4.3高阶微分方程的降阶和幂级数解法

合集下载

第四章高阶线性微分方程

第四章高阶线性微分方程

d nx d n 1 x dx a1 (t ) n 1 an 1 (t ) an (t ) x 0 (4.2) n dt dt dt 定理2 (叠加原理)如果 x1 (t ), x2 (t ), , xk (t ) 是方程(4.2)
的k个解,则它们的线性组合
c1 x1 (t ) c2 x2 (t ) ck xk (t )
t 2 x1 (t ) 0
1 t 0 0 t 1
0 x2 (t ) 2 t
1 t 0 0 t 1
15
t 2 x1 (t ) 0
1 t 0 0 t 1
t2 2t W x1 (t ), x2 (t ) 0 0
n 阶线性微分方程一般形式:
(n)
)0
d nx d n1 x dx a1 (t ) n1 an1 (t ) an (t ) x f (t ) (4.1) n dt dt dt
其中 ai (t )(i 1,2,, n) 及f (t )是区间 a t b 上的连续函数。
d nx d n 1 x dx a1 (t ) n 1 an1 (t ) an (t ) x 0 n dt dt dt
齐次线性微分方程。
(4.2)
称它为 n 阶齐次线性微分方程,而方程(4.1)为 n 阶非
7
d nx d n1 x dx a1 (t ) n1 an1 (t ) an (t ) x f (t ) (4.1) n dt dt dt
0 0 0 t2 0 2t
0 x2 (t ) 2 t
1 t 0 0 t 1
1 t 0 0 t 1

常微分课后答案第四章

常微分课后答案第四章

第四章 高阶微分方程§4.1 线性微分方程的一般理论习题4.11.设)(t x 和)(t y 是区间[]b a ,上的连续函数,证明:若在区间[]b a ,上有≠)()(t y t x 常数或≠)()(t x t y 常数,则)(t x 和)(t y 在区间[]b a ,上线性无关.(提示:用反证法) 证明 )(t x 和)(t y 是区间[]b a ,上线性相关,则存在不全为0的常数21,c c 使得0)()(21≡+t y c t x c ,[]b a t ,∈,若)0(,021≠≠c c 或得12)()(c c t y t x -≡(或21)()(c c t x t y -≡)[]b a t ,∈∀成立。

与假设矛盾,故)(t x 和)(t y 在区间[]b a ,上线性无关.2.证明非齐次线性方程的叠加原理:设)(1t x ,)(2t x 分别是非齐次线性方程)()()(1111t f x t a dt xd t a dt x d n n n n n =+++-- (1) )()()(2111t f x t a dtxd t a dt x d n n n nn =+++-- (2) 的解,则)()(21t x t x +是方程)()()()(21111t f t f x t a dtxd t a dt x d n n n n n +=+++-- (3) 的解.证明 因为)(1t x ,)(2t x 分别是方程(1)、(2)的解,所以)()()(1111111t f x t a dt x d t a dt x d n n n n n =+++-- , )()()(2212112t f x t a dtx d t a dt x d n n n nn =+++-- , 二式相加得,)()())(()()()(21211211121t f t f x x t a dt x x d t a dt x x d n n n n n +=++++++-- ,即)()(21t x t x +是方程(3)的解.3.(1).试验证022=-x dt x d 的基本解组为tt e e -,,并求方程t x dtx d cos 22=-的通解。

微分方程的级数解法

微分方程的级数解法

微分方程的级数解法微分方程是数学中的一门重要分支,广泛应用于物理学、工程学、经济学等领域。

在微分方程的解法中,级数解法是一种常见且有效的方法。

本文将介绍微分方程的级数解法,并通过具体的例子来说明其应用。

一、级数解法的基本思想级数解法是通过将微分方程的解表示为级数形式,然后利用级数的性质来求解微分方程。

其基本思想是将未知函数表示为幂级数的形式,然后将其代入微分方程中,通过比较系数的方法确定级数的各项。

二、级数解法的步骤级数解法的步骤可以概括为以下几个方面:1. 假设未知函数的级数解形式,通常选择幂级数形式,如y(x)=∑(n=0)^(∞)a_n(x-x_0)^n。

