2018-2019学年浙江省金华市永康市八年级(下)期末数学试卷解析版
浙教版2018--2019学年度第二学期八年级期末考试数学试卷

绝密★启用前浙教版2018--2019学年度第二学期八年级期末考试数学试卷注意事项:1.做卷时间100分钟,满分120分 2.做题要仔细,不要漏做 一、单选题(计30分)1.(本题3分)反比例函数y=x1的图象经过的象限是( ) A .第一二象限 B .第一三象限 C .第二三象限 D .第二四象限 2.(本题3分)若反比例函数3m y x-=的图象在第一、三象限,则m 的值可以是( ) A .4 B .3 C .0 D .3- 3.(本题3分)下列计算错误的是( ) A .B .C .D .4.(本题3分)方程(x -2)2+(x -2)=0的解是( )A .2,1B .,1C .D .25.(本题3分)如图,已知某广场菱形花坛ABCD 的周长是12米,∠BAD =60°,则花坛对角线AC 的长等于( )A. 33米B. 4米C. 32米D. 2米 6.(本题3分)若关于的一元二次方程的一个根为1,则的值为( )A .或B .C .1D .-1 7.(本题3分)如图,在矩形ABCD 中,,则BD 的长为A .5B .10C .12D .138.(本题3分)在某次射击训练中,甲、乙、丙、丁4人各射击10次,平均成绩相同,方差分别是=0.35,=0.15,=0.25,=0.27,这4人中成绩发挥最稳定的是( )A .甲B .乙C .丙D .丁 9.(本题3分)关于的方程的两根为直角三角形的两直角边的长,且该直角三角形的面积为1,则斜边长为( )A .5B .7C .5D .710.(本题3分)如图所示,反比例函数y=xk(k≠0,x >0)的图象经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为8,则k 的值为( )A .B .2C .22D .25 二、填空题(计32分)11.(本题4分)若一组数据6、7、4、6、x 、1的平均数是5,则这组数据的众数是_____. 12.(本题4分)如图,已知菱形ABCD 的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD 的面积为 .13.(本题4分)五边形的内角和的度数是______.14.(本题4分)若关于x 的一元二次方程kx 2-4x+3=0有实数根,则k 的取值范围是 .连接、.当为________度时,四边形为矩形.16.(本题4分)如图,正方形ABCD 的边长为1,E 是边CD 外的一点,满足CE ∥BD ,BE=BD .则CE= .17.(本题4分)已知四边形ABCD 是平行四边形,再从①AB=BC ,②∠ABC=90°, ③AC=BD ,④AC⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,其中错误的是_______ (只填写序号).18.(本题4分)如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数y=xk的图象上,OA=1,OC=6,则正方形ADEF 的边长为________.三、解答题19.(本题7分)解方程:(1)(2)(3)12x x --= (2)231y +=20.(本题7分)计算:(1))22 (2)2111a a a +-+-.21.(本题7分)青山村种的水稻2014年平均每公顷产8000kg ,2016年平均每公顷产9680kg ,求该村水稻每公顷产量的年平均增长率.22.(本题7分)一定质量的氧气,其密度ρ(kg/m 3)是它的体积v (m 3)的反比例函数.当V=10m 3时ρ=1.43kg/m 3. (1)求ρ与v 的函数关系式;(2)求当V=2m 3时,氧气的密度.23.(本题7分)如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,两条对角线AC 、OB 的长分别是6和4,反比例函数y=xk的图象经过点C. (1)写出点A 的坐标,并求k 的值;(2)将菱形OABC 沿y 轴向下平移多少个单位长度后点A 会落在该反比例函数的图象上?24.(本题7分)如图,在平面直角坐标系中,直线y=0.5x+2与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第二象限内作正方形ABCD ,过点D 作DE ⊥x 轴,垂足为E. (1)求点A 、B 的坐标,并求边AB 的长; (2)求点D 的坐标;(3)你能否在x 轴上找一点M ,使△MDB 的周长最小?如果能,请求出M 点的坐标;如果不能,说明理由.25.(本题8分)已知关于的方程.求证:方程总有两个实数根;已知方程有两个不相等的实数根,,且满足,求的值.26.(本题8分)甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表. (1)请将甲校成绩统计表和图2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.参考答案1.B【解析】【分析】根据反比例函数y中的4的符号来判定该函数所经过的象限.【详解】∵4>0,∴反比例函数y的图象经过第一、三象限.故选B.【点睛】本题考查了反比例函数的性质与图象.对于反比例函数y(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.2.A【解析】分析: 先根据反比例函数的性质列出关于k的不等式,求出k的取值范围,进而可得出结论.详解: ∵反比例函数3myx-=的图象位于第一、三象限,∴m−3>0,解得m>3,∴k的值可以是4.故选:A.点睛: 本题考查的是反比例函数的性质,熟知反比例函数的图象与系数的关系是解答此题的关键.3.B【解析】根据二次根式的运算法则逐一作出判断:A.,计算正确;B.,计算错误;C.,计算正确;D.,计算正确。
2018-2019学年浙教版八年级下册期末数学试卷 含答案

2018-2019学年八年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)下面调查中,适合采用普查的是()A.调查你所在的班级同学的身高情况B.调查全国中学生心理健康现状C.调查我市食品合格情况D.调查中央电视台《少儿节目》收视率3.(3分)若分式有意义,则x的取值范围是()A.x≠1B.x=1C.x>1D.x<14.(3分)下列成语所描述的事件为必然事件的是()A.水中捞月B.守株待兔C.拔苗助长D.翁中捉鳖5.(3分)下列式子中,属于最简二次根式的是()A.B.C.D.6.(3分)反比例函数的图象经过点(1,﹣2),则此函数的解析式是()A.y=2x B.C.D.7.(3分)顺次联结对角线相等的四边形各边中点所得到的四边形是()A.平行四边形B.矩形C.正方形D.菱形8.(3分)某校图书管理员清理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知乙类书有90本,则丙类书的本数是()A.80B.144C.200D.909.(3分)如果a2﹣6ab+9b2=0(a、b均不为0),那的值是()A.﹣B.C.﹣D.10.(3分)若,则()A.b>3B.b<3C.b≥3D.b≤311.(3分)如图,直线y=x与双曲线y=交于M、N两点,点P在x轴上,连接MP,NP,若MP⊥NP,且△MNP的面积为10,则k的值是()A.6B.8C.10D.1212.(3分)在菱形ABCD中,∠C=∠EDF=60°,AB=1,现将∠EDF绕点D任意旋转,分别交边AB、BC于点E、F(不与菱形的顶点重合),连接EF,则△BEF的周长最小值是()A.1+B.1+C.2D.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接写在答题卡相应位置上)13.(3分)为了解我县11000名九年级毕业生的体育成绩,从中抽取了100名考生的体育成绩进行统计,在这个问题中,样本容量是.14.(3分)一只不透明的袋子中有1个红球、1个黑球和2个白球,这些球除颜色不同外其它都相同,搅匀后从中任意摸出1个球,摸出白球可能性摸出红球可能性(填“等于”或“小于”或“大于”).15.(3分)在▱ABCD中,若∠B=50°,则∠C=°.16.(3分)方程=的解是 .17.(3分)某电子商城推出分期付款购买电脑的活动,一台电脑的售价为1.2万元,前期付款0.4万元,后期每个月分期付一定的数额,则每个月的付款额 y (万元)与付款月数x 之间的函数表达式是 .18.(3分)已知+|2﹣b |=0,则+= .19.(3分)已知点A (1,y 1),B (2,y 2),都在反比例函数y =的图象上,则y 1,y 2的大小关系是 .20.(3分)在四边形ABCD 中,∠ADC =∠ABC =90°,AD =CD ,DE ⊥AB ,垂足为E 点,已知四边形ABCD 的面积是16,且AE =1,则AD = .三、解答题(本大题共8小题,共90分解答时应写出必要的文字说明、证明过程或演算步骤)21.(12分)计算(1)+﹣(2)×(﹣)22.(12分)计算(1)﹣(2)1﹣÷23.(10分)学校准备购买一批课外读物.学校就“我最喜爱的课外读物”从“文学”“艺术”“科普”和“其他”四个类别进行了抽样调查(每位同学只选一类),根据调查结果绘制的两幅不完整的统计图如下:请你根据统计图提供的信息,解答下列问题:(1)条形统计图中,m=,n=;(2)求扇形统计图中,艺术类读物所在扇形的圆心角的度数.24.(10分)如图所示,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=3,BC=4,求四边形OCED的周长.25.(10分)为了美化城市,某县园林局计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数是原计划的倍,结果提前2天完成了任务,求原计划每天栽树多少棵?26.(12分)仿照下列过程:﹣===﹣1;﹣===;(1)运用上述的方法可知:=,=;(2)拓展延伸:计算:++…+.27.(12分)已知四边形ABCD为矩形,AB=8cm,BC=10cm,点P在边AD上以每秒2cm的速度由点A向点D运动,同时点Q在边CD上以每秒acm的速度由点C向点D 运动(如图1),设运动时间为t秒(t>0),当P、Q中有一点运动到点D时,两点同时停止运动.(1)若a=1,则t为何值时,△DPQ为等腰直角三角形?(2)在运动过程中,若存在某一时刻t,使BQ能垂直平分CP,求此时a,t的值.(3)若G为BC中点,M、N、E、F分别为线段PD、DQ、PG、GQ中点(如图2).①记四边形MNFE的面积为S(cm2),请直接写出S(cm2)与时间t(s)的函数关系式;②在运动过程中,若存在某一时刻t,使得四边形MNFE恰好为正方形,试求出此时a、t的值.28.(12分)如图,正方形OABC边长为4,点A、C分别在x轴和y轴上,点B在第一象限,M为BC中点,反比例函数y=过点M,交BA于点N,D为线段AC上一动点,(点D与A、C两点不垂合),过D作x轴垂线交反比例函数y=函数于点E,连接BE、DE.(1)直接写出k值及N点坐标:k=,N(,).(2)AD=4时,求四边形ABED是菱形.(3)小明说:“当D在线段AC上运动时(D点与A,C两点不重合)△DEB始终为等腰三角形”,你认为他说的正确吗?如果正确,请说说理由,如果不正确,请举一个反例.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B、不是轴对称图形,也不是中心对称的图形,故本选项不符合题意;C、不是轴对称图形,是中心对称的图形,故本选项不符合题意;D、是轴对称图形,也是中心对称的图形,故本选项符合题意.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)下面调查中,适合采用普查的是()A.调查你所在的班级同学的身高情况B.调查全国中学生心理健康现状C.调查我市食品合格情况D.调查中央电视台《少儿节目》收视率【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查你所在的班级同学的身高情况适合普查,故A符合题意;B、调查全国中学生心理健康现状调查范围广适合抽样调查,故B不符合题意;C、调查我市食品合格情况无法普查,故C不符合题意;D、调查中央电视台《少儿节目》收视率调查范围广适合抽样调查,故D不符合题意;故选:A.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(3分)若分式有意义,则x的取值范围是()A.x≠1B.x=1C.x>1D.x<1【分析】根据分式有意义,分母不等于0列不等式求解即可.【解答】解:由题意得,x﹣1≠0,解得x≠1.故选:A.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.(3分)下列成语所描述的事件为必然事件的是()A.水中捞月B.守株待兔C.拔苗助长D.翁中捉鳖【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、水中捞月是不可能事件;B、守株待兔是随机事件;C、拔苗助长是不可能事件;D、瓮中捉鳖是必然事件;故选:D.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)下列式子中,属于最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义选择答案即可.【解答】解:∵=,=,=2,∴属于最简二次根式的是.故选:C.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.6.(3分)反比例函数的图象经过点(1,﹣2),则此函数的解析式是()A.y=2x B.C.D.【分析】把(1,﹣2)代入函数y=中可先求出k的值,那么就可求出函数解析式.【解答】解:由题意知,k=1×(﹣2)=﹣2.则反比例函数的解析式为:y=﹣.故选:B.【点评】本题考查了待定系数法求解反比例函数解析式,此为近几年中考的热点问题,同学们要熟练掌握.7.(3分)顺次联结对角线相等的四边形各边中点所得到的四边形是()A.平行四边形B.矩形C.正方形D.菱形【分析】因为四边形的两条对角线相等,根据三角形的中位线定理,可得所得的四边形的四边相等,则所得的四边形是菱形.