数学思想讲座心得体会

合集下载

心得体会数学50字(通用8篇)

心得体会数学50字(通用8篇)

心得体会数学50字(通用8篇)心得体会数学50字篇1____年11月16日,青岛市高中数学教研室组织全市各高中骨干教师在城阳三中观摩了两节数学公开课。

一节是柳老师所讲的“直线与圆的位置关系”;一节是董老师所讲的“直线与平面平行的判定”。

两位老师都有很扎实的教学功底,在提高学生课堂上的参与程度以及主动探究知识的积极性、引导等方面都有上佳表现。

师生配合默契,学生的情绪高涨,两节课都在和-谐、紧张的气氛下,既让学生获取了知识,又提升了学生思考问题、解决问题的能力。

其中很多方法与细节的处理,值得我学习和回味。

专家老师们的精彩点评也给我留下了深刻的印象。

将各位老师们的观点与自己在教学中的实际情况进行对照,使我感受颇多,受益匪浅。

学案分三部分:预习案、课堂案和巩固案。

教师于每节课后布置本节课的巩固案和下节课的预习案;上课时,根据学生自学时提出的问题或教师上课前利用自学检测收集的信息,结合本节课的重点、难点进行精讲答疑,课堂上采用“学生为主体,教师为主导”的探究性学习模式。

长期以来,在实际教学过程中,教师的主导地位一直在挤压着学生的主体性,不足以保证学生在学习过程中真正获得主体地位。

所以,人们过多地重视、强调-教师的教学技巧,过多地依靠教师的能力而缺乏有效的、容易仿效的机制。

学案的提出,在很大程度上弥补这些缺陷,使学生主体性和自主性的培养得到教学过程结构的保证,也使教师的教学主导作用得到了有效(而且有形的体现。

“学案导学”以学案教案为载体,以突出学生学习的主体性,培养学生学习能力、情感态度,提高课堂教学效率为目的,以“导学、诱思”为特点的学法指导教学策略体系。

与传统的教学方式相比较,其突出优点是发挥学生的主体作用,突出学生的自学行为,注重学法指导,强化能力培养,并注重学生间的互助交流,把学生由观众席彻底推向表演舞台。

通过观摩与讨论,我对“学案导学式”教学模式的理论有了更深的理解,对其实现方式有了切身的体会。

心得体会数学50字篇2新课程标准下要求教师在数学教学过程中充分理解和信任学生。

读《小学数学与数学思想方法》心得体会

读《小学数学与数学思想方法》心得体会

读《小学数学与数学思想方法》心得体会;(以下内容希望对您又所帮助!)一、教学进一步的升华;读《小学数学与数学思想方法》,对数学老师是一次思想和教学的提升,让我们能够明白数学的本质是什么?做为一名小学数学老师,我们究竟该进行怎样的教学?王教授告诉我们当面对新一轮课程改革,我们需要转变观念,逐步培养重视数学思想的意识,同时又需要在数学的专业素养上的提高自己,这;样才能更好地落实“四基”目标。

这也让我们明白不能纯粹地教会学生一些知识,一些解决问题的技巧,更重要的是关注学生的思维,帮助学生初步地学会数学思想。

全书分为上篇和下篇两部分,上篇主要阐述与小学数学有关的数学思想方法,下篇是义务教育人教版小学数学中的数学思想方法案例解读。

本书思想脉络清晰,上篇主要帮助教师认识数学思想方法,具有理论指导意义,下篇旨在通过生动形象的案例,让教师感悟如何传授数学思想,具有实践指导意义。

二、我和大家一起分享我学习第二节“数学思想方法的教学”的心得;此书读过之后,我发现王教授阐述二年级下册《表内除法(一)》的教学过程,回想起自己所教的还是发现自己有很多不足,我只顾教学生数学方法,忽略传授数学思想,例如从文中了解到除法在教学的过程中分五个模块让学生经历除法概念的形成过程做了很多铺垫,如设计参观科技园准备分食物的大情境,如图1-3,通过例1把6块糖果分成3份理解平均分,通过例2和例3体验平均分有两种实际情况及平均分的过程、方法与结果,再通过例4把12个竹笋平均分成4盘引出除法、除号的概念,最后通过例5把20个竹笋每4个放一盘引出被除数、除数和商的概念。