2. 将级数解代入微分方程中,得到方程的各项。

3. 比较方程两边各项的系数,得到递推关系式。

4. 解递推关系式,确定级数解中的各项系数。

5. 根据级数解的收敛性,确定级数解的有效区间。

三、例子:求解二阶常系数线性齐次微分方程考虑一个二阶常系数线性齐次微分方程:y''(x)+ay'(x)+by(x)=0,其中a、b为常数。

假设未知函数的级数解形式为y(x)=∑(n=0)^(∞) a_nx^n。

将级数解代入微分方程中,得到:∑(n=0)^(∞) a_n(n(n-1)x^(n-2)+anx^(n-1)+bx^n)=0。

比较方程两边各项的系数,得到递推关系式:a_0=0,a_1=0,(n(n-1)a_n+a(n+1)a_(n+1)+ba_n)=0。

解递推关系式,确定级数解中的各项系数:由a_0=0可知,a_n=0(n≥0)。

根据递推关系式,可得:a_2=-ba_0/(2(2-1))=-b/2,a_3=-ba_1/(3(3-1))=0,a_4=-ba_2/(4(4-1))=b^2/(2*4),...根据级数解的收敛性,确定级数解的有效区间:根据级数解的收敛性定理,级数解的有效区间至少包含级数展开点x=0。

因此,级数解的有效区间为整个实数集。

高阶方程的降阶法和幂级数解法

高阶方程的降阶法和幂级数解法

y c1e
x
( 2)

1 dt t
c1t
x
( 4)
c1t
x
( 3)
c1 2 t c2 2
c1 3 c1 4 c2 2 t c 2 t c3 x t t c3t c4 24 2 6
5 3 2
9
t c2 t c3 t c4 t c5 x c1
7
2014-2-21
常微分方程-重庆科技学院-李可人
§4.3 Step-down Order Method and Series Method
特别,对于二阶方程
F (t , x, x) 0
x y,
x y
F (t , y, y) 0
y (t, c1 )
x (t , c1 )
2014-2-21 常微分方程-重庆科技学院-李可人
§4.3 Step-down Order Method and Series Method
2)不显含自变量
t 的方程
(4.59)
可降低一阶
( n) F ( x, x ,, x ) 0
方法
x y d d dy dx dy x ( x) y y dt dt dx dt dx
y xk y an2 x xk y 2 xk
a1
x
(n)
x
( n1)
(n)
xk y

( n1)
y xk y nxk
2014-2-21
( n 1)
n(n 1) (n) ( n2) xk y xk y 16 2
xk
( n2)