【解答】解:如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,则EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,根据三角形的中位线的性质知,EH=FG=BD,EF=HG=AC,∵AC=BD,∴EH=FG=FG=EF,∴四边形EFGH是菱形.故选:D.【点评】本题考查了三角形的中位线定理,难度中等,需要掌握三角形的中位线平行于第三边,并且等于第三边的一半,另外要知道四边相等的四边形是菱形.8.(3分)某校图书管理员清理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知乙类书有90本,则丙类书的本数是()A.80B.144C.200D.90【分析】根据乙类书籍有90本,占总数的45%即可求得总书籍数,丙类所占的比例是1﹣15%﹣45%,所占的比例乘以总数即可求得丙类书的本数.【解答】解:总数是:90÷45%=200(本),丙类书的本数是:200×(1﹣15%﹣45%)=200×40%=80(本)故选:A.【点评】本题考查了扇形统计图,从扇形图上可以清楚地看出各部分数量和总数量之间的关系,正确求得总书籍数是关键.9.(3分)如果a2﹣6ab+9b2=0(a、b均不为0),那的值是()A.﹣B.C.﹣D.【分析】由a2﹣6ab+9b2=0,即(a﹣3b)2=0得a=3b,代入计算可得.【解答】解:∵a2﹣6ab+9b2=0,即(a﹣3b)2=0,∴a﹣3b=0,即a=3b,则原式===,故选:B.【点评】本题主要考查分式的值,解题的关键是掌握完全平方公式及其非负性和分式的约分.10.(3分)若,则( ) A .b >3 B .b <3 C .b ≥3 D .b ≤3【分析】根据二次根式的性质得出b ﹣3≥0,求出即可.【解答】解:∵=b ﹣3,∴b ﹣3≥0,解得:b ≥3,故选:C .【点评】本题考查了对二次根式的性质的应用,注意:当a ≥0时,=a ,当a <0时,=﹣a .11.(3分)如图,直线y =x 与双曲线y =交于M 、N 两点,点P 在x 轴上,连接MP ,NP ,若MP ⊥NP ,且△MNP 的面积为10,则k 的值是( )A .6B .8C .10D .12【分析】设M (x , x ),P (a ,0),根据反比例函数的对称性可得N (﹣x ,﹣x ),且x >0,a >0.由OM =ON 可得S △OMP =S △ONP =S △MNP =5.根据直角三角形斜边上的中线等于斜边的一半得出OM =OP ,即x 2+(x )2=a 2,化简得出a =x .由S △OMP =5,得出•a •x =5,将a =x 代入整理得出x 2=.再把M 点坐标代入y =,即可求出k 的值.【解答】解:如图,设M (x , x ),P (a ,0),则N (﹣x ,﹣x ),且x >0,a >0.∵△MNP 中,MP ⊥NP ,OM =ON ,∴S △OMP =S △ONP =S △MNP =×10=5. ∵OM =OP ,∴x 2+(x )2=a 2, ∴a =x . ∵S △OMP =5,∴•a •x =5,∴•x •x =5,∴x 2=.∵双曲线y =过M 点,∴k =x •x =x 2=×=6. 故选:A .【点评】本题考查了反比例函数的性质,直角三角形的性质,反比例函数图象上点的坐标特征,三角形的面积等知识.设M (x , x ),P (a ,0),根据条件列出关于x 、a 的两个方程是解题的关键.12.(3分)在菱形ABCD 中,∠C =∠EDF =60°,AB =1,现将∠EDF 绕点D 任意旋转,分别交边AB 、BC 于点E 、F (不与菱形的顶点重合),连接EF ,则△BEF 的周长最小值是( )A .1+B .1+C .2D .【分析】连接BD ,如图,利用菱形的性质可判断△ABD 和△CBD 都是等腰直角三角形,则BD =AD ,∠ADB =∠DBC =∠A =60°,再证明∠ADE =∠BDF ,则可判断△ADE ≌△BDF ,所以AE =BF ,DE =DF ,接着判断△DEF 为等边三角形得到EF =DE ,利用等线段代换得到△BEF 的周长=AB +DE =1+DE ,利用垂线段最短得到DE ⊥AB 时,DE的长最小,最小值为AB=,从而得到△BEF的周长最小值.【解答】解:连接BD,如图,∵在菱形ABCD中,∠C=60°,∴△ABD和△CBD都是等腰直角三角形,∴BD=AD,∠ADB=∠DBC=∠A=60°,∵∠EDF=60°,∴∠ADE=∠BDF,在△ADE和△BDF中,∴△ADE≌△BDF,∴AE=BF,DE=DF,∴△DEF为等边三角形,∴EF=DE,∴△BEF的周长=BE+BF+EF=BE+AE+DE=AB+DE=1+DE,当DE的值最小时,△BEF的周长,而DE⊥AB时,DE的长最小,最小值为AB=,∴△BEF的周长最小值是1+.故选:B.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的性质和等边三角形的判定与性质.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接写在答题卡相应位置上)13.(3分)为了解我县11000名九年级毕业生的体育成绩,从中抽取了100名考生的体育成绩进行统计,在这个问题中,样本容量是100.【分析】依据样本容量的定义进行判断,一个样本包括的个体数量叫做样本容量.【解答】解:为了解我县11000名九年级毕业生的体育成绩,从中抽取了100名考生的体育成绩进行统计,在这个问题中样本容量是100,故答案为:100.【点评】本题主要考查了样本容量的定义,一个样本包括的个体数量叫做样本容量,样本容量只是个数字,没有单位.14.(3分)一只不透明的袋子中有1个红球、1个黑球和2个白球,这些球除颜色不同外其它都相同,搅匀后从中任意摸出1个球,摸出白球可能性大于摸出红球可能性(填“等于”或“小于”或“大于”).【分析】分别求出摸出两种颜色球的概率,再比较摸出两个颜色球的可能性大小即可.【解答】解:∵袋子中有1个红球、1个黑球和2个白球共4个小球,其中摸出1个球,摸出白球有2种可能、摸出红球有1种可能,∴摸出白球的概率为=、摸出红球的概率为,∴摸出白球可能性大于摸出红球可能性,故答案为:大于.【点评】本题主要考查了可能性的大小,只需求出各自所占的比例大小即可,求比例时,应注意记清各自的数目,难度适中.15.(3分)在▱ABCD中,若∠B=50°,则∠C=130°.【分析】根据平行四边形的邻角互补即可得出∠C的度数.【解答】解:∵在▱ABCD中∠B=50°,∴∠C=180°﹣∠A=180°﹣50°=130°.故答案为130°.【点评】本题考查平行四边形的性质,比较简单,解答本题的关键是掌握平行四边形的对角相等,邻角互补的性质.16.(3分)方程=的解是x=﹣.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到未知数的值,代入检验即可【解答】解:方程两边都乘以x(x+1),得:30(x+1)=20x,解得:x=﹣,检验:当x=﹣时,x(x+1)=﹣≠0,所以分式方程的解为x=﹣,故答案为:x=﹣.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.17.(3分)某电子商城推出分期付款购买电脑的活动,一台电脑的售价为1.2万元,前期付款0.4万元,后期每个月分期付一定的数额,则每个月的付款额y(万元)与付款月数x之间的函数表达式是y=.【分析】根据题意可得电脑的售价=0.4+后期付款金额,根据等量关系列出等式,再整理即可.【解答】解:由题意得:yx+0.4=1.2,xy=0.8,y==,故答案为:y=.【点评】此题主要考查了函数关系式,关键是正确理解题意,找出题目中的等量关系.18.(3分)已知+|2﹣b|=0,则+=.【分析】先由非负数性质得出a、b的值,再代入算式,利用二次根式混合运算顺序和运算法则计算可得.【解答】解:∵+|2﹣b|=0,∴a﹣3=0且2﹣b=0,即a=3、b=2,则原式=+=+=,故答案为:【点评】本题主要考查二次根式的化简求值,解题的关键是掌握非负数的性质与二次根式混合运算顺序和运算法则.19.(3分)已知点A (1,y 1),B (2,y 2),都在反比例函数y =的图象上,则y 1,y 2的大小关系是 y 1<y 2 .【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据各点横坐标的值判断出各点所在的象限.进而可得出结论.【解答】解:∵反比例函数y =(k 为常数)中,﹣k 2﹣1<0,∴函数图象的两个分式分别位于二、四象限,且在每一象限内y 随x 的增大而增大. ∵点A (1,y 1),B (2,y 2), ∴点A 、B 都在第四象限, 又1<2, ∴y 1<y 2. 故答案为:y 1<y 2.【点评】本题主要考查反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.20.(3分)在四边形ABCD 中,∠ADC =∠ABC =90°,AD =CD ,DE ⊥AB ,垂足为E点,已知四边形ABCD 的面积是16,且AE =1,则AD =.【分析】作辅助线,构建全等三角形,证明∴△ADE ≌△CDF ,可得S 正方形BEDF =S 四边形ABCD=16,则DE =4,利用勾股定理得AD 的长.【解答】解:过D 作DF ⊥BC 于F , ∵DE ⊥AB ,∴∠AED =∠BED =90°, ∵∠B =∠F =90°, ∴四边形BEDF 是矩形, ∴∠EDF =90°,∴∠FDC +∠EDC =∠EDC +∠ADE =90°, ∴∠ADE =∠CDF , 在△ADE 和△CDF 中,∵,∴△ADE ≌△CDF ,∴DE =DF ,S △ADE =S △CDF , ∴矩形BEDF 是正方形, ∴S 正方形BEDF =S 四边形ABCD =16, ∴DE =4,由勾股定理得:AD ===,故答案为:.【点评】本题考查了三角形全等的性质和判定、矩形和正方形的判定、勾股定理等知识,正确作辅助线,构建并证明△ADE ≌△CDF 是关键.三、解答题(本大题共8小题,共90分解答时应写出必要的文字说明、证明过程或演算步骤)21.(12分)计算(1)+﹣(2)×(﹣)【分析】(1)先化简二次根式,再合并同类二次根式即可得;(2)先化简二次根式,再合并括号内的同类二次根式,最后计算乘法即可得.【解答】解:(1)原式=2+3﹣=4;(2)原式=×(3﹣)=×2=2.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.22.(12分)计算(1)﹣(2)1﹣÷【分析】根据分式的运算法则即可求出答案.【解答】解:(1)原式==1;(2)原式=1•=1﹣=【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.23.(10分)学校准备购买一批课外读物.学校就“我最喜爱的课外读物”从“文学”“艺术”“科普”和“其他”四个类别进行了抽样调查(每位同学只选一类),根据调查结果绘制的两幅不完整的统计图如下:请你根据统计图提供的信息,解答下列问题:(1)条形统计图中,m=40,n=60;(2)求扇形统计图中,艺术类读物所在扇形的圆心角的度数.【分析】(1)根据文学类的人数和所占的百分比求出总人数,再乘以科普所占的百分比求出n的值,再用总人数减去文学、科普、和其他的人数,即可求出m的值;(2)用360°乘以艺术类读物所占的百分比即可得出答案.【解答】解:(1)本次调查中,一共调查了:70÷35%=200人,科普类人数为:n=200×30%=60人,则m=200﹣70﹣30﹣60=40人,故答案为:40,60;(2)艺术类读物所在扇形的圆心角是:×360°=72°.【点评】此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题的关键.24.(10分)如图所示,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=3,BC=4,求四边形OCED的周长.【分析】(1)根据DE∥AC,CE∥BD.得出四边形OCED是平行四边形,根据矩形的性质求得OC=OD,即可判定四边形OCED是菱形.(2)利用勾股定理求得AC的长,从而得出该菱形的边长,即可得出答案.【解答】解:(1)四边形OCED是菱形.∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,在矩形ABCD中,OC=OD,∴四边形OCED是菱形.(2)∵四边形ABCD是矩形,∴AC===5,∴CO=OD=,∴四边形OCED的周长=4×=10.【点评】此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.25.(10分)为了美化城市,某县园林局计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数是原计划的倍,结果提前2天完成了任务,求原计划每天栽树多少棵?【分析】设原计划每天种树x棵,则实际每天栽树的棵数为x,根据题意可得,实际比计划少用2天,据此列方程求解.【解答】解:设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),由题意得,﹣=2,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:原计划每天种树100棵.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.(12分)仿照下列过程:﹣===﹣1;﹣===;(1)运用上述的方法可知:=﹣2,=+;(2)拓展延伸:计算:++…+.【分析】(1)将两式的分子、分母分别乘以﹣2、﹣计算可得;(2)由=﹣将原式展开后,两两相互抵消即可得.【解答】解:(1)===﹣2,===+,故答案为:﹣2、+.(2)原式=﹣1+﹣+﹣+…+﹣=﹣1.【点评】本题主要考查分母有理化,解题的关键是掌握分母有理化和根据计算得出规律=﹣.27.(12分)已知四边形ABCD 为矩形,AB =8cm ,BC =10cm ,点P 在边AD 上以每秒2cm 的速度由点A 向点D 运动,同时点Q 在边CD 上以每秒acm 的速度由点C 向点D 运动(如图1),设运动时间为t 秒(t >0),当P 、Q 中有一点运动到点D 时,两点同时停止运动.