mos器件物理基础

合集下载

第2章MOS器件物理基础

第2章MOS器件物理基础
2.4 器件模型
❖ 版图、电容、小信号模型等
第2章MOS器件物理基础
10
2.2 MOMSO的SI管/V工特作性-原工作理原理与阈值电压
当VG=0,MOS管相当于两个反偏的二极管,截止 当VG稍微增大时,在正的栅源电压作用下,产生电场,
这个电场排斥空穴而吸引电子,因此,使栅极附近的p型 衬底中的空穴被排斥,留下不能移动的受主离子(负离 子),截止。
第2章 MOS器件物理基础
2.1 基本概念
❖ 简化模型-开关 ❖ 结构
2.2 I/V特性
❖ 阈值电压 ❖ I-V ❖ 跨导
2.3 二级效应
❖ 体效应、沟道长度调制效应、亚阈值导电性
2.4 器件模型
❖ 版图、电容、小信号模型等
第2章MOS器件物理基础 1
2.1 基本概念-MOSFET开关
NMOS管三端器件,栅(G)、源(S)、 漏(D)。 通常作为开关使用,VG高 电平,MOS管导通,D、S连接。
nCox
W L
(VGS
Vth )VDS
1 2
VD2S
K N 2(VGS Vth )VDS VD2S
VGS-Vth:MOS管的“过驱动电压”
L:指沟道的有效长度
W/L称为宽长比,K N
1 2
nC,ox WL
称为NMOS管的导电因子,
μn载流子迁移率。
ID的值取决于工艺参数:μn、Cox、器件尺寸W和L、VDS及VGS。
第2章MOS器件物理基础 14
2.2 MOS的I/V特性-阈值电压
0 栅与衬底功函数差
COX
OX
TOX
单位面积栅氧化层电容
常通过沟道注入把VTH0调节到合适值 工艺确定后,VTH第02章就MO固S器定件物了理基,础 设计者无法改变

MOS器件物理基础

MOS器件物理基础

西安电子科技大学
17
MOS管在饱和区电流公式
西安电子科技大学
18
西安电子科技大学
Thanks!
19
MOS管所有pn结必须反偏: *N-SUB接VDD!
4 *P-SUB接VSS! *阱中MOSFET衬底常接源极S,why?
电路中的符号表征
西安电子科技大学
MOS管等效于一个开关!
5
西安电子科技大学
(a)栅压控制的MOSFET (b)耗尽区的形成(c)反型的开始
6 (d)反型层的形成
西安电子科技大学
西安电子科技大学
MOS器件物理基础
西安电子科技大学 刘术彬
1
西安电子科技大学
2
基本结构
西安电子科技大学
Ldrawn:沟道总长度 LD:横向扩散长度
*D、S是对称的,可互换? *所有pn结必须反偏!
Leff:沟道有效长度, Leff= Ldrawn-2 LD
3
西安电子科技大学
CMOS结构 (P、N基于同一衬底)
沟道单位长度电荷(C/m) 电荷移 动速度 (m/s)
12
I/V特性的推导(3)
西安电子科技大学
13
I/V特性的推导(4)
西安电子科技大学
14
西安电子科技大学 NMOS管VGS>VT、VDS> VGS+VT时的示意图
15
I/V特性的推导(5)
西安电子科技大学
16
饱和区MOSFET的I/V特性
NMOS管VGS>VT、VDS=0时的示意图
7
西安电子科技大学 NMOS管VGS>VT、0<VDS< VGS-VT时的示意图
8

半导体物理基础 第六章 MOS

半导体物理基础   第六章   MOS

QS QB qNa xd
2 qNa xd S 2k s 0
(6-5)