高阶线性微分方程的解法

高阶线性微分方程的解法

高阶线性微分方程的解法实变量复值函数——预备知识常系数线性方程的解法求变系数齐线性方程特解的幂级数法要存在注意极限 ,) sin (cos )(t i t e e t t i b b a b a ±=± , )(21 t i t i e e t b b b -+=. )(21 sin t i t i e e t b b b --=; )()(lim 00t z t z t t =®)()()(t i t t z y j +=; )(lim )(lim )(lim 000t i t t z t t t t t t y j ®®®+=连续,若在0)(t t z 实变量复值函数——预备知识导数定义:; )()(lim )()(0000000dtt d i dt t d t t t z t z dt t dz t z t t )(+)(=--=º¢®y j,)()()]()([2121dt t dz dt t dz t z t z +=+,)()](dt t dz c t cz =.)()()()()]()(212121dt t dz t z t z dt t dz t z t ××=×+,t k t k e =,)(2121t k t k t k k e e e ×=+,)3( t k tk ke .)( )4( tk n t k n n e k e dt d =的性质)( b i a k t k +=.(4.2)中所有系数都是),,2,1( )(n i t a i L =)()()( t i t t z x y j +==是它的复值解,则.)2.4( )( )(的解都是方程和共轭复值函数t z t y 非齐线性微分方程有复值解)( )(][ t V i t U x L +=、及解中的和这里)( )()(),,2,1( )(t u t 、V t U n i t a i L =分别是方程和虚部的实部都是实值函数,则该解)()( t v t u 的实)(t z , ))(][t U x L =)(][t V x L =和的解.变换法. 求常系数齐线性方程通解的特征根法(4.19)0][1111 =++++º---x a dtdx a dt x d a dt x d x n n n n n n L .,,2为实常数n a L 由希望它有指数函数形式的解,t e x l =, 0)( )(][111=º++++º--t t n n n n t e F ea a a e L l l l l l l l L 数方程(4.20) 0)(111 =++++º--n n n n a a a F l l l l L . 这个方程称为(4.19)对应的特征根.特征方程,它的根称为特征根是单根的情形.个解有 (4.19)n 个彼此不相等的的是特征方程 (4.20) ,,,21 n n l l L ,,,, 21t t t n e e e l l l L 无关的,从而组成方程的基本解组. 这时,若的通解为均为实根,方程(4.19)),,2,1(n i L =; 2121tn t t n e c e c e c x l l l +++=L 复也一定是特征根,则( b a l b a l i i -=+=),它们对应方程(4.19)的两个实值解.sin ,cos t e t e t t b b a a 特征根有重根的情形.111(4.19)(4.20) k k 的重根,则它对应的是特征方程设 l 线性无关的解;,,,,1111112t k t t t e t e t te e l l l l -L;,,, ,,,3232m m k k k L L 的重数依次为l l l 则当 , )( , ),,,2,1 21j i n k k k n j i m ¹¹=+++l l L L 还有解;,,,,2222212t k t t t e te t te e l l l l -L .,,,,12tk t t t m m m m m e t e t te e l l l l -L L L L L n 个解, 是线性无关的, 构成了(4.19)的基本解组.b a l b a l l i i k -=+=则重复根是某个特征根,我们将用以下的2k 个实值解来替代:,cos ,,cos ,cos ,cos 12t e tt e t t te t e t k t t t b b b b a a a a -L . sin ,,sin ,sin ,sin 12 t e t t e t t te t e tk t t t b b b b a a a a -L. 0 44的通解=-x dtx d ,014=-l ., , 1, 14321i i -==-==l l l l .sin, cos , , t t e e t t -了4 个线性无关的解,故通解为.sin cos 4321t c t c e c e c x t t +++=-. 012167223的通解=-+x dtdx dt x d 出特征方程, 01216723=+--l l l,0)1(2222246=+=++l l l l l , 0)2)(3(2=--l l ,2, 3321===l l l .)(23231t t e t c c e c x ++=. 02 224466的通解=++dt x d dt x d dt x d ., ,0654321i i -======l l l l l l 通解为.sin )(cos )(654321t t c c t t c c t c c x ++++=+(4.32) )(]1111t f x a dtdx a dt x d a dt x d n n n n n n =++++º---L 最广泛而常见的右端函数是,]sin )(cos )([)( t t B t t A e t f t b b a +=次的实系数多项式,最高是t t B t A )(),(代数方程(4.20)仍然称为(4.32)对应的特征,)( )()(1110 m m m m t t b t b t b t b e t A e t f ++++==--L a a 时,即0=b 1.是单根的根时它的重数是特征方程a l a (0)(=F 是待定常数,将上是特征根m B B B k ,,, );0 10L =t 的同次项系数来确定.,]sin )(cos )([~ t k e t t Q t t P t x a b b +=),( ;0)(t P F i 的根时它的重数 是特征方程=+l b a .次实系数待定多项式. 13322的通解+=--t x dtdx dt 应的特征方程是, 0)1)(3( 0322=+-=--l l l l 或有形如下式的特解时,方程(4.32)0有如下形式的特解,)(~ 110t m m m k e B t B t B t x a +++=-L,0 13)( =+=b ,对应一般形式中的t t f ,故特解形式为不是特征根,因此00==k a .~Bt A x +=,13332+º---t Bt A B 系数,得îíì=--=-,132, 33A B B 特解为 ; 1 , 31-==B , 31~t x -=原方程通解为.31231+-+=-t e c e c x t t 的通解是因此对应的齐线性方程.1,321-==l l .231t t e c e c x -+=. 32 2的通解t e x dtdt -=--对应一,这里特征方程,特征根同上 ,)( t e t f -=确定正是单根,所以而, 11 , 1 , 0=-=-==k a a b .~ t Ate x -=一步,其余略.. )5(332233的通解-=+++-t e x dtdx dt x d dt x d t 特征方程为,0)1(133323=+=+++l l l l 形正是这三重根,故特解三重根 1; 1321-=-===a l l l ,)(~3 t e Bt A t x -+=其余步骤略.. 2cos 44 2的通解+t x dtdt =+一特征方程为,0)2(4422=+=++l l l ,对应一般形右端函数 t t f 2cos )( , 2 21=-==l l 而; 0)(, 1)( , 2 ,ºº=t B t A b ii 2=+b a .故特解形式为2sin 2cos ~t B t A x +=化简得2sin 82cos 8t A t B º-从而特解是 同类项系数,得. 81,0==B A , 2sin 81~t x =.2sin 81)(221t e t c c x t ++=-二因为右端函数)Re(2cos )(2it e t t f ==的结论,先求方程itex dt dx dt x d 22244 =++再取其实部,就是原方程的解.不是特征根,故对应的右端函数i e it 22=a ,~2it Ae x =,得方程并消去因子 it e 2 , 8 18iA iA -==或为. 2sin 812cos 88~2t t i e i x it +-=-=原方程的实特解为{}, 2sin 81~Re t x =. 2sin 81)(221t e t c c x t ++=-。