(1)若a =1,则t 为何值时,△DPQ 为等腰直角三角形?(2)在运动过程中,若存在某一时刻t ,使BQ 能垂直平分CP ,求此时a ,t 的值. (3)若G 为BC 中点,M 、N 、E 、F 分别为线段PD 、DQ 、PG 、GQ 中点(如图2). ①记四边形MNFE 的面积为S (cm 2),请直接写出S (cm 2)与时间t (s )的函数关系式;②在运动过程中,若存在某一时刻t ,使得四边形MNFE 恰好为正方形,试求出此时a 、t 的值.【分析】(1)先表示出DP ,DQ ,用等腰直角三角形建立方程即可得出结论; (2)先判断出BP =BC =10,PQ =CQ ,建立方程求解即可得出结论;(3)①利用三角形中位线判断出S △DMN =S △DPQ ,S △GEF =S △GPQ ,进而得出S △DMN +S △GEF =S 四边形DPGQ ,S △PMN +S △QNF =S 四边形DPGQ 即可得出结论;②先判断出PQ ⊥DG ,PQ =DG ,进而判断出△PDQ ≌△DCG 即可得出结论. 【解答】解:(1)当a =1时,∵四边形ABCD 是矩形, ∴AD =BC =10,CD =AB =8, 由运动知,AP =2t ,CQ =t , ∴DP =10﹣2t ,DQ =8﹣t , ∵△DPQ 为等腰直角三角形, ∴DP =DQ , ∴10﹣2t =8﹣t ,∴t =2秒;(2)如图,连接BP ,PQ ,BQ ,∵BQ 能垂直平分CP ,∴BP =BC =10,PQ =CQ ,在Rt △ABP 中,BP =,∴=10, ∴t =﹣3(舍)或t =3秒,∴CQ =3a ,AP =6,∴DP =4,DQ =8﹣3a ,∴PQ =3a ,在Rt △PDQ 中,16+(8﹣3a )2=9a 2,∴a =;(3)如图2,连接PQ ,DG ,∵点M ,N 是DP ,DQ 的中点,∴MN ∥PQ ,MN =PQ ,∴,∴S △DMN =S △DPQ同理:S △GEF =S △GPQ ,∴S △DMN +S △GEF =(S △DPQ +S △GPQ )=S 四边形DPGQ ,同理:S △PMN +S △QNF =S 四边形DPGQ ,∴S =S 四边形EFNM =S 四边形DPGQ ﹣S 四边形DPGQ =S 四边形DPGQ ,∵S 四边形DPGQ =S 矩形ABCD ﹣S △CQG ﹣S 梯形ABGP =﹣(4+a )t +60;∴S=S=﹣(2+a)t+30;四边形DPGQ②∵点M,N是DP,DQ的中点,∴MN∥PQ,MN=PQ,同理:EF∥PQ,EF=PQ,∴EF=MN,∴四边形EFNM是平行四边形,∵四边形EFNM是正方形,∴PQ=DG,PQ⊥DG,∴∠DHQ=90°,∴∠CDG+∠DQP=90°,∵∠CDG+∠CGD=90°,∴∠DQP=∠CGD,∵∠DCG=∠PDQ=90°,∴△PDQ≌△DCG,∴DP=CD=8,DQ=CG=5,∴10﹣2t=8,8﹣at=5,∴t=1,a=3.即:t=1,a=3时,四边形EFNM是正方形.【点评】此题是四边形综合题,主要考查了矩形的性质,三角形中位线定理,相似三角形的判定和性质,全等三角形的判定和性质,用方程的思想解决问题是解本题的关键.28.(12分)如图,正方形OABC边长为4,点A、C分别在x轴和y轴上,点B在第一象限,M为BC中点,反比例函数y=过点M,交BA于点N,D为线段AC上一动点,(点D与A、C两点不垂合),过D作x轴垂线交反比例函数y=函数于点E,连接BE、DE.(1)直接写出k值及N点坐标:k=4,N(4,1).(2)AD=4时,求四边形ABED是菱形.(3)小明说:“当D在线段AC上运动时(D点与A,C两点不重合)△DEB始终为等腰三角形”,你认为他说的正确吗?如果正确,请说说理由,如果不正确,请举一个反例.【分析】(1)先求出A,B,C的坐标,进而求出M的坐标,求出k,即可得出结论;(2)先求出点D坐标,进而求出点E坐标,即可得出结论;(3)先求出直线AC解析式,设出点D坐标,表示出E坐标,即可判断出BE=DE,即可得出结论.【解答】解:(1)∵正方形的边长为4,∴BC=OA=AB=4,∴A(4,0),C(0,4),B(4,4),∵M是BC的中点,∴M(2,4),∵反比例函数y=过点M,∴k=2×4=8,∴反比例函数解析式为y=,当x=4时,y=1,∴N(4,2),故答案为:8,4,2;(2)如图,延长ED交OA于F,∴DF⊥OA,在Rt△ADF中,DF=AF=2,∴OF=4﹣2,∴E(4﹣2,4+2),∴DE=4+2﹣2=4,∴DE=AD,∵AB∥DE,∴四边形ABED是平行四边形,∵AB=AD,∴▱ABED是菱形;(3)小明的说法正确,理由:∵A(4,0),C(0,4),∴直线AC的解析式为y=﹣x+4,设D(m,﹣m+4),∴E(m,),∵B(4,4),∴BE2=(m﹣4)2+(﹣4)2=m2﹣8m+﹣+32,DE2=(+m﹣4)2=m2﹣8m+﹣+32,∴BE=DE,∴当D在线段AC上运动时(D点与A,C两点不重合)△DEB始终为等腰三角形”,小明说的正确.【点评】此题是反比例函数综合题,主要考查了待定系数法,正方形的性质,平行四边形的判定和性质,菱形的判定,两点间的距离公式,求出点M坐标是解本题的关键.。
2018-2019学年八年级下期末数学试卷及答案

2018-2019学年八年级(下)期末考试数学试卷一、填空题(每小题3分,共24分)1.当x时,在实数范围内有意义.2.在▱ABCD中,∠A=70°,则∠C=度.3.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k=.4.如图,分别以Rt△ABC的三边为边长,在三角形外作三个正方形,若正方形P的面积等于89,Q的面积等于25,则正方形R的边长是.5.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).6.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是.7.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.8.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为.二、选择题(每小题3分,共24分)9.下列二次根式中,最简二次根式是()A.B.C. D.10.下列计算正确的是()A.2B. C.D.=﹣311.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD是AB边上的中线,则CD的长是()A.20 B.10 C.5 D.12.一次函数y=kx+b的图象如图所示,则k、b的符号()A.k<0,b>0 B.k>0,b>0 C.k<0,b<0 D.k>0,b<013.下列命题中,为真命题的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.有一组对边平行的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形14.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:3458月用水量(吨)户数2341则关于这若干户家庭的月用水量,下列说法错误的是()A.平均数是4.6吨B.中位数是4.5吨C.众数是4吨D.调查了10户家庭的月用水量15.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度为h(cm),燃烧时间为t(小时),则下列图象能反映h与t的函数关系的是()A. B. C. D.16.如图,菱形ABCD的周长为40cm,对角线AC、BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD=4cm;=80cm,正确的有()④AC=8cm;⑤S菱形ABCDA.①②④⑤B.①②③④C.①③④⑤D.①②③④⑤三、解答题(共72分)17.(12分)计算:(1)2(2)÷﹣2×+(3)﹣(+2)(﹣2)18.(6分)如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?(,结果精确到0.1)19.(6分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.20.(6分)已知:如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,求证:AE=CF.21.(6分)某中学为了丰富学生的体育活动,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,学校随机抽取了部分同学调查他们的兴趣爱好,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,n=;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?22.(9分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B 品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?24.(9分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.25.(10分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;小明同学探究此问题的方法是:过P点作PE⊥DC于E点,PF⊥BC于F点,根据正方形的性质和角平分线的性质,得出PE=PF,再证明△PEQ≌△PFB,可得出结论,他的结论应是;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.2018-2019学年八年级(下)期末考试八年级数学参考答案一、填空题(每小题3分,共24分) 1.3≥x 2. 70º3. -54. 85. AF=CE 或DF=BE 或AE ∥CF 或∠AEB=∠FCB 或∠DFC=∠DAE 或∠AEC=∠CFA 或∠EAF=∠FCE 或∠AEB=∠CFD6. 小林7. 98. x >3三、解答题:17.计算:(每小题4分,共12分) (1)483316122+- 解: 原式=3123234+- …………………………3分 =314= …………………………4分(2)810512-327+⨯÷ 解: 原式=22223+- …………………………3分 =3 …………………………4分 (3)()()()2525232-+-+解: 原式= 12623-++ …………………………3分 =624+ …………………………4分18. 解:在Rt △ADB 中,∠ADB=90º∵∠BAD=30º,BD=120km∴ AB=240km …………………………2分 又∵ 222AB BD AD =+∴312012024022=-=AD km …………………………4分∵73.13≈∴从A 处到达D 处需要34303120=9.6≈小时 …………………………5分答:求台风中心从A 处到达D 处大约6.9小时 …………………………6分19. 解:设函数的解析式为:b kx y +=(k ≠0)依题意得:⎩⎨⎧=+=+408354b k b k …………………………2分…………………………3分∴ 3045+=x y …………………………4分 (2)当 x=6.0cm 时,y=7.5+30=37.5 …………………………5分 答:此时体温计的读数为37.5ºC . …………………………6分20.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD . …………………………1分 ∴∠ABE=∠CDF . …………………………2分 在△ABE 和△CDF 中⎪⎩⎪⎨⎧==∠=DF BE CDF ABE CD AB ∴△ABE ≌△CDF (SAS ). …………………………5分∴AE=CF …………………………6分 (其它做法参照给分)21. 解:(1)n =100;…………………………1分(2)∵喜欢羽毛球的人数=100×20%=20人,…………………………2分∴条形统计图如图;…………………………3分(3)由已知得,1200×20%=240(人). …………………………5分答;该校约有240人喜欢跳绳. …………………………6分22. 解:(1)由题意得:x y 361= ………1分(2)⎩⎨⎧+≤≤=)>10(846.33)100(422x x x x y …………………………4分(分开书写:当0≤x ≤10时,x y 422=,当x >10时;()846.33108.04210422+=-⋅⨯+⨯=x x y ,得满分) (列对一个解析式得一分,取值范围共一分)(3)若x >10则:846.332+=x y①当21y y =时,846.3336+=x x ,解得35=x ;………5分 ②当1y >2y 时,846.3336+x x >,解得35>x ;………6分当21y y <时,846.3336+x x <,解得35<x ,………7分 ∵x >10∴3510<<x ………8分答:若购买35个书包,选A 、B 品牌都一样;若购买35个以上书包,选B 品牌划算;若购买书包个数超过10个但小于35个,选A 品牌划算. ………9分23. 证明:(1)证明:∵A0=C0,B0=D0∴四边形ABCD 是平行四边形 …………………………2分∴∠ABC=∠ADC ∵∠ABC+∠ADC=180°∴∠ABC=∠ADC=90° …………………………3分∴平行四边形ABCD 是矩形 …………………………4分 (2)解:∵∠ADC=90°,∠ADF :∠FDC=3:2∴∠FDC=36° …………………………5分 ∵DF ⊥AC ,∴∠DCO=90°-36°=54°, …………………………6分 ∵四边形ABCD 是矩形,∴OC=OD ,∴∠DCO =∠ODC=54° …………………………7分 ∴∠BDF=∠ODC-∠FDC=18° …………………………8分24. 解:(1)∵直线y=-2x+a 与y 轴交于点C (0,6),∴a=6,…………………………1分 ∴y=-2x+6,…………………………2分(2) ①∵点D (-1,n )在y=-2x+6上,∴n=8,…………………………3分设直线AD 的解析式为y=kx+b(K ≠0)⎩⎨⎧=+-=+83-b k b k 解得:k=4,b=12 …………………………4分∴直线AD 的解析式为y=4x+12;…………………………5分 ②令y=0,则-2x+6=0,解得:x=3,∴B (3,0),…………………………6分∴AB=6,∵点M 在直线y=-2x+6上,设M (m ,-2m+6),∴S= 21×6×62-+m =362-+m …………………………7分 ∴①当m <3时,S=3(-2m+6),即S=-6m+18;…………………………8分 ②当m >3时,S=21×6×[-(-2m+6)],即S=6m-18;…………………………9分25..(1)答:PB=PQ ………………………2分(2)证明:过P 作PE ⊥BC 的延长线于E 点,PF ⊥CQ 于F 点, ………………………3分∵AC 是正方形的对角线∴ PA 平分∠DCB ,∴∠DCA=∠ACB ………………………4分∵ ∠ACB=∠PCE , ∠DCA=∠FCP∴∠PCE=∠FCP∴ PC 平分∠FCE ,又∵PE ⊥BC ,PF ⊥CQ∴ PF=PE , ………………………5分∴∠ECF=∠CEP=∠CFP = 90°=∠QFP∴ 四边形CEPF 是矩形………………………6分 ∴∠EPF=90°∴∠BPE=∠QPF ,………………………7分 在△PEB 和△PFQ 中⎪⎩⎪⎨⎧∠=∠=∠=∠BPEQPF PF PE QFPBEP∴△PEB ≌△PFQ (ASA )………………………9分 ∴PB=PQ .………………………10分 (其它做法参照给分)。