(6-6)
6.2 理想MOS电容器
代入(6-44)式解出 x
d
Xd
kS 0 kS 0 2VG 1 C0 2 C0 C0 qkS 0 N a
2 0 12
(6-45)
C 2C 1 qN k VG C0 a S 0
6.2 理想MOS电容器
积累区( VG <0)
MOS系统的电容C基本上等于绝缘体电容 C0。当负偏压的数值逐渐减少时,空间电 荷区积累的空穴数随之减少,并且 QS 随 C也就变小。 平带情况( VG =0)
S
的变化也逐渐减慢, C S 变小。总电容
C FB C0
1 k 0 LD 1 k s x0
(6-1)
掌握载流子积累、耗尽和反型和强反型的概念。 正确画出流子积累、耗尽和反型和强反型四种情况的能带图。 导出反型和强反型条件
6.2 理想MOS电容器
6.2 理想MOS电容器
系统单位面积的微分电容
微分电容C与外加偏压 VG 的关系称为MOS系统的电容—电压特性。
dQM C dVG
(6-1)
S =半导体表面的电场
k0 =氧化物的相对介电常数
k S =半导体相对介电常数
xd =空间电荷区在半导体内部的边界亦即空间电荷区宽度。
外加电压 VG 为跨越氧化层的电压
V0和表面势 S 所分摊:
(6-2)
VG V0 S
6.1 理想MOS结构的表面空S结构内的电位分布
(6-22)
dV0 d s 1 dVG C dQM dQM dQM

模拟集成电路设计教学大纲

模拟集成电路设计教学大纲

模拟集成电路设计教学大纲目录一、课程开设目的和要求2二、教学中应注意的问题2三、课程内容及学时分配2第一章模拟电路设计绪论2第二章MOS器件物理基础2第三章单级放大器3第四章差动放大器3第五章无源与有源电流镜3第六章放大器的频率特性3第八章反馈3第九章运算放大器3高级专题3四、授课学时分配4五、实践环节安排4六、教材及参考书目5课程名称:模拟集成电路设计课程编号:055515英文名称:Analog IC design课程性质:独立设课课程属性:专业限选课应开学期:第5学期学时学分:课程总学时___48,其中实验学时一-一8。

课程总学分--3学生类别:本科生适用专业:电子科学与技术专业的学生。

先修课程:电路、模拟电子技术、半导体物理、固体物理、集成电路版图设计等课程。

一、教学目的和要求CMOS模拟集成电路设计课程是电子科学与技术专业(微电子方向)的主干课程,在教学过程中可以培养学生对在先修课程中所学到的有关知识和技能的综合运用能力和CMOS模拟集成电路分析、设计能力,掌握微电子技术人员所需的基本理论和技能,为学生进一步学习硕士有关专业课程和日后从事集成电路设计工作打下基础。

二、教学中应注意的问题1、教学过程中应强调基本概念的理解,着重注意引导和培养学生的电路分析能力和设计能力2、注重使用集成电路设计工具对电路进行分析仿真设计的训练。

3、重视学生的计算能力培养。

三、教学内容第一章模拟电路设计绪论本课程讨论模拟CMOS集成电路的分析与设计,既着重基本原理,也着重于学生需要掌握的现代工业中新的范例。

掌握研究模拟电路的重要性、研究模拟集成电路以及CMOS模拟集成电路的重要性,掌握电路设计的一般概念。

第二章MOS器件物理基础重点与难点:重点在于MOS的I/V特性以及二级效应。

难点在于小信号模型和SPICE模型。

掌握MOSFET的符号和结构,MOS的I/V特性以及二级效应,掌握MOS 器件的版图、电容、小信号模型和SPICE模型,会用这些模型分析MOS电路。

MOS器件物理基础

MOS器件物理基础

-
1 2
VDS 2
]
ID
=
nCox
W L
(VGS
- VTH )VDS
VDS << 2(VGS - VTH )
Ron
=
nCox
1
W L
(VGS
- VTH )
等效为一个
压控电阻
饱和区的MOSFET(VDS ≥ VGS-VT)
Qd(x) WCox(VGS V(x) VTH)
当V(x)接近VGS-VT, Qd(x)接近于0,即反 型层将在X≤L处终止 ,沟道被夹断。
x=0
V =0
[ID x]0L = [nWCox ((VGS - VTH )V(x) -
ID
=
nCox
W L
[(VGS
- VTH )VDS
-
1 2
VDS 2
]
1 2
V(x)2
] VDS 0
I/V特性的推导(3)
ID
= VGnSC-oxVWTLH称[(为VG过S 驱- V动TH电)V压DS;-WL
1 2
ID
nCox
W L
[(VGS
VTH)VDS
1 2
VDS2
]
V' DS VGS VTH (Pinch off)
ID nCox W (VGS VTH)2
2L
MOSFET的I/V特性
VDS<VGS-VT
沟道电阻随VDS 增加而增加导 Triode Region
致曲线弯曲
VDS>VGS-VT
曲线开始斜 率正比于 VGS-VT
VGS>VT、VDS>VGS-VT称为饱和区
NMOS器件的阈值电压VTH