4.3高阶微分方程的降价和幂级数解法

4.3高阶微分方程的降价和幂级数解法

F (t, x(k) , x(k1) , , x(n) ) 0 (4.57)
解题步骤: 第一步: 令x(k) y,则方程化为
F (t, y, y', , y(nk) ) 0
第二步: 即
求以上方程的通解
y (t, c1, , cnk ) x(k) (t, c1, , cnk )
第三步: 对上式求k次积分,即得原方程的通解
练习题:
谢谢观看! 2020
§4.3高阶微分方程的降阶和幂级数解法
一、可降阶的一些方程类型
n阶微分方程的一般形式: F (t, x, x', , x(n) ) 0
1、 不显含未知函数 x
或更一般不显含未知函数及其直到 k 1 (k 1)
阶导数的方程:
F (t, x(k) , x(k1) , , x(n) ) 0 (4.57)
第三步: 解方程
dx dt
(x, c1,
, cn1)
即得原方程的通解。
例2
求方程x
d2x dt 2
( dx)2 dt
0的通解.
解:令 dx y,并以x作为新的自变量,
dt
则方程化为 xy dy y2 0
从而可得
dx y 0, 及
dy dx
y, x
这两方程的全部解是 y c1x,
再代回原来变量得到
2、 不显含自变量t的方程 一般形式:
F (x, x', , x(n) ) 0,
解题步骤:
(4.59)
第一步: 令y x',并以y为新的未知函数, x为新的 自变量,原方程化为
G(x,
y,
dy dx
,
,
d (n1) y dx(n1)