浙教版2018-2019学年度八年级数学第二学期期末综合复习检测题3(含答案详解)

浙教版2018-2019学年度八年级数学第二学期期末综合复习检测题3(含答案详解)1.若,则的值为()A.或B.或C.或D.或2.下列各式是一元二次方程的是()A.B.C.D.3.一元二次方程要确定一次项系数和常数项,首先要把方程化成一般形式.的二次项系数,一次项系数,常数项分别是()A.a=l,b=0,c=-1 B.a=0,b=0,c=1C.a=0,b=0,c=-1 D.a=1,b=0,c=14.解一元二次方程3(7x+4)2=5(7x+4)的最适当的方法是()A.直接开平方法B.配方法C.公式法D.因式分解法5.当≤x≤2时,函数y=-2x+b的图象上到少有一个点在函数的图象下方,则b的取值范围为()A.b≥B.b<C.b<3 D.<b<6.已知关于x的一元二次方程有两个相等的实根,则k的值为()A.B.2或3 C.D.或7.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC 交EF于G,下列结论:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△AEC=S△ABC,其中正确结论有()个.A.5 B.4 C.3 D.28.一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是21cm2,则该矩形的面积为()A.60cm2B.70cm2C.120cm2D.140cm29.一个菱形的两条对角线的长分别为5和8,那么这个菱形的面积是()A.40 B.20 C.10 D.2510.对于反比例函数y=-,下列说法不正确的是( )A.图象经过点(1,-3)B.图象分布在第二、四象限C.当x>0时,y随x的增大而增大D.点A(x1,y1),B(x2,y2)都在反比例函数y=-的图象上,若x1<x2,则y1<y211.如果最简二次根式与可以合并,那么使有意义的x的取值范围是______.12.顺次连接对角线相等的四边形的四边中点,所得的四边形一定是____________.13.已知正方形ABCD在坐标轴上的位置如图所示,x轴、y轴分别是正方形的两条对称轴,若A(2,2),则B点的坐标为______,C点的坐标为________,D点的坐标为___________.14.函数y=-的图象的两个分支分布在________象限.15.利润=(_______-______),售价=(1+________)×进价.16.某校在“爱护地球,绿化祖国”的创建活动中,组织学生开展植树造林活动.为了解全校学生的植树情况,学校随机抽查了100名学生的植树情况,将调查数据整理如下表:则这100名同学平均每人植树_____棵;若该校共有1000名学生,请根据以上调查结果估计该校学生的植树总数是______棵.17.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是_____.18.计算:=_____.19.菱形的一个内角为120°,平分这个内角的对角线长为8cm,则菱形周长为cm.20.在平面直角坐标系中,点关于原点的对称点的坐标是________.21.如图,在平面直角坐标系中,面积为4的正方形OABC的顶点O与坐标原点重合,边OA、OC分别在x轴、y轴的正半轴上,点B、P都在函数y=(x>0)的图象上,过动点P 分别作轴x、y轴的平行线,交y轴、x轴于点D、E.设矩形PDOE与正方形OABC重叠部分图形的面积为S,点P的横坐标为m.(1)求k的值;(2)用含m的代数式表示CD的长;(3)求S与m之间的函数关系式.22.(1)解方程:4x 2—81=0; (2)计算:+-()2;23.若x ,y 为实数,且y =4+3+1,求的值.24.如图,一次函数1y kx b =+的图象与反比例函数26y x=的图象交于()()33A m B n -,,,两点.()1求一次函数的解析式;()2观察函数图象,直接写出关于x 的不等式6kx b x>+的解集.25.在我校的周末广场文艺演出活动中,舞台上有一幅矩形地毯,它的四周镶有宽度相同的花边(如图).地毯中央的矩形图案长 8 米、宽 6 米,整个地毯的面积是 80 平方米.求花边的宽.26.如图,在等腰梯形ABCD中,DC∥AB,AD=BC=2,BD平分∠ABC.∠A=60°,求对角线BD的长和梯形ABCD的面积.27.某班30个同学的成绩如下:76 56 80 78 71 78 90 79 92 83 81 93 84 86 98 61 75 84 90 73 80 86 84 88 81 90 78 92 89 100。
浙教版2018-2019学年度八年级数学第二学期期末综合复习检测题1(含答案详解)

浙教版2018-2019学年度八年级数学第二学期期末综合复习检测题1(含答案详解) 1.已知□ABCD 的周长是26cm ,其中△ABC 的周长是18cm ,则AC 的长为 A .12cm B .10cm C .8cm D .5cm 2.关于x 的一元二次方程的一个根为2,则的值是( ) A . B .C .D .3.若关于x 的一元二次方程()21220k x x -+-=有两个不相等实数根,则k 的取值范围是( ). A .12k >B .12k ≥C .102k k >≠且D .102k k ≥≠且4.下列选项中能使二次根式x 的值是( ) A .-2 B .0 C .2 D .0.995.如果E 、F 、G 、H 是四边形ABCD 四条边的中点,要使四边形EFGH 是矩形,那么四边形ABCD 应具备的条件是( )A .一组对边平行而另一组对边不平行B .对角线相等C .对角线互相垂直D .对角线相等且互相平分 6.一元二次方程x 2﹣3x+5=0的根的情况是( ) A .没有实数根 B .有两个相等的实数根 C .只有一个实数根 D .有两个不相等的实数根7.用配方法解方程,变形后的结果正确的是A .B .C .D .8.2017年春学期小红同学四次中考数学测试成绩分别是:103,103,105,105,关于这组数据下列说法错误的是( )A .平均数是104B .众数是103C .中位数是104D .方差是1 9.已知线段AB ,下列尺规作图中,PQ 与AB 的交点O 不一定是AB 的中点的是( )10.大自然中存在很多对称现象,下列植物叶子的图案中既是轴对称,又是中心 对称图形的是( )A .B .C .D .11.已知一组数据:17,18,20,17,x ,18中唯一的众数是18,则这组数据的平均数为_________.12.23x =-,则x 的范围是_____________。
2018-2019学年八年级下期末数学试卷2(含答案解析)

2018-2019学年八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.(3分)二次根式在实数范围内有意义,则a的取值范围是()A.a≤﹣2B.a≥﹣2C.a<﹣2D.a>﹣22.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣3.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70B.1.75,1.65C.1.80,1.70D.1.80,1.65 4.(3分)要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角6.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差 3.6 3.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁7.(3分)下列四个选项中,不符合直线y=3x﹣2的性质的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,﹣2)8.(3分)如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5B.6C.8D.109.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.810.(3分)已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4B.﹣6C.14D.6二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:的结果是.12.(3分)设直角三角形的两条直角边分别为a和b,斜边为c,若a=6,c=10,则b=.13.(3分)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为.14.(3分)如图,▱OABC的顶点O,A,B的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为.15.(3分)如图,▱ABCD中,E是BC边上一点,且AB=AE.若AE平分∠DAB,∠EAC =27°,则∠AED的度数为.16.(3分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为.三、解答题(共8小题,共72分,下列各题解答应写出文字说明,证明过程或演算过程)17.(8分)计算:(4+)(4﹣)18.(8分)在正方形ABCD中,E是CD上的点.若BE=30,CE=10,求正方形ABCD 的面积和对角线长.19.(8分)已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.20.(8分)A、B、C三名同学竞选学生会主席,他们的笔试和面试成绩(单位:分)分别用两种方式进行了统计,如表格和图1.A B C笔试859590面试8085(1)请将表格和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由300名学生评委进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能投一票),请计算每人的得票数.(3)若每票计1分,学校将笔试、面试、得票三项测试得分按3:4:3的比例确定个人成绩,请计算三位候选人最后成绩,并根据成绩判断谁能当选.21.(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.(1)求P点的坐标.(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.22.(10分)“端午节”某顾客到商场购买商品,发现如果购买3件A商品和2件B商品共需花费230元,如果购买4件A商品和1件B商品共需花费240元.(1)求A商品、B商品的单价分别是多少元?(2)商场在“端午节”开展促销活动,促销方法是:购买A商品超过10件,超过部分可以享受6折优惠,若购买x(x>0)件A商品需要花费y元,请你求出y与x的函数关系式.(3)在(2)的条件下,顾客决定在A、B两种商品中选购其中一种,且数量超过10件,请你帮助顾客判断买哪种商品省钱.23.(10分)菱形ABCD的对角线AC、DB相交于点O,P是射线DB上的一个动点(点P 与点D,O,B都不重合),过点B,D分别向直线PC作垂线段,垂足分别为M,N,连接OM.ON.(1)如图1,当点P在线段DB上运动时,证明:OM=ON.(2)当点P在射线DB上运动到图2的位置时,(1)中的结论仍然成立.请你依据题意补全图形:并证明这个结论.(3)当∠BAD=120°时,请直接写出线段BM,DN,MN之间的数量关系是.24.(12分)如图1,▱ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的▱A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.(3分)二次根式在实数范围内有意义,则a的取值范围是()A.a≤﹣2B.a≥﹣2C.a<﹣2D.a>﹣2【解答】解:由题意得:a+2≥0,解得:a≥﹣2,故选:B.2.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣【解答】解:A、=2,故原题计算错误;B、+=+2=3,故原题计算错误;C、==4,故原题计算正确;D、2和不能合并,故原题计算错误;故选:C.3.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70B.1.75,1.65C.1.80,1.70D.1.80,1.65【解答】解:由表可知1.75m出现次数最多,有4次,所以众数为1.75m,这15个数据最中间的数据是第8个,即1.70m,所以中位数为1.70m,故选:A.4.