽取结果,并求这2个零件直径相等的概率.18.(本题满分12分)在中,角A ,B ,C 的对边分别为a ,b ,c ..(I )求角的大小;(II )若,,求的面积.19.(本题满分12分)高一年级进行消防知识竞赛,从所有答卷中随机抽取样本,将样本数据(成绩/分)按,,,,分成5组,并整理得到如下频率分布直方图.(I )求a 的值和众数;(II )若成绩在内有30人,现从成绩在和两组中,采取分层随机抽样的方法抽取12人,则这两组分别抽取多少人?(III )年级决定表彰成绩排名前25%的学生,已知某学生的成绩是86,请以此样本数据来估计该生能否得到表彰,并说明理由.20.(本题满分12分)如图,在四棱锥中,平面.平面,且,,,为AD 的中点.i ()228(2)i z m m m =+-+-m ∈ 1m =z m z m 1A 2A 8A []1.49,1.51ABC △sin cos 0B b A +=A a =b =ABC △[)50,60[)60,70[)70,80[)80,90[]90,100[)50,60[)80,90[]90,100P ABCD -PAB ABCD //AD BC 90ADC ∠=︒112BC CD AD ===E(I )求证:平面;(II )求证:平面平面;(III )若,,求直线PA 与平面所成的角的正弦值.天津市部分区2023~2024学年度第二学期期末练习高一年级数学参考答案1.Α2.D3.C4.B5.D6.B7.A 8.D9.C10.B11.12.13.14.15.,16.(I;(II );(III )(I )解:当时,.所以,.(II )解:若复数是纯虚数,则解得所以,.(III )解:复数在复平面内对应的点位于第三象限,则即所以,实数的取值范围是.17.(I )(II )(I )解:由所给数据可知,一等品零件共有5个.设“从8个零件中,随机抽取一个为一等品”为事件,则.//AB PCE PAB ⊥PBD 2PA =PB =PBD 1125310-11023104-(4,2)-1m =5i z =--||z ==()228(2)iz m m m =+-+-z 2280,20,m m m ⎧+-=⎨-≠⎩24,2,m m m ==-⎧⎨≠⎩或4m =-z 2280,20,m m m ⎧+-<⎨-<⎩42,2.m m -<<⎧⎨<⎩m 42m -<<5825A 5()8P A =所以,从8个零件中,随机抽取一个为一等品的概率为.(II )解:一等品零件的编号为,,,,.从这5个一等品零件中依次不放回随机抽取2个,所有可能的结果有:,,分共20种.设“从一等品零件中,随机抽取的2个零件直径相等”为事件,所有可能结果有:,共有8种.所以,.答:从一等品零件中,随机抽取的2个零件直径相等概率为.18.(I );(II(I.因为,,所以,,.因为,中,,所以,.(II )解:由及余弦定理.得,解得或(舍)所以,.19.(I ),众数是75;(II )在和按照分层随机抽样分别抽取9人,3人;(III )估计该生能得到表彰.(I )解:由频率分布直方图得:.解得,众数是75.(II )解:因为,成绩在一组人数为30人,其频率,所以,样本容量为.成绩在和的频数为90,30.581A 2A 3A 4A 5A ()()()()(){()()()1213141521232425,,,,,,,,,,,,,,,A A A A A A A A A A A A A A A A Ω=()()()()()()()()()()31323435414243455152,,,,,,,,,,,,,,,,,,,A A A A A A A A A A A A A A A A A A A A ()()}5354,,,A A A A B ()()()()()()()(){}1423253541325253,,,,,,,,,,,,,,,B A A A A A A A A A A A A A A A A =82()205P B ==255π6sin sin cos 0A B B A +=(0,π)B ∈sin 0B ≠tan A =ABC △(0,π)A ∈5π6A =a =b =2222cos a bc bc A =+-2340c c +-=1c =4c =-111sin 1222ABC S bc A ==⨯=△0.05a =[80,90)[]90,100()100.20.30.70.60.21a a a a a ⨯++++=0.05a =[50,60)0.20.05100.1⨯⨯=303000.1=[80,90)[]90,100设在和按照分层随机抽样分别抽取人,人,按照分层随机抽样.得,.所以,在和按照分层随机抽样分别抽取9人,3人.(III )解:成绩低于80分的频率为0.6,成绩低于90分的频率为0.9.由题,表彰成绩排名前的学生,即被表彰的最低成绩为第75百分位数.设第75百分位数为,则在中,,解得.即第75百分位数为.所以,估计该生能得到表彰.20.(I)见解答;(II )见解答;(III (I )证明:因为,且,所以,四边形为平行四边形,所以,.因为,平面,平面,所以,平面.(II )证明:因为,,,,所以,.所以,,即.又因为,平面平面,平面,平面平面,所以,平面.又因为,平面,所以,平面平面.(III )解:作,垂足为.由(II )知,平面平面,又平面平面平面,所以,平面.所以,PM 为直线PA 在平面上的射影,所以,为直线AP 与平面所成的角.在中,,,,所以,,即.在中,.