第四章 高阶微分方程 常微分方程课件 高教社 王高雄教材配套ppt

第四章 高阶微分方程 常微分方程课件 高教社 王高雄教材配套ppt

5/8/2021
第四章
10
x1
t 2 , 0,
1 t 0 0t 1
注 仅对函数而言 线性相关时W(t)≡0的
逆定理一般不成立。
例 函数

x1
t 2 , 0,
x2
0,
t
2
,
1 t 0 0t 1
1 t 0 0t 1
在区间-1≤t≤1上有W[x1(t),x2(t)]≡0 ,但却线性无 关。
证 5/8/2021 用反证法证。
第四章
12
(续)定理4 齐次线性微分方程的线性 无关解的伏朗斯基行列式恒不为零
dn x dtn
a1(t)
dn1 x d t n1
an1 (t )
d d
x t
an
(t ) x
0
证 用反证法证。设有t0 (a≤t0≤b) 使得W(t0)=0,则t = t0时 的 (6)、(7)组成的n个齐次线性代数方程组有非零解 c1 ,c2 ,…,cn。 根椐叠加原理,函数 x(t)=c1x1(t)+ c2x2(t)+…+ cnxn(t) 是方程(2)的解,
第四章
13
定理5 齐次线性方程(2)的基本 解组必存在且其伏朗斯基行列式 恒不为零。
证 根据定理1,线性 方程(2)的满足初值 条件:
的解x1(t),x2(t),…,xn(t)必 存在,且有
x1
(t0
)
1,
x1'
(t0
)
0,
x2
(t0
)
0,
x2'
(t0
)
1,
xn
(t0
)
0,
xn'

高阶微分方程求解

高阶微分方程求解
3 2 x 则 ( y ) [ax ( 3a b) x 2bx]e , * 3 2 x ( y ) [ax (6a b) x (6a 4b) x 2b]e , *
* 将 y , ( y ) , ( y ) 代入原方程比较系数得 * *
1 1 a , b , 6 2
[(C0 C1 x C k 1 x k 1 ) cos x ( D0 D1 x Dk 1 x k 1 ) sin x ]e x
若是k重共轭 复根 j
4、二阶常系数非齐次线性微分方程解法
y py qy f ( x )
二阶常系数非齐次线性方程
y c1 cos x c2 sin x x
例4 设 f (x) 具有连续的二阶导数试确定f (x) 使曲线积分
( 常数) 与路径无关 解 由曲线积分与路径无关的条件得
f ( x ) e x 2 f ( x ) f ( x )

x f ( x) 2 f ( x) f ( x) e
1 x f ( x ) (c1 c2 x )e e ( 1)2
x
例5

1 求解方程 y 2 y y ( x cos 2 x ). 2 2 r 4 0, 特征方程
特征根
r1, 2 2i ,
对应的齐方的通解为 Y C1 cos 2 x C2 sin 2 x .
(1) ( 2) 设 y x k e x [ Rm ( x ) cos x Rm ( x ) sin x ],
m maxl , n 其中 R ( x ), R ( x )是m次多项式,
(1) m ( 2) m
; 0 j不是特征方程的根时 k . 1 j是特征方程的单根时
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因为
dx y, dt
d2x dt 2
dy dt
dy dx
dx dt
dy y, dx
d3x d d2x
dt3 dt dt 2
d dt
( y dy) dx
d( y dy) dx
dx
dx dt
y( dy)2 dx
y2
d2y dx 2
,
用 数 学 归 纳 法 易 得, x(k)可 用y, dy ,, d (k1) y (k n)来 表 达
x (t, c1,, cn ),
c1
,,
c

n




F (t, x(k) , x(k1) ,, x(n) ) 0 (4.57)
解题步骤:
10 令x(k) y,则 方 程 化 为
F (t, y, y,, y (nk) ) 0
20 求上述方程的通解
y (t, c1,, cnk )

x(k) (t, c1,, cnk )
即有
d4x dt 4
ct,
对上式积分4次, 得原方程的通解为
x c1t 5 c2t 3 c3t 2 c4t c5 ,
这 里c1, c2 , c3 , c4 , c5为 任 意 常 数
2. 不显含自变量t
一般形式:
F (x, x,, x(n) ) 0
(4.59)
此时以y x作为新的未知函数,而把x作为新的自变量,
解 令 dx y,并以x作为新的自变量, dt
则方程化为 从而可得
xy dy y 2 0 dx
y 0,

dy y , dx x
这两方程的全部解是
y c1x,
再代回原来变量得到 所以得原方程的通解为
dx dt
c1 x,
x cec1t
3 已知齐线性方程的非零特解,进行降阶
(1) 设x x1 0是二阶齐次线性方程
1 e p(t)dt dt] x12
(4.70)
30 令c1 0, c2 1得与x1线性无关的一个解
x2 x1
40 即得原方程的通解.
1 e p(t)dt dt x12
x x1[c1 c2
1 e p(t)dt dt] x12
(4.70)
d 2 x p(t) dx q(t)x 0(4.69)
若 令x(k) y,则 可 把方 程 化 为y的n k阶 方 程
F (t, y, y,, y (nk) ) 0
若 能 求 得(4.58)的 通 解
y (t, c1,, cnk )