(3分)要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位【解答】解:要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象向上平移5个单位,故选:C.5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角【解答】解:∵菱形具有的性质是:对边相等,对角相等,对角线互相垂直且平分,每一条对角线平分一组对角,;平行四边形具有的性质是:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:每一条对角线平分一组对角.故选:D.6.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差 3.6 3.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁【解答】解:∵3.6<7.4<8.1,∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴乙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.故选:B.7.(3分)下列四个选项中,不符合直线y=3x﹣2的性质的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,﹣2)【解答】解:在y=3x﹣2中,∵k=3>0,∴y随x的增大而增大;∵b=﹣2<0,∴函数与y轴相交于负半轴,∴可知函数过第一、三、四象限;∵当x=﹣2时,y=﹣8,所以与x轴交于(﹣2,0)错误,∵当y=﹣2时,x=0,所以与y轴交于(0,﹣2)正确,故选:C.8.(3分)如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5B.6C.8D.10【解答】解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴AD=6,∵CD=AB=8,∴AC==10,∴BO=AC=5.故选:A.9.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.8【解答】解:∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),∵点(0,4)与直线AB共线,∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.故选:A.10.(3分)已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4B.﹣6C.14D.6【解答】解:联立两函数的解析式,得:,解得;即两函数图象交点为(﹣3,﹣2),在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而增大;因此当x=5时,m值最大,即m=6.故选:D.二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:的结果是5.【解答】解:=5,故答案为:512.(3分)设直角三角形的两条直角边分别为a和b,斜边为c,若a=6,c=10,则b=8.【解答】解:根据勾股定理得:a2+b2=c2,∵a=6,c=10,∴b===8,故答案为8.13.(3分)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为2.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD﹣AE=BC﹣AB=5﹣3=2.故答案为2.14.(3分)如图,▱OABC的顶点O,A,B的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为y=2x﹣7.【解答】解:∵B(8,2),将平行四边形OABC的面积分成相等的两部分的直线一定过平行四边形OABC的对称中心,∴平行四边形OABC的对称中心D(4,1),设直线QD的解析式为y=kx+b,∴,∴,∴该直线的函数表达式为y=2x﹣7,故答案为:y=2x﹣7.15.(3分)如图,▱ABCD中,E是BC边上一点,且AB=AE.若AE平分∠DAB,∠EAC =27°,则∠AED的度数为87°.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠DAE=∠AEB,∵∠EAB=∠EAD,∴∠EAB=∠AEB,∴BA=BE,∵AB=AE,∴AB=BE=AE,∴∠B=∠BAE=∠AEB=60°,∴∠EAD=∠CDA=60°,∵EA=AB,CD=AB,∴EA=CD,∵AD=DA,∴∠AED≌△DCA,∴∠AED=∠DCA,∵AB∥CD,∴∠ACD=∠BAC=60°+27°=87°,∴∠AED=87°.16.(3分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为.【解答】解:∵AB∥CD,CD=BC=AB,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∴B、D关于AC对称,连接BE交AC于H′,连接DH′,此时DH′+EH′的值最小,最小值=BE,作AM⊥EC于M,EN⊥BA交BA的延长线于N.∵四边形ABCD是菱形,∴AD∥BC,∴∠ADM=∠BCD=30°,∵AD=2,∴AM=AD=1,∵∠AEC=45°,∴AM=EM=1,∵AM⊥CE,EN⊥BN,CE∥NB,∴∠AME=∠N=∠MAN=90°,∴四边形AMEN是矩形,∴AN=EM=AM=EN=1,在Rt△BNE中,BE===,故答案为.三、解答题(共8小题,共72分,下列各题解答应写出文字说明,证明过程或演算过程)17.(8分)计算:(4+)(4﹣)【解答】解:原式=42﹣()2=16﹣7=9.18.(8分)在正方形ABCD中,E是CD上的点.若BE=30,CE=10,求正方形ABCD的面积和对角线长.【解答】解:连接BD.∵ABCD为正方形,∴∠A=∠C=90°.在Rt△BCE中,BC=.在Rt△ABD中,BD=.∴正方形ABCD的面积=.19.(8分)已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.【解答】解:(1)∵一次函数图象过原点,∴,解得:m=3(2)∵一次函数的图象经过第二、三、四象限,∴,∴1<m<3.20.(8分)A、B、C三名同学竞选学生会主席,他们的笔试和面试成绩(单位:分)分别用两种方式进行了统计,如表格和图1.A B C笔试859590面试908085(1)请将表格和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由300名学生评委进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能投一票),请计算每人的得票数.(3)若每票计1分,学校将笔试、面试、得票三项测试得分按3:4:3的比例确定个人成绩,请计算三位候选人最后成绩,并根据成绩判断谁能当选.【解答】解:(1)观察图象1可知:A的面试成绩为90分.故答案为90.条形图如图所示:(2)A的得票数:300×35%=105(人)B的得票数:300×40%=120(人)C的得票数:300×25%=75(人);(3)A的成绩:=93B的成绩:=96.5C的成绩:=83.5,故B学生成绩最高,能当选学生会主席.21.(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.(1)求P点的坐标.(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.【解答】解:(1)∵A(0,3)、点B(3,0),∴直线AB的解析式为y=﹣x+3,由,解得,∴P(﹣3,6).(2)设Q(m,0),由题意:•|m﹣3|•6=6,解得m=5或1,∴Q(1,0)或(5,0).(3)当直线y=﹣2x+m经过点O时,m=0,当直线y=﹣2x+m经过点B时,m=6,∴若直线y=﹣2x+m与△AOB三条边只有两个公共点,则有0<m<6.22.(10分)“端午节”某顾客到商场购买商品,发现如果购买3件A商品和2件B商品共需花费230元,如果购买4件A商品和1件B商品共需花费240元.(1)求A商品、B商品的单价分别是多少元?(2)商场在“端午节”开展促销活动,促销方法是:购买A商品超过10件,超过部分可以享受6折优惠,若购买x(x>0)件A商品需要花费y元,请你求出y与x的函数关系式.(3)在(2)的条件下,顾客决定在A、B两种商品中选购其中一种,且数量超过10件,请你帮助顾客判断买哪种商品省钱.【解答】解:(1)设每件A商品的单价是x元,每件B商品的单价是y元,由题意得,解得.答:A商品、B商品的单价分别是50元、40元;(2)当0<x≤10时,y=50x;当x>10时,y=10×50+(x﹣10)×50×0.6=30x+200;(3)设购进A商品a件(a>10),则B商品消费40a元;当40a=30a+200,则a=20所以当购进商品正好20件,选择购其中一种即可;当40a>30a+200,则a>20所以当购进商品超过20件,选择购A种商品省钱;当40a<30a+200,则a<20所以当购进商品少于20件,选择购B种商品省钱.23.(10分)菱形ABCD的对角线AC、DB相交于点O,P是射线DB上的一个动点(点P 与点D,O,B都不重合),过点B,D分别向直线PC作垂线段,垂足分别为M,N,连接OM.ON.(1)如图1,当点P在线段DB上运动时,证明:OM=ON.(2)当点P在射线DB上运动到图2的位置时,(1)中的结论仍然成立.请你依据题意补全图形:并证明这个结论.(3)当∠BAD=120°时,请直接写出线段BM,DN,MN之间的数量关系是MN=(BM+ND).【解答】证明:(1)延长NO交BM交点为F,如图∵四边形ABCD是菱形∴AC⊥BD,BO=DO∵DN⊥MN,BM⊥MN∴BM∥DN∴∠DBM=∠BDN,且BO=DO,∠BOF=∠DON∴△BOF≌△DON∴NO=FO,∵BM⊥MN,NO=FO∴MO=NO=FO(2)如图:延长MO交ND的延长线于F∵BM⊥PC,DN⊥PC∴BM∥DN∴∠F=∠BMO∵BO=OD,∠F=∠BMO,∠BOM=∠FOD ∴△BOM≌△FOD∴MO=FO∵FN⊥MN,OF=OM∴NO=OM=OF(3)如图:∵∠BAD=120°,四边形ABCD是菱形,∴∠ABC=60°,AC⊥BD∵∠OBC=30°∵BM⊥PC,AC⊥BD∴B,M,C,O四点共圆∴∠FMN=∠OBC=30°∵FN⊥MN∴MN=FN=(BM+DN)答案为MN=(BM+FN)24.(12分)如图1,▱ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的▱A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.【解答】解:(1)▱A′B′CD如图所示,A′(2,2t).(2)∵C′(6,t),A(2,0),=12t﹣×2×2t﹣×6×t﹣×4×t=9.∵S△OA′C∴t=.(3)∵D(0,t),B(6,0),∴直线BD的解析式为y=﹣x+t,∴线BD沿x轴的方向平移m个单位长度的解析式为y=﹣x+(6+m),把点A(2,2t)代入得到,2t=﹣+t+,解得m=8.。
浙江省金华市永康市2018-2019学年八年级下学期数学期末考试卷

A.答案第2页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………7.已知点A (x ,y )是反比例函数y =图象上的一点,若x >3,则y 的取值范围是()A.y >1B.y <1C.0<y <1D.1<y <38.如图,平行四边形ABCD 中,E ,F 分别是AD ,BC 的中点,P 是边DC 上的动点,G ,H 分别是PE ,PF 的中点,已知DC =10cm ,则GH 的长是()A.7cmB.6cmC.5cmD.4cm9.如图,E ,F 分别是矩形ABCD 的边AB ,CD 上的点,将四边形AEFD 沿直线EF 折叠,点A 与点C 重合,点D 落在点D 处,已知AB =8,BC =4,则AE 的长是()A.4B.5C.6D.710.如图,正方形ABCD 的对角线AC ,BD 相交于O ,BE 平分∠ABO 交AC 于E ,CF ⊥BE 于F ,交BD 于G ,则下列结论:①OE =OG ;②CE =CB ;③△ABE ≌△BCG ;④CF 平分∠BCE .其中正确的结论有()A.1个B.2个C.3个D.4个0;取;取答案第4页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………7.点A 是反比例函数y =(x >0)图象上的一点,点B 在x 轴上,点C 是坐标平面上的一点,O 为坐标原点,若以点A ,B ,C ,O 为顶点的四边形是有一个角为60°的菱形,则点C 的坐标是.评卷人得分三、计算题(共2题)8.解方程(1)x 2﹣3x=0(2)x 2﹣4x ﹣1=0.9.计算:(1)﹣(2)(2+)(2﹣)评卷人得分四、解答题(共1题)10.如图,平行四边形ABCD 的对角线AC ,BD 相交于O ,过点O 的直线EF 分别交AB ,CD 于E ,F ,连结DE ,BF .答案第6页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………①求证:△CDE≌△CBF;②过点C 作∠ECF 的平分线交AB 于P,连结PE,请探究PE 与PF 的数量关系,并证明你的结论.(2)拓展应用:如图2,E 是正方形ABCD 的边AD 上的一点,过点C 作CF ⊥CE ,交AB 的延长线于F ,连结EF 交DB 于M ,连结CM 并延长CM 交AB 于P ,已知AB =6,DE =2,求PB 的长.14.