[80,90)[]90,100x y121209030x y==9x=3y =[80,90)[]90,10025%t t [80,90)0.6(80)0.030.75t +-⨯=85t =8586<//BC AE BC AE =BCEA //AB EC AB ⊂/PEC EC ⊂PEC //AB PEC //AD BC 90ADC ∠=︒112BC CD AD ===BD AB ==2AD =222AB BD AD +=BD AB ⊥PAB ⊥ABCD BD ⊂ABCD PAB ABCD AB =BD ⊥PAB BD ⊂PBD PAB ⊥PBD AM PB ⊥M PAB ⊥PBD PAB ,PBD PB AM =⊂PAB AM ⊥PBD PBD APM ∠PBD PAB △AB =2PA =PB =222PA AB PB +=PA AB ⊥Rt PAB △PA AB AM PB ⋅===在中,.所以,直线AP 与平面.Rt AMP △sin AM APM AP ∠===PBD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津重点中学高一下学期期末考试数学试卷
1、设,,则下列不等式中一定成立的是()
A、
B、
C、
D、2、已知数列{an}的通项公式,则a4等于( )、
A、1
B、2
C、3
D、 03、某学校有16 0名教职工,其中教师120名,行政人员16名,后勤服务人员24名,今从中抽取一个容量为20的样本,采用( )较为合适、
A、简单随机抽样
B、系统抽样
C、分层抽样
D、其他抽样
4、等差数列中,,,则数列的前9项的和等于( )
A、66
B、99
C、144
D、29
75、若△ABC的三个内角满足,则△ABC ( )
A、一定是锐角三角形、
B、一定是直角三角形、
C、一定是钝角三角形、
D、可能是锐角三角形,也可能是钝角三角形、6、如下图,是把二进制数化成进制数的一个程序框图,判断框内可以填人的条件是()
A、
B、
C、
D、开始S=1i=1i=i+1S=1+2S?输出S是结束否
7、已知等差数列{an}的公差d≠0,若a
5、a
9、a15成等比数列,那么公比为 ( )
A、
B、
C、
D、8、有五条线段长度分别为,从这条线段中任取条,则所取条线段能构成一个三角形的概率为()
A、
B、
C、
D、
9、在长为的线段上任取一点,并以线段为边作正方形,则这个正方形的面积介于与之间的概率为()
A、
B、
C、
D、二、填空题
10、372和684的最大公约数是
11、在△ABC中,若B=30,AB=2,AC=2,则△ABC的面积是______。
12、以下给出的是计算的值的一个程序框图(如图所示),其中判断框内应填入的条件是
13、若关于的不等式对任意恒成立,则实数的取值范围是。
三、解答题(共80分)
14、(12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据。
345
62、53
44、5(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;(2)已知该厂技改前吨甲产品的生产能耗为吨标准煤、试根据(2)求出的线性回归方程,预测生产吨甲产
品的生产能耗比技改前降低多少吨标准煤?(线性回归方程中的系数可以用公式)
15、在面积为的△ABC中,角
A、
B、C所对应的边为成等差数列,B=
30、(1)求;(2)求边。
16、某校从参加高一年级期中考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段,…后得到如下部分频率分布直方图、观察图形的信息,回答下列问题:(Ⅰ)求分数在内的频率,并补全这个频率分布直方图;(Ⅱ)用分层抽样的方法在分数段为的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取人,求至多有人在分数段的概率、
17、已知等比数列的前项和为,且是与2的等差中项,等差数列中,,点在直线上、⑴求和的值;⑵求数列的通项和;⑶ 设,求数列的前n项和、一、选择题
1、中,若,则的面积为()
A、
B、
C、1
D、2、若为等差数列,是其前项和,且,则的值为()
A、
B、
C、
D、3、袋中装有6个白球,5只黄球,4个红球,从中任取1球,抽到的不是白球的概率为 ( )
A、
B、
C、
D、非以上答案
5、设满足约束条件,则的最大值为()
A、5
B、3
C、7
D、3}三、解答题
15、解:(1)∵,又,∴,∴。
……6分(2)∵B=30,∴,∴,……10分∴,又由成等差数列知,而,代入上式得,∴。
……14分题号12345678910答案CCACCBACAA二填空题
11、100;
12、101;
13、或
14、=2n-3
17、解:(1)∵an是Sn与2的等差中项∴Sn=2an-
2∴a1=S1=2a1-2,解得a1=2a1+a2=S2=2a2-2,解得a2=4……3分
(2)∵Sn=2an-2,Sn-1=2an-1-2,又Sn—Sn-1=an,∴an=2an-2an-1,∵an≠0,∴,即数列{an}是等比树立∵a1=2,∴an=2n∵点P(bn,bn+1)在直线x-y+2=0上,∴bn-bn+1+2=0,∴bn+1-
bn=2,即数列{bn}是等差数列,又b1=1,∴bn=2n-1,……8分(3)∵cn=(2n-1)2n∴Tn=a1b1+ a2b2+anbn=12+322+523++(2n-1)2n,∴2Tn=122+323++(2n-3)2n+(2n-1)2n+1因此:-
Tn=12+(222+223++22n)-(2n-1)2n+1,即:-
Tn=12+(23+24++2n+1)-(2n-1)2n+1,∴Tn=(2n-3)2n+1+6……14分。