x(k) (t, c1,, cnk )
对 上 式 经 过k次 积 分,即 可 得(4.57 )的 通 解
(4.58)
t
e
2 dt t
dt
]
sin t
t
[c1
c2
t2 1 sin 2 t t 2 dt]
sin t
1t
[c1 c2 cot t]
t [c1 sin t c2 cos t]
解题步骤:
10 令y x,并令y为新的未知函数, x为新的自变量, 原方程化为
G(x, y, dy ,, d (n1) y ) 0
dx
dx ( n 1)
20 求上述方程的通解
y (t, c1,, cn1 )
30 解方程
dx dt
(t, c1,, cn1 )
即得原方程的通解.
例2 求 方 程x d 2 x ( dx)2 0的 通 解. dt 2 dt
引入新的未知函数 z y
方程变为
x1
dz dt
[2x1
p(t)x1 ]z
0
x1
dz dt
[2x1
p(t)x1 ]z
0
是一阶线性方程,解之得

y
z c2
c x12
e p(t)dt
1 e p(t)dt dt x12
c1
z
因而
x x1[c1 c2
1 e p(t)dt dt] x12
令c1 0, c2 1得(4.69)的一个解
dt 2
dt
x x1[c1 c2
1 e p(t)dt dt] (4.70) x12
例3 已 知x sin t 是 方 程d 2 x 2 dx x 0的解试求方程的通解.
t
dt 2 t dt
解 这里 由(4.70)得
p(t) 2 , t
x1
sin t
t
x
sin t
t
[c1
c2
t2 sin 2
dx
dx(k 1)
F (x, x,, x(n) ) 0 (4.59)
将这些表达式代入(4.59)可得
F (x, y, y dy , y( dy )2 y 2 d 2 y ,) 0
dx dx
dx 2
即有新方程
G(x, y, dy ,, d (n1) y ) 0
dx
dx ( n 1)
是关于x, y的n 1阶方程,比原方程(4.59)低一阶.
的非零解. 令
d 2 x p(t) dx q(t)x 0
dt 2
dt
x x1 y 则
x x1 y x1 y
代入(4.69)得
x x1 y 2x1 y x1y
(4.69)
x1 y [2x1 p(t)x1]y [x1 p(t)x1 q(t)x1]y 0

x1 y [2x1 p(t)x1]y 0
§4.3 高阶微分方程的降阶和幂级数 解法
4.3.1 可降阶的一些方程类型
n阶微分方程的一般形式:F (t, x, x,, x(n) ) 0
1. 不显含未知函数x
或更一般不显含未知函数及其直到k 1(k 0)阶导数的方程是
F (t, x(k) , x(k1) ,, x(n) ) 0
(4.57)
30 对上式经过k次积分,即可得(4.57)的通解
x (t, c1 ,, cn ), 这 里c1,, cn为 任意 常 数
例1 求 方 程d 5 x 1 d 4 x 0的 通 解. dt5 t dt 4
解令
d4x dt 4
y,
则方程化为
dy 1 y 0 dt t
这是一阶方程,其通解为 y ct,
y
x x1 y
(4.70)
这里c1, c2是常数
x2 x1
1 e p(t)dt dt x12


与x1之





数,பைடு நூலகம்
故x1
,
x
线
2



因此(4.69)的通解为
x x1[c1 c2
1 e p(t)dt dt]
(4.70)
x12
这里c1, c2是常数
d2x dt 2
p(t)
dx dt
q(t ) x
0(4.69)
解题步骤:
注:一般求(4.69)的解直接用公式(4.70)
10 令x x1 y, 原方程化为
x1 y [2x1 p(t)x1]y 0
20 令z y方程变为
解之得
x1
dz dt
[2x1
p(t)x1 ]z
0
z c e p(t)dt

x12
x x1[c1 c2
相关文档
最新文档