如图,在平面直角坐标系中,平行四边形OABC 的顶点A 在x 轴上,B ,C 在第一象限,反比例函数y =(k≠0)的图象经过点C ,交AB 于D ,已知OC =12,OA =4,∠AOC =60°(1)求反比例函数y =(k≠0)的函数表达式;(2)连结CD ,求△BCD 的面积;(3)P 是线段OC 上的一个动点,以AP 为一边,在AP 的右上方作正方形APEF ,在点P 的运动过程中,是否存在一点P 使顶点E 落在▱OABC 的边所在的直线上,若存在,请求出此时OP 的长,若不存在,请说明理由.第7页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………参数答案1.【答案】:【解释】:2.【答案】:【解释】:3.【答案】:答案第8页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:4.【答案】:【解释】:5.【答案】:【解释】:6.【答案】:【解释】:7.【答案】:【解释】:第9页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………8.【答案】:【解释】:9.【答案】:【解释】:答案第10页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………10.【答案】:【解释】:第11页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………答案第12页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:【答案】:【解释】:【答案】:第13页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:【解释】:【答案】:【解释】:答案第14页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:【答案】:【解释】:第15页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………答案第16页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:【解释】:(1)【答案】:(2)【答案】:【解释】:【答案】:第17页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:(2)【答案】:【解释】:(1)【答案】:(2)【答案】:答案第18页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)【答案】:【解释】:(1)【答案】:第19页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:答案第20页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:第21页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:答案第22页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)【答案】:第23页,总24页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………答案第24页,总24页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:。
2018-2019学年浙教版数学八年级下册期末测试卷及答案

2018-2019学年八年级(下)期末数学试卷一、选择题(本大题共10小题,每题3分,共30分)1.如果反比例函数y=的图象经过点(﹣1,﹣2),则k的值是()A.2B.﹣2C.﹣3D.32.方程x2+4x=2的正根为()A.2﹣B.2+C.﹣2﹣D.﹣2+3.某校八(5)为筹备班级端午节纪念爱国诗人屈原联谊会,班长对全班学生爱吃哪几种水果作了民意调查,最终买哪些水果,下面的调查数据中您认为最值得关注的是()A.中位数B.平均数C.众数D.加权平均数4.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°5.若不等式k<<k+1成立,则整数k的值为()A.6B.7C.8D.96.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.﹣27C.﹣32D.﹣367.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为()A.20°B.25°C.30°D.35°8.下表为某校八年级72位女生在规定时间内的立定投篮数统计,若投篮投进个数的中位数为a,众数为b,则a+b的值为()A.20B.21C.22D.239.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+3与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移m个单位,当点D落在△EOF的内部时(不包括三角形的边),m的值可能是()A.4B.5C.6D.710.如图,每个立方体的6个面上分别写有1到6这个自然数,并且任意两个相对面上所写两个数字之和为7,把这样的7个立方体一个挨着一个地连接起来,紧挨着的两个面上的数字之和为8,则图中“﹡”所在面上的数字是()A.4B.3C.2D.1二、填空题(本大题共6小题,每题3分,共18分)11.2﹣的绝对值是.12.请写一个图象在第二、四象限的反比例函数解析式:.13.已知2x2+3x+1的值是10,则代数式4x2+6x+1的值是.14.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形相邻两内角度数的比值等于.15.过反比例函数y=(k>0)图象上一动点M作MN⊥x轴交x轴于点N,Q是直线MN上一点,且MQ=2MN,过点Q作QR∥x轴交该反比例函数图象于点R.已知S△QRM=8,那么k的值为.16.如图,过正方形ABCD的顶点C作CF⊥CE,交AD于点F,交AB的延长线于点E,交BC于点G.如果S正方形ABCD=144,S△CEF=84.5,那么S△CEG=.三、解答题(本大题共52分17.计算:(1)﹣﹣(2)(3﹣)﹣18.用适当的方法解下列方程:(1)(x﹣3)2﹣2(x﹣3)=0(2)3x2﹣6x﹣9=0.19.(5分)如图,△ABC中,点D,E分别是边BC,AC的中点,连接DE,AD,点F在BA的延长线上,且AF=AB,连接EF,判断四边形ADEF的形状,并加以证明.20.(5分)已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)若方程的一个根是0,求出它的另一个根及k的值.21.若一次函数y=2x﹣1和反比例函数y=的图象都经过点(1,1).(1)求反比例函数的解析式;(2)已知点A在第三象限,且同时在两个函数的图象上,求点A的坐标.22.某校八年级两个班,各选派10名学生参加学校举行的“美丽绍兴乡土风情知识”大赛预赛各参赛选手的成绩如下:八(1)班:88,91,92,93,93,93,94,98,98,100;八(2)班:89,93,93,93,95,96,96,98,98,99.通过整理,得到数据分析表如下:(1)求表中m、n的值;(2)依据数据分析表,有同学说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有同学说(2)班的成绩更好请您写出两条支持八(2)班成绩好的理由.23.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB 边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)在点M移动过程中:①当四边形AMDN成矩形时,求此时AM的长;②当四边形AMDN成菱形时,求此时AM的长.24.已知点P的坐标为(m,0),点Q在x轴上(不与P重合),以PQ为边,∠PQM=60°作菱形PQMN,使点M落在反比例函数y=﹣的图象上.(1)如图所示,若点P的坐标为(1,0),求出图中点M的坐标;(2)当P(1,0)时,在(1)图中已经画出一个符合条件的菱形PQMN,请您在原图上画出另一个符合条件的菱形PQ1M1N1,并求点M1的坐标;(3)随着m的取值不同,这样的菱形还可以画出三个和四个,当符合上述条件的菱形刚好能画出三个时,请直接写出点M的坐标.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每题3分,共30分)1.【解答】解:根据题意,得﹣2=,即2=k﹣1,解得,k=3.故选:D.2.【解答】解:∵x2+4x=2,∴(x+2)2=6,∴x1=﹣2+,x2=﹣2﹣;∴方程x2+4x=2的正根为﹣2+.故选:D.3.【解答】解:平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是为筹备班级端午节纪念爱国诗人屈原联谊会做准备,那么买的水果肯定是大多数人爱吃的才行,故最值得关注的是众数.故选:C.4.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选:C.5.【解答】解:∵9<<10,∴k=9,k+1=10,故选:D.6.【解答】解:∵A(﹣3,4),∴OA==5,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入y=得,4=,解得:k=﹣32.故选:C.7.【解答】解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=110°,∴∠ADC=120°,∠CDE═∠F=110°,∴∠ADE=360°﹣120°﹣110°=130°,∴∠DAE==25°,故选:B.8.【解答】解:第36 与37人投中的个数均为9,故中位数a=9,11出现了13次,次数最多,故众数b=11,所以a+b=9+11=20.故选:A.9.【解答】解:根据题意,可知:点D的坐标为(4,1).当y=1时,有x+3=1,解得:x=﹣2,∴4﹣(﹣2)=6,∴4<m<6.故选:B.10.【解答】解:由题意可知:正方体的六个面上分别写着1、2、3、4、5、6六个数,并且它们任意两个相对的面上所写的两个数的和都等于7,故第一个正方体的后面为3,∵紧挨着的两个面上的两个数之和都等于8,则与它相接的第二个正方体的前面为5,对面为2,依此类推,与它相接的第三个正方体的前面为6,对面为1,∴第三个正方体的左面为5,右面为2;或左面为2,右面为5.(1)当第三个正方体的左面为5,右面为2时,第四个正方体的左面为6,右面为1,第五个正方体的左面为7(不合题意舍去);(2)当第三个正方体的左面为2,右面为5时,第四个正方体的左面为3,右面为4,第五个正方体的左面为4,右面为3.∴第五个正方体的下面为5,上面为2;或下面为2,上面为5.①当第五个正方体的下面为5,上面为2时,第六个正方体的下面为6,上面为1,第七个正方体的下面为7(不合题意舍去);②当第五个正方体的下面为2,上面为5时,第六个正方体的下面为3,上面为4,第七个正方体的下面为4,上面为3.则“※”所在面上的数是3.故选:B.二、填空题(本大题共6小题,每题3分,共18分)11.【解答】解:2﹣的绝对值是|2﹣|=﹣2.故本题的答案﹣2.12.【解答】解:∵图象在第二、四象限,∴y=﹣,故答案为:y=﹣.13.【解答】解:由题意,得2x2+3x+1=10∴2x2+3x=9∵4x2+6x+1=2(2x2+3x)+1=2×9+1=19∴代数式4x2+6x+1的值是:19故答案为:1914.【解答】解:作AE⊥BC于E,如图所示:则∠AEB=90°,根据题意得:平行四边形的面积=BC•AE=BC•AB,∴AE=AB,∴sin B==,∴∠ABC=30°,∴∠BCD=150°,∴平行四边形相邻两内角度数的比值1:5,故答案为1:5.15.【解答】解:有两种情形:①当点Q在第一象限时,如图1中.设M(,m),则R(,3m),由题意:×2m×(﹣)=8,解得k=12.②如图2中,当点Q在第三象限时,设M(,m),则R(﹣,﹣m),由题意:••2m=8,∴k=4,故答案为4或12,16.【解答】解:如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBE=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=90°,∴∠1=∠3,在△CDF和△CBE中,,∴△CDF≌△CBE,∴CE=CF,∴△CEF是等腰直角三角形,∵S△CEF=84.5,∴=84.5,CE=13,∵S正方形ABCD=144,∴CD=AD=12,由勾股定理得:DF=BE=5,∴AF=12﹣5=7,∵BG∥AF,∴△EBG∽△EAF,∴,∴,∴BG=,∴CG=12﹣=,∴S△CEG===.故答案为:.三、解答题(本大题共52分17.【解答】解:(1)原式=﹣﹣=;(2)原式=3﹣2﹣3=﹣2.18.【解答】解:(1)(x﹣3)(x﹣3﹣2)=0,x﹣3=0或x﹣3﹣2=0,所以x1=3,x2=5;(2)x2﹣2x﹣3=0,△=(﹣2)2﹣4×1×(﹣3)=20,x==±所以x1=+,x2=﹣.19.【解答】答:四边形ADEF是平行四边形.证明:∵点D,E分别是边BC,AC的中点,∴DE∥BF,DE=AB,∵AF=AB,∴DE=AF,∴四边形ADEF是平行四边形.20.【解答】解:(1)∵关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根,∴b2﹣4ac=[2(k﹣1)]2﹣4(k2﹣1)>0,解得:k<1;(2)∵方程的一个根是0,∴代入方程得:k2﹣1=0,解得:k=±1,∵k<1,∴k=﹣1,∴原方程为:x2+2(﹣1﹣1)x=0,解得:x1=0,x2=4.21.【解答】解:(1)∵反比例函数y=的图象经过点(1,1)∴k=2xy=2×1×1=2∴反比例函数解析式:y=(2)∵点A在第三象限,且同时在两个函数的图象上∴解得:(舍去)∴点A坐标(﹣,﹣2)22.【解答】解:(1)八(1)班的平均分m=×(88+91+92+93+93+93+94+98+98+100)=94;八(2)班的中位数n==95.5;(2)八(2)班的平均分高于八(1)班;八(2)班的成绩集中在中上游,故支持八(2)班成绩好.23.