MOS器件物理(3)

MOS器件物理(3)

无源器件
在模拟集成电路中的无源器件主要是指 电阻、电容等,精密的电阻、电容是 电阻、电容等,精密的电阻、电容是MOS模 模 拟电路设计所要求的主要基本元件,电阻或电 拟电路设计所要求的主要基本元件, 容在电路应用中最关键的是要提供精确的元件 值,但在大多数情况下,电阻或电容的绝对值 但在大多数情况下, 不如它们的比值那么重要。 不如它们的比值那么重要。
有源电阻
2)考虑衬底偏置效应 ) 如果考虑体效应,如下图( )所示, 如果考虑体效应,如下图(a)所示,由于衬底接地电 则有: =-V, =-V, 位,则有:V1=- ,Vbs=- ,其等效电路如下图 (b)所示。 )所示。
(a)
(b)
有源电阻
根据KCL定理,由上图(b)可以得到: 定理,由上图( )可以得到: 根据 定理
有源电阻
1)漏输出,源极交流接地 )漏输出,
VGS是固定的,当MOS管的漏源电压大于栅极的 是固定的, 管的漏源电压大于栅极的 过驱动电压时, 管工作于饱和区, 过驱动电压时,MOS管工作于饱和区,忽略沟道 管工作于饱和区 调制效应时,其阻值为无穷大, 调制效应时,其阻值为无穷大,但实际阻值应考 虑沟道调制效应,可用饱和萨氏方程求出: 虑沟道调制效应,可用饱和萨氏方程求出:
MOS管交流小信号模型 高频 管交流小信号模型---高频 管交流小信号模型
在高频应用时, 在高频应用时,MOS管的分布电容就不能 管的分布电容就不能 忽略。 忽略。即在考虑高频交流小信号工作时必须 考虑MOS管的分布电容对电路性的影响, 管的分布电容对电路性的影响, 考虑 管的分布电容对电路性的影响 所以MOS管的高频小信号等效电路可以在 管的高频小信号等效电路可以在 所以 其低频小信号等效电路的基础上加入MOS 其低频小信号等效电路的基础上加入 管的级间电容实现,如图所示。 管的级间电容实现,如图所示。

半导体物理与器件-第十章-MOSFET基础(1)(MOS结构-CV特性)

半导体物理与器件-第十章-MOSFET基础(1)(MOS结构-CV特性)

11.2.2反型状态(高频)
加较大的正栅压,使反型层电荷出现,但栅 压变化较快,反型层电荷跟不上栅压的变化, 只有耗尽层电容对C有贡献。此时,耗尽层宽 度乃至耗尽层电容基本不随栅压变化而变化。
C' (inv)
C' (dep)min
tox
ox ox
tox
xdT
f 5 ~ 100Hz
f ~ 1MHz
强反型状态(低频)
加大的正栅压且栅压变化较慢,反型层 电荷跟得上栅压的变化
C' (inv)
Cox
ox
tox
平带 本征
41
10.2 C-V特性
n型与p型的比较
负偏栅压时为堆积模式, 正偏栅压时为反型模式。
p型衬底MOS结构
n型衬底MOS结构
正偏栅压时为堆积模式, 负偏栅压时为反型模式。
42
10.2 C-V特性
Cox
Cox
+2 fp
ms
| Q'SD max | Cox
VFB+2 fp
|QSDmax|=e Na xdT
f (半导体掺杂浓度,氧化层电荷,平带电压,栅氧化层电容)27
10.1 MOS电容 阈值电压:与掺杂/氧化层电荷的关系
P型衬底MOS结构
Q′ss越大,则VTN的绝对值 越大; Na 越高,则VTN的值(带符 号)越大。
栅压频率的影响
43
小节内容
理想情况CV特性
CV特性概念 堆积平带耗尽反型下的概念 堆积平带耗尽反型下的计算
频率特性
高低频情况图形及解释
44
10.2.3固定栅氧化层电荷和界面电荷效应
对MOS的C-V的影响主要有两种: (1)固定栅氧化层电荷 (2)氧化层-半导体界面电荷