【解答】解:(1)∵四边形ABCD是菱形∴AB=CD=AD=2,AB∥CD∴∠NDA=∠DAM∵点E是AD边的中点∴AE=DE,且∠NDA=∠DAM,∠NED=∠AEM ∴△AEM≌△DNE∴DN=AM又∵NC∥AB∴四边形AMDN是平行四边形(2)①若四边形AMDN成矩形时,则DM⊥AB在Rt△ADM中,DM⊥AB,∠DAB=60°,AD=2∴AM=1∴当AM=1时,四边形AMDN成矩形.②若四边形AMDN成菱形则DM=AM∵DM=AM,∠DAB=60°∴△ADM为等边三角形∴AM=AD=2∴当AM=2时,四边形AMDN成菱形24.【解答】解:(1)如图,∵四边形PQMN是菱形,∴PN∥QM,MN∥PQ,∴∠OPN=∠PQM=60°,∵P(1,0),∴OP=1,PN=PQ=MN=2OP=2,OM=OP=∴M(2,﹣).(2)如下图中,∵四边形PQ1M1N1是菱形,∴Q1P=Q1M1,∵∠PQ1M1=60°,∴△PQ1M1是等边三角形,∴∠Q1PM1=60°,∴直线PM1的解析式为y=﹣x+,由解得或,∴M1(﹣1,2).(3)如下图,当过点P与x轴的夹角为60°的直线与反比例函数的交点的个数只有3个时,满足条件的菱形只有3个.设直线PM1的解析式为y=x+b,由,消去y得到:x2+bx+2=0,由题意:△=0,∴b=±2,当b=﹣2时,可得y=x﹣2,由:,解得,∴M1(,﹣),由解得或,∴M2(+2,﹣2),M2(﹣2,+2),当b=2时,同法可得满足条件的点M的坐标为(﹣,)或(﹣﹣2,2﹣)或(﹣+2,﹣2﹣).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年浙江省金华市永康市八年级(下)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)计算的结果是()A.3 B.﹣3 C.±3 D.2.(3分)下列图形中,不是中心对称图形的是()A.B.C.D.3.(3分)把一元二次方程x(x+1)=3x+2化为一般形式,正确的是()A.x2+4x+3=0 B.x2﹣2x+2=0 C.x2﹣3x﹣1=0 D.x2﹣2x﹣2=0 4.(3分)用反证法证明“在△ABC中,若AB≠AC,则∠B≠∠C”时,第一步应假设()A.AB=AC B.AB≠AC C.∠B=∠C D.∠B≠∠C 5.(3分)下列二次根式中,最简二次根式的是()A.B.C.D.6.(3分)已知样本数据1,2,3,3,4,5,则下列说法不正确的是()A.平均数是3 B.中位数是3 C.众数是3 D.方差是37.(3分)已知点A(x,y)是反比例函数y=图象上的一点,若x>3,则y的取值范围是()A.y>1 B.y<1 C.0<y<1 D.1<y<38.(3分)如图,平行四边形ABCD中,E,F分别是AD,BC的中点,P是边DC上的动点,G,H分别是PE,PF的中点,已知DC=10cm,则GH的长是()A.7cm B.6cm C.5cm D.4cm9.(3分)如图,E,F分别是矩形ABCD的边AB,CD上的点,将四边形AEFD沿直线EF 折叠,点A与点C重合,点D落在点D处,已知AB=8,BC=4,则AE的长是()A.4 B.5 C.6 D.710.(3分)如图,正方形ABCD的对角线AC,BD相交于O,BE平分∠ABO交AC于E,CF⊥BE于F,交BD于G,则下列结论:①OE=OG;②CE=CB;③△ABE≌△BCG;④CF平分∠BCE.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本题有6小题,每小题4分,共24分)11.(4分)二次根式中字母x的取值范围是.12.(4分)关于x的一元二次方程x2﹣8x+k=0有两个相等的实数根,则k的值是.13.(4分)某小组7名同学的英语口试成绩(满分30分)依次为26,23,25,27,30,25,29,则这组数据的中位数是.14.(4分)如图,矩形ABCD的顶点C,D分别在反比例函数y=(x>0).y=(x>0)的图象上,顶点A,B在x轴上,则矩形ABCD的面积是.15.(4分)如图,正方形ABCD中,BE平分∠ABD交AD于E,EF⊥BD于F,FP⊥AB 于P,已知正方形ABCD的边长BC=2,则AP的长是.16.(4分)点A是反比例函数y=(x>0)图象上的一点,点B在x轴上,点C是坐标平面上的一点,O为坐标原点,若以点A,B,C,O为顶点的四边形是有一个角为60°的菱形,则点C的坐标是.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(1)﹣(2)(2+)(2﹣)18.(6分)解方程(1)x2﹣3x=0(2)x2﹣4x﹣1=0.19.(6分)如图,平行四边形ABCD的对角线AC,BD相交于O,过点O的直线EF分别交AB,CD于E,F,连结DE,BF.求证:四边形DEBF是平行四边形.20.(8分)某校开展“诵读诗词经典,弘扬传统文化”诗词诵读活动,为了解八年级学生在这次活动中的诗词诵背情况,随机抽取了30名八年级学生,调查“一周诗词诵背数量调查结果如表所示.一周诗词诵背数量(首)234567人数(人)1359102(1)计算这30人平均每人一周诵背诗词多少首;(2)该校八年级共有600名学生参加了这次活动,在这次活动中,估计八年级学生中一周诵背诗词6首以上(含6首)的学生有多少人.21.(8分)如图,平行四边形OABC的顶点O在原点上,顶点A,C分别在反比例函数y =﹣(k≠0,x>0),y=﹣(x<0)的图象上,对角线AC⊥y轴于D,已知点D的坐标为D(0,5)(1)求点C的坐标;(2)若平行四边形OABC的面积是55,求k的值.22.(10分)某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价.据测算,每箱每降价1元,平均每天可多售出20箱.(1)若每箱降价3元,每天销售该饮料可获利多少元?(2)若要使每天销售该饮料获利1400元,则每箱应降价多少元?(3)能否使每天销售该饮料获利达到1500元?若能,请求出每箱应降价多少元;若不能,请说明理由.23.(10分)(1)尝试探究:如图1,E是正方形ABCD的边AD上的一点,过点C作CF⊥CE,交AB的延长线于F.①求证:△CDE≌△CBF;②过点C作∠ECF的平分线交AB于P,连结PE,请探究PE与PF的数量关系,并证明你的结论.(2)拓展应用:如图2,E是正方形ABCD的边AD上的一点,过点C作CF⊥CE,交AB的延长线于F,连结EF交DB于M,连结CM并延长CM交AB于P,已知AB=6,DE=2,求PB的长.24.(12分)如图,在平面直角坐标系中,平行四边形OABC的顶点A在x轴上,B,C在第一象限,反比例函数y=(k≠0)的图象经过点C,交AB于D,已知OC=12,OA =4,∠AOC=60°(1)求反比例函数y=(k≠0)的函数表达式;(2)连结CD,求△BCD的面积;(3)P是线段OC上的一个动点,以AP为一边,在AP的右上方作正方形APEF,在点P的运动过程中,是否存在一点P使顶点E落在▱OABC的边所在的直线上,若存在,请求出此时OP的长,若不存在,请说明理由.2018-2019学年浙江省金华市永康市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)计算的结果是()A.3 B.﹣3 C.±3 D.【分析】直接根据=|a|化简即可.【解答】解:=|3|=3.故选:A.【点评】本题考查了二次根式的性质与化简:=|a|.2.(3分)下列图形中,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.【点评】本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)把一元二次方程x(x+1)=3x+2化为一般形式,正确的是()A.x2+4x+3=0 B.x2﹣2x+2=0 C.x2﹣3x﹣1=0 D.x2﹣2x﹣2=0 【分析】直接去括号进而移项,得出答案.【解答】解:x(x+1)=3x+2x2+x﹣3x﹣2=0,x2﹣2x﹣2=0故选:D.【点评】此题主要考查了一元二次方程的一般形式,正确移项是解题关键.4.(3分)用反证法证明“在△ABC中,若AB≠AC,则∠B≠∠C”时,第一步应假设()A.AB=AC B.AB≠AC C.∠B=∠C D.∠B≠∠C【分析】根据反证法的一般步骤解答即可.【解答】解:用反证法证明命题“在△ABC中,AB≠AC,求证:∠B≠∠C”,第一步应是假设∠B=∠C,故选:C.【点评】本题考查的是反证法,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.(3分)下列二次根式中,最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的概念逐一判断即可得.【解答】解:A.是最简二次根式;B.=2,不是最简二次根式;C.=0.5,不是最简二次根式;D.=,不是最简二次根式.故选:A.【点评】本题主要考查最简二次根式,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.6.(3分)已知样本数据1,2,3,3,4,5,则下列说法不正确的是()A.平均数是3 B.中位数是3 C.众数是3 D.方差是3【分析】根据众数、中位数、平均数、方差的定义和计算公式分别进行分析即可.【解答】解:数据1,2,3,4,5中平均数是3,中位数是3,众数是3,方差是S2=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.故选:D.【点评】本题考查方差、众数、中位数、平均数.关键是掌握各种数的定义,熟练记住方差公式是解题的关键.7.(3分)已知点A(x,y)是反比例函数y=图象上的一点,若x>3,则y的取值范围是()A.y>1 B.y<1 C.0<y<1 D.1<y<3【分析】反比例函数k>0时,函数在每个象限内,y随x的增大而减小,根据性质即可求解.【解答】解:∵y=,∴在第一象限内,y随x的增大而减小,∴当x>3时,0<y<1,故选:C.【点评】本题考查反比例函数的图象及性质;熟练掌握反比例函数的图象特点,牢记图象在每个象限内的变化是解题的关键.8.(3分)如图,平行四边形ABCD中,E,F分别是AD,BC的中点,P是边DC上的动点,G,H分别是PE,PF的中点,已知DC=10cm,则GH的长是()A.7cm B.6cm C.5cm D.4cm【分析】连接EF,先证明出四边形ABFE是平行四边形,再证明GH是△PEF的中位线,进而求出GH的长度.【解答】解:连接EF,∵四边形ABCD是平行四边形,∴AB=CD,AD=BD,AD∥BC,∵E,F分别是AD,BC的中点,∴AE=BF,∴四边形ABFE是平行四边形,∴AB=EF=10cm,∵G,H分别是PE,PF的中点,∴GH是△PEF的中位线,∴GH=EF=×10=5cm,故选:C.【点评】本题主要考查了平行四边形的性质以及三角形中位线定理的知识,解题的关键是证明出GH是△PEF的中位线,此题难度不大.9.(3分)如图,E,F分别是矩形ABCD的边AB,CD上的点,将四边形AEFD沿直线EF 折叠,点A与点C重合,点D落在点D处,已知AB=8,BC=4,则AE的长是()A.4 B.5 C.6 D.7【分析】如图,设AE=EC=x,在Rt△ECB中,∠B=90°,BC=4,EC=x,BE=8﹣x,构建方程即可解决问题.【解答】解:如图,设AE=EC=x,在Rt△ECB中,∵∠B=90°,BC=4,EC=x,BE=8﹣x,∴x2=42+(8﹣x)2,∴x=5,∴AE=5,故选:B.【点评】本题考查翻折变换,矩形的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(3分)如图,正方形ABCD的对角线AC,BD相交于O,BE平分∠ABO交AC于E,CF⊥BE于F,交BD于G,则下列结论:①OE=OG;②CE=CB;③△ABE≌△BCG;④CF平分∠BCE.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据正方形的性质,可得OB⊥OC,BO=CO,根据直角三角形的性质,可得∠EBO+∠BEO=90°,∠BEC+∠ECF=90°,再根据与角的关系,可得∠EBO=∠ECF,根据全等三角形的判定与性质OE=OG,故①正确;根据角平分线的定义得到∠EBO=45°=22.5°,得到∠ECF=∠BCF,求得CF平分∠BCE,故④正确;根据等腰三角形的性质得到CE=CB,故②正确;根据全等三角形的判定两点得到△ABE≌△BCG (SAS),故③正确.【解答】证明:∵正方形ABCD的对角线AC、BD相交于点O,∴OB⊥OC,BO=CO,∴∠EOB=∠COG=90°.∵CF⊥BE于点F,∴∠CFE=∠CFB=90°.∴∠EBO+∠BEO=90°,∠BEC+∠ECF=90°,∴∠EBO=∠ECF.在△BEO和△CGO中,,∴△BEO≌△CGO(AAS),∴OE=OG,故①正确;∵∠ABO=∠BCO=45°,BE平分∠ABO交AC于E,∴∠EBO=45°=22.5°,∵∠EOF=∠EBO=22.5°,∴∠BOF=45°﹣22.5°=22.5°,∴∠ECF=∠BCF,∴CF平分∠BCE,故④正确;∵CF⊥BE,∴CE=CB,故②正确;∵∠ABE=∠BCG=22.5°,∵△BEO≌△CGO,∴BE=CG,∵AB=BC,∴△ABE≌△BCG(SAS),故③正确.故选:D.【点评】本题考查了全等三角形的判定与性质,利用了正方形的性质,余角的性质,角平分线的定义,熟练掌握全等三角形的判定和性质是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)二次根式中字母x的取值范围是x≥1.【分析】二次根式有意义的条件就是被开方数是非负数,即可求解.【解答】解:根据题意得:x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12.(4分)关于x的一元二次方程x2﹣8x+k=0有两个相等的实数根,则k的值是16.【分析】利用判别式的意义得到△=(﹣8)2﹣4k=0,然后解关于k的方程即可.【解答】解:根据题意得△=(﹣8)2﹣4k=0,解得k=16.故答案为16.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.13.(4分)某小组7名同学的英语口试成绩(满分30分)依次为26,23,25,27,30,25,29,则这组数据的中位数是26.