CMOS模拟集成电路设计ch2器件物理 共42页

CMOS模拟集成电路设计ch2器件物理 共42页

ID =0
6
2. 线性区 triode or linear region
当 V G S V T H ,且 V D S V G S V T H 时 MOSFET 处于线性区
7
Derivation of I/V Characteristics
I Qd v Q d W o(V x C G S V T)H Q d ( x ) W o ( V x G C V S ( x ) V T )H
1
ID
2L
25
亚阈值导电性(弱反型)
在初步分析MOSFET的时候,我们假设当VGS < VTH时, 器件会突然关断,即ID会立即减小到零;但实际上当VGS 略小于VTH 时,有一个“弱”的反型层存在,ID大小随
VGS下降存在一个“过程”,与VGS呈指数关系:
26
2.4 MOS器件电容
分析高频交流特性时 必须考虑寄生电容的影响 根据物理结构,可以把 MOSFET的寄生电容分为:
模拟CMOS集成电路设计
第 2 章 MOS器件物理基础
2.1 基本概念
漏(D: drain)、 栅(G: gate)、
G
源(S: source)、衬底(B: bulk)
S
MOSFET:一个低功耗、高效率的开关
D
2
MOS符号
模拟电路中常用符号
数字电路中常用
MOSFET是一个四端器件
3
2.2 MOS的I/V特性
2. 右图中MOSFET的过饱和电压是多少?管子处于什么工 作区?
R
Vb=1V
Vds=0.5V
40
3. 如图所示,Vin随时间线性增加。在不考虑沟调效应,需考 虑体效应的前提下,画出Vout随时间的曲线。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2.3)
式中Cox为栅极单位面积电容,WCox为单位长度栅电容.
2020/8/8
22
如果从S到D有一电压差VDS,假设平板电容在L方向上x点的 电位为V(x), 如上图所示
则有: Qd ( x) WCox (VGS VTH V ( x))
2
iD
I
DO
uGS U GS ( th )
1
, 其 中 ,I DO是uGS
2UGS
(
th