【分析】将这组数据从小到大排序后,知道处在第4位的数即可.【解答】解:七个数从小到大排列得:23,25,25,26,27,29,30,处在第4位的数是26,因此中位数是26.故答案为:26.【点评】考查中位数的意义和求法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数是中位数.14.(4分)如图,矩形ABCD的顶点C,D分别在反比例函数y=(x>0).y=(x>0)的图象上,顶点A,B在x轴上,则矩形ABCD的面积是3.【分析】根据反比例函数图象上点的坐标特征以及反比例函数k的几何意义,可以求出结果.【解答】解:延长CD交y轴于点E,∵点C在反比例函数y=(x>0)的图象上,∴矩形CBOE的面积为6,∵点D分别在反比例函数y=(x>0)的图象上,∴矩形ADEO的面积为3,∴矩形ABCD的面积为:6﹣3=3,故答案为:3.【点评】考查反比例函数k的几何意义,即过反比例函数图象上一点,分别向x轴、y轴作垂线,与坐标轴围成的矩形的面积等于|k|.15.(4分)如图,正方形ABCD中,BE平分∠ABD交AD于E,EF⊥BD于F,FP⊥AB 于P,已知正方形ABCD的边长BC=2,则AP的长是2﹣.【分析】根据正方形的性质得到∠ADB=∠ABD=45°,∠A=90°,根据角平分线的定义得到AE=EF,根据等腰直角三角形的性质得到DF=EF,PB=PF,设AE=EF=DF =x,得到DE=x,求得DF=2﹣2,根据等腰直角三角形的性质即可得到结论.【解答】解:∵正方形ABCD中,∠ADB=∠ABD=45°,∠A=90°,∵EF⊥BD于F,BE平分∠ABD,∴AE=EF,∵FP⊥AB,∴△DEF与△BPF是等腰直角三角形,∴DF=EF,PB=PF,设AE=EF=DF=x,∴DE=x,∵AD=2,∴(1+)x=2,BD=2,∴x=2﹣2,∴DF=2﹣2,∴BF=2﹣(2﹣2)=2,∴PB=BF=,∴AP=AB﹣PB=2﹣,故答案为:2﹣.【点评】本题考查了正方形的性质,等腰直角三角形的判定和性质,角平分线定义,正确的识别图形是解题的关键.16.(4分)点A是反比例函数y=(x>0)图象上的一点,点B在x轴上,点C是坐标平面上的一点,O为坐标原点,若以点A,B,C,O为顶点的四边形是有一个角为60°的菱形,则点C的坐标是(,1)或(3,).【分析】分两种情况讨论:①当点C在点A的左侧时,过点A作AE⊥x轴,在直角三角形ABE中求出A点坐标;②当点C在点A的右侧时;在直角三角形AOF中求出A点坐标,通过A点坐标求C点坐标即可.【解答】解:①当点C在点A的左侧时,过点A作AE⊥x轴,设点A(m,)(m>0),∴AE=,∵菱形OBAC中∠COB=60°,∴∠ABE=60°,∴AE=,BE=,∴+=m,∴m=,∴OB=﹣=,∴C(,1);②当点C在点A的右侧时,过点A作AF⊥x轴,设点A(m,)(m>0),∴AF=,OF=m,∵菱形OBAC中∠AOB=60°,∴=m tan60°=m,∴m=1,∴OA=2,∴C(3,);综上所述,C(,1)或C(3,);故答案为(,1)或(3,).【点评】本题考查反比例函数的图象及性质,菱形的性质;通过构造直角三角形,将问题转化到直角三角形中求出A点的坐标是解题的关键.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(1)﹣(2)(2+)(2﹣)【分析】(1)根据二次根式的运算法则即可求出答案.(2)根据平方差公式即可求出答案.【解答】解:(1)原式=4﹣2=2;(2)原式=(2)2﹣()2=8﹣3=5;【点评】本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.18.(6分)解方程(1)x2﹣3x=0(2)x2﹣4x﹣1=0.【分析】(1)利用因式分解法解方程;(2)利用配方法解方程.【解答】解:(1)x(x﹣3)=0,x=0或x﹣3=0,所以x1=0,x2=3;(2))x2﹣4x+4=3,(x﹣2)2=3,x﹣2=±,所以x1=2+,x2=2﹣.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.19.(6分)如图,平行四边形ABCD的对角线AC,BD相交于O,过点O的直线EF分别交AB,CD于E,F,连结DE,BF.求证:四边形DEBF是平行四边形.【分析】由平行四边形的性质得到AB∥CD,OD=OB,AO=OC,根据全等三角形的性质得到OE=OF,由平行四边形的判定定理即可得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,OD=OB,AO=OC,∴∠DCO=∠BAO,在△AEO与△CFO中,∴△AEO≌△CFO(ASA),∴OE=OF,∵OD=OB,∴四边形DEBF是平行四边形.【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,正确的识别图形是解题的关键.20.(8分)某校开展“诵读诗词经典,弘扬传统文化”诗词诵读活动,为了解八年级学生在这次活动中的诗词诵背情况,随机抽取了30名八年级学生,调查“一周诗词诵背数量调查结果如表所示.一周诗词诵背数量(首)234567人数(人)1359102(1)计算这30人平均每人一周诵背诗词多少首;(2)该校八年级共有600名学生参加了这次活动,在这次活动中,估计八年级学生中一周诵背诗词6首以上(含6首)的学生有多少人.【分析】(1)计算出背诵诗词的总首数,再除以调查人数即可,(2)样本估计总体,样本中一周诵背诗词6首以上(含6首)的学生占调查人数的,于是根据总体中一周诵背诗词6首以上(含6首)的学生也占.【解答】解:(1)(2+3×3+4×5+5×9+6×10+7×2)÷30=5首,答:这30人平均每人一周诵背诗词5首.(2)600×=240人,答:八年级600名学生中一周诵背诗词6首以上(含6首)的学生有240人.【点评】考查平均数的求法以及样本估计总体的统计方法,理解加权平均数的意义和“权”对平均数的影响是解决问题的前提.21.(8分)如图,平行四边形OABC的顶点O在原点上,顶点A,C分别在反比例函数y=﹣(k≠0,x>0),y=﹣(x<0)的图象上,对角线AC⊥y轴于D,已知点D的坐标为D(0,5)(1)求点C的坐标;(2)若平行四边形OABC的面积是55,求k的值.【分析】(1)由AC⊥y轴交反比例函数的图象与点A、C,与y轴交于D(0,5),因此点C、A的纵坐标都是5,代入可求出C的坐标,(2)根据平行四边形被对角线分成的两个三角形全等,可得三角形AOC的面积,进而求出AC的长,确定点A的坐标,最后求出k的值.【解答】解:(1)当y=5时,代入y=﹣得,x=﹣2,∴C(﹣2,5),(2)∵ABCD是平行四边形,∴OC=AB,OA=BC,∵AC=AC,∴△OAC≌△ABC(SSS),∴S△OAC=S ABCD=,即:AC•DO=,∵DO=5,∴AC=11,又∵CD=2,∴AD=11﹣2=9,∴A(9,5)代入y=﹣(k≠0,x>0)得:k=﹣45答:k的值为﹣45.【点评】考查反比例函数的图象和性质,平行四边形的性质,以及三角形全等知识,把点的坐标代入关系式是常用的方法.22.(10分)某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价.据测算,每箱每降价1元,平均每天可多售出20箱.(1)若每箱降价3元,每天销售该饮料可获利多少元?(2)若要使每天销售该饮料获利1400元,则每箱应降价多少元?(3)能否使每天销售该饮料获利达到1500元?若能,请求出每箱应降价多少元;若不能,请说明理由.【分析】(1)根据每箱饮料每降价1元,每天可多售出20箱写出答案即可;(2)、(3)利用的数量关系是:销售每箱饮料的利润×销售总箱数=销售总利润,由此列方程解答即可.【解答】解:设每箱饮料降价x元,商场日销售量(100+20x)箱,每箱饮料盈利(12﹣x)元;(1)依题意得:(12﹣3)(100+20×3)=1440(元)答:每箱降价3元,每天销售该饮料可获利1440元;(2)要使每天销售饮料获利1400元,依据题意列方程得,(12﹣x)(100+20x)=1400,整理得x2﹣7x﹣10=0,解得x1=2,x2=5;∵为了多销售,增加利润,∴x=5,答:每箱应降价5元,可使每天销售饮料获利1400元.(3)不能,理由如下:要使每天销售饮料获利1500元,依据题意列方程得,(12﹣x)(100+20x)=1500,整理得x2﹣7x+15=0,因为△=49﹣60=﹣11<0,所以该方程无实数根,即不能使每天销售该饮料获利达到1500元.【点评】本题考查了一元二次方程在实际生活中的应用.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本.23.(10分)(1)尝试探究:如图1,E是正方形ABCD的边AD上的一点,过点C作CF⊥CE,交AB的延长线于F.①求证:△CDE≌△CBF;②过点C作∠ECF的平分线交AB于P,连结PE,请探究PE与PF的数量关系,并证明你的结论.(2)拓展应用:如图2,E是正方形ABCD的边AD上的一点,过点C作CF⊥CE,交AB的延长线于F,连结EF交DB于M,连结CM并延长CM交AB于P,已知AB=6,DE=2,求PB的长.【分析】(1)先判断出∠CBF=90°,再证明∠DCE=∠BCF即可解决问题.(2)证明△PCE≌△PCF(SAS)即可解决问题.(3)如图2中,作EH⊥AD交BD于H,连接PE.证明△EMH≌△FMB(AAS),由EM =FM,CE=CF,推出PC垂直平分线段EF,推出PE=PF,设PB=x,则PE=PF=x+2,P A=6﹣x,理由勾股定理构建方程即可解决问题.【解答】解:(1)如图1中,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∵CF⊥CE,∴∠ECF=90°,∴∠DCB=∠ECF=90°∴∠DCE=∠BCF,∴△CDE≌△CBF(ASA).(2)结论:PE=PF.理由:如图1中,∵△CDE≌△CBF,∴CE=CF,∵PC=PC,∠PCE=∠PCF,∴△PCE≌△PCF(SAS),∴PE=PF.(3)如图2中,作EH⊥AD交BD于H,连接PE.∵四边形ABCD是正方形,∴AB=AD=6,∠A=90°,∠EDH=45°,∵EH⊥AD,∴∠DEH=∠A=90°,∴EH∥AF,DE=EH=2,∵△CDE≌△CBF,∴DE=BF=2,∴EH=BF,∵∠EHM=∠MBF,∠EMH=∠FMB,∴△EMH≌△FMB(AAS),∵EM=FM,∵CE=CF,∴PC垂直平分线段EF,∴PE=PF,设PB=x,则PE=PF=x+2,P A=6﹣x,在Rt△APE中,则有(x+2)2=42+(6﹣x)2,∴x=4,∴PB=4.【点评】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.24.(12分)如图,在平面直角坐标系中,平行四边形OABC的顶点A在x轴上,B,C在第一象限,反比例函数y=(k≠0)的图象经过点C,交AB于D,已知OC=12,OA =4,∠AOC=60°(1)求反比例函数y=(k≠0)的函数表达式;(2)连结CD,求△BCD的面积;(3)P是线段OC上的一个动点,以AP为一边,在AP的右上方作正方形APEF,在点P的运动过程中,是否存在一点P使顶点E落在▱OABC的边所在的直线上,若存在,请求出此时OP的长,若不存在,请说明理由.【分析】(1)过点C作CG⊥x轴于点G,构造含60°角的Rt△OCG,利用OC=12和∠AOC的正弦余弦值,即求得OG、CG的长,得到点C坐标,用待定系数法即求得反比例函数表达式.(2)由平行四边形OABC边长OA=4可求得点B坐标,进而求直线AB解析式.把直线AB解析式和反比例函数解析式联立方程组,求解即得到点D坐标.过点D作DH ⊥BC于点H,易得S△BCD=BC•DH,代入计算即求得△BCD的面积.(3)求直线OC解析式,设点P横坐标为m,用m表示其纵坐标.过点P作PM⊥x轴于点M,过点E作EN⊥直线PM于点N,由正方形APEF性质即可证△PNE≌△AMP,可得PN=AM=4,NE=PM,即得到用m表示点E坐标.由于点E可能落在▱OABC 的边OC、BC、AB上,故需分类讨论.①落在OC上时,把点E坐标代入直线OC解析式,解方程求m即得到点P坐标,进而求OP的长;②落在BC上,则点E纵坐标等于点C纵坐标,列得方程;③落在AB上,把点E坐标代入直线AB解析式再解方程.【解答】解:(1)如图1,过点C作CG⊥x轴于点G∴∠OGC=90°∵OC=12,∠AOC=60°∴cos∠AOC=,sin∠AOC=∴OG=OC=6,CG=OC=6∴C(6,6)∵反比例函数y=(k≠0)的图象经过点C∴6=解得:k=36∴反比例函数的函数表达式为y=(2)如图2,过点D作DH⊥BC于点H∵OA=4,点A在x轴上∴A(4,0)∵四边形OABC是平行四边形∴BC∥OA,BC=OA=4∴x B=x C+BC=6+4,y B=y H=y C=6∴B(6+4,6)设直线AB解析式为y=ax+b∴解得:∴直线AB:y=x﹣12∵点D为线段AB与反比例函数图象的交点∴解得:或(舍去)∴D(6,6)∴DH=6﹣6∴S△BCD=BC•DH=×4×(6﹣6)=36﹣12(3)存在点P使顶点E落在▱OABC的边所在的直线上.如图3,过点P作PM⊥x轴于点M,过点E作EN⊥直线PM于点N ∴∠AMP=∠PNE=90°∵C(6,6)∴直线OC解析式为y=x∵点P在线段OC上∴设点P坐标为(m,m)(0≤m≤6)∴OM=m,PM=m∴AM=OA﹣OM=4﹣m∵四边形APEF是正方形∴AP=PE,∠APE=90°∴∠EPN+∠APM=∠APM+∠P AM=90°∴∠EPN=∠P AM在△PNE与△AMP中∴△PNE≌△AMP(AAS)∴PN=AM=4﹣m,NE=PM=m∴x E=x N+NE=m+m,y E=y N=MN=PM+PN=m+4﹣m∴E(m+m,m+4﹣m)①若点E落在直线OC上,则m+4﹣m=(m+m)解得:m=∴P(,3),OP=②若点E落在直线BC上,则m+4﹣m=6解得:m=3+∴P(3+,3+3),OP=③若点E落在直线AB上时,直线AB:y=x﹣12∴(m+m)﹣12=m+4﹣m解得:m=3+,即点E落在直线BC与直线AB交点处综上所述,OP=2或(6+2)时,点E落在▱OABC的边所在的直线上.。