)
的i

D
2020/8/8
6
FET放大电路的动态分析
一、FET的低频小信号等效模型
iD f uGS , uDS

iD uGS
U DS
gm
iD uDS
UGS
1 rds
diD
iD uGS
U DS
duGS
Ldrawn (L): gate length(layout gate length) Leff: effective gate length LD:S/D side diffusion length W/L: aspect ratio
S,D,G,B: source,drain,gate,body(bulk)
2020/8/8
耗尽区电荷
19
PMOS器件的导通:与NFETS类似,极性相反.
VTHms2F来自Qdep CoxF
KT q
ln
N sub
ni
Qdep 4q si F N sub
2020/8/8
20
2.2.2 I/V特性推导
我们用一个电流棒来辅助理解电流的概念. v I
当沿电流方向的电荷密度为Qd (C/m)的电荷以速度v沿电流 方向移动时,产生的电流为
本章内容
MOSFET 的I-V 特性 MOSFET 的二级效应 MOSFET 的结构电容 MOSFET 的小信号模型
2020/8/8
1
绝缘栅型场效应管
Insulated Gate Field Effect Transistor MOS管:Metal Oxide Semiconductor
利用栅源电压的大小控制半导体表面的感生电荷的多 少,从而改变沟道电阻,控制漏极电流的大小。
I Qd * v
(2.2)
量纲 C m * m s A
2020/8/8
21
● NMOS 沟道的平板电容近似与沟道电荷分布
若将MOS结构等效为一个由poly-Si和反型沟道构成的平板电 容。对均匀沟道,当VD=VS=0时,宽度为W的沟道中,单位 长度上感应的可移动电荷量为
Qd WCox (VGS VTH )
I DO I DQ
2020/8/8
8
gm与rds的求法
2020/8/8
9
二、基本共源放大电路的动态分析
A u
U o U i
Id Rd U gs
gmU gs Rd U gs
gm Rd
Ri
Ro Rd
2020/8/8
10
2.1 MOSFET的基本概念
2.1.1 MOSFET开关
阈值电压是多少?当器件导通时,漏源之间的电阻 有多大?这个电阻与端电压的关系是怎样的?总是 可以用简单的线性电阻来模拟漏和源之间的通道? 器件的速度受什么因素限制?
iD uDS
du UGS
DS
1 Id gmU gs rds U ds
2020/8/8
7
gm与rds的求法
gm
iD uGS
U DS
2 I DO U GS ( th )
uGS UGS(th)
1
U DS
2 U GS ( th )
I DOiD
小 信 号 作 用 时 ,iD I DQ .
2 gm UGS(th)
2020/8/8
11
2.1.2 MOSFET的结构
1. MOSFET的三种结构简图
图2.1 NMOS FET结构简图
2020/8/8
12
图2.2 PMOS FET结构简图
2020/8/8
13
图2.3 CMOS FET的结构简图
2020/8/8
14
2. MOS FET结构尺寸的通用概念
W: gate width
●在栅极加上正电压后,如 图(b)所示,P-sub靠近G的空 穴就被排斥,留下了不可动 的负离子。这时没有导电沟 道的形成,因为没有可移动 的载流子,G和衬底间仅形成 了氧化层电容和耗尽层电容 的串连,如图(c)所示。
2020/8/8
(b) VGS>0
(c)
18
●(d)当VG继续增加,界面电 势达到一定值时,就有电子从源
② uDS 0, uGS 0
栅极聚集正电荷 排斥衬底空穴 剩下负离子区 耗尽层
③ uDS 0, uGS
耗尽层加厚 uGS 增加 吸引自由电子 反型层
++++++
++++++++++++
2020/8/8
开启电压 UGS(th):沟道形成的栅-源电压。 4
(2) uGS UGS(th)时uDS 对 iD 的影响.
极流向界面并最终到达漏极,导
电沟道形成,晶体管打开。如图
(d)所示。这时,这个电压值
就是“阈值电压”-VTH .
VTH
ms
2F
Qdep Cox
ms F (sub) F ( gate)
(2.1)
(d) 功函数差
F
KT
q
ln N sub
ni
费米势,MOS强反型时的 表面势为费米势的2倍
Qdep 4q si F N sub
① uDS uGS UGS(th) ② uDS uGS UGS(th) ③ uDS uGS UGS(th)
uDS iD 线性增大
沟道从s-d逐渐变窄
uDS uGD UGS(th) uDS 夹断区延长
沟道预夹断
iD 几乎不变 恒流区
2020/8/8
5
3. 特性曲线与电流方程
2020/8/8
15
3. MOS FET 的四种电路符号
NMOS D
PMOS S
G
BG
B
S
D
(d)
2020/8/8
16
2.2 MOS的I/V特性
2.2.1.阈值电压
先看MOS器件的工作原理:以NMOS为例来分析阈值电压 产生的原理.
(a) VGS=0
2020/8/8
17
●在(a)图中,G极没有加入 电压时,G极和sub表面之间, 由于Cox的存在,构成了一个 平板电容,Cox为单位面积的 栅氧电容;
MOSFET 绝缘栅型
增强型(常闭型) 耗尽型(常开型)
N沟道 P沟道 N沟道 P沟道
2020/8/8
2
1. 结构
N沟道增强型MOSFET
2020/8/8
3
2. 工作原理 (1) uDS 0时uGS 对导电沟道的影响.
① uGS 0 漏源为背对的PN结 无导电沟道 即使 uDS 0, iD 0
相关文档
最新文档