整个教学过程非常丰富,有观察、操作、演示、语言表达、画图、书写、符号特征、思考等多种活动,学生在已有的生活经验和积累的活动经验的基础上,逐步抽象出除法,初步理解除法的概念。

再通过适当的练习和利用乘法口诀求商,进一步理解除法的概念。

在这教学过程中,只有引导学生感受从直观操作的具体情境中抽象出除法概念的抽象思想,认识用除法符号表达的具有简洁性的符号化思想,体会用实物、图形帮助理解除法的具有直观性的数形结合思想,体会再出发中商随着被除数、除数的变化而变化的函数思想。

小学数学思想方法学习心得体会

小学数学思想方法学习心得体会

小学数学思想方法学习心得体会宁安市东京城镇小学苏艳最近利用教研时间重新学习了小学数学的一些思想方法:类比思想、转化思想、分类思想、代换思想、可逆思想、化归思想、整体思想、比较思想、假设思想、数形结合思想。

通过这次的学习,我结合多年的教学经验更加深刻地认识到学习并研究数学思想方法对于数学教学具有重大意义。

首先,小学教材体系就两条主线:一、数学知识;二、数学思想。

数学思想方法的掌握有利于教师深刻地认识数学教学内容,正确把握教材体系,以较高的观点分析与处理小学教材,学会分析教材,才能明确数学知识;而数学思想就是必须掌握了它的方法才能明确为什么要这样写,才能从整体上、本质去理解教材,也才能科学、灵活地设计教学方法,提高课堂教学效率。

其次,掌握数学思想方法有利于提高学生的数学素养,促进学生思维能力的培养。

我对类比思想颇有情愫。

类比就是将一类事物的某些相同方面进行比较,以另一事物的正确或谬误证明这一事物的正确或谬误,即让学生由旧事物的已知属性推出或猜想新事物也具有相同或类似属性的一种逻辑推理方法, 它包含特殊到特殊, 也包含一般到一般。

亚里士多德在《前分析篇》中指出:“类推所表示的不就是部分对整体的关系,也不就是整体对部分的关系。

”类比推理就是一种或然性推理,前提真结论未必就真。

要提高类比结论的可靠程度,就要尽可能地确认对象间的相同点。

在教学中可以通过渗透类比思想探究新知、建构知识网络、激发创新思维、加深对概念的理解。

由于小学生容易为表面上相似的类比所误导,所以在教学中可以通过由学生自己类比与使用多种类比,同时教师应明确指出类比推理可能失败之处。

罗丹说:自然总就是美的。

伽利略则宣称道:自然这本书就是用数学语言写成的。

哪里有数,哪里就有美。

数学美的魅力就是诱人的,数学美的力量就是巨大的,数学美的思想就是神奇的,它可以改变人们认为对数学枯燥无味的成见。

可见,掌握数学思想方法就是教师教学艺术展示的另一面。

小学数学基本思想学习体会宁安市东京城镇小学张海艳通过本月份“小学数学基本思想”的学习,我熟悉了解其内容,正如《数学课程标准(实验稿)》所指出的,数学教学活动中,教师应帮助学生在自主探索与合作交流中真正理解与掌握基本的数学思想与方法,形成解决问题的一些基本策略,体验解决问题策略的目的多样性,发展实践能力与创新精神,这也就是新的课程标准提出的总体目标之一。

数学思想方法理论学习的心得体会(通用15篇)

数学思想方法理论学习的心得体会(通用15篇)

数学思想方法理论学习的心得体会数学思想方法理论学习的心得体会(通用15篇)我们得到了一些心得体会以后,写心得体会是一个不错的选择,这么做可以让我们不断思考不断进步。

是不是无从下笔、没有头绪?以下是小编为大家收集的数学思想方法理论学习的心得体会,仅供参考,欢迎大家阅读。

数学思想方法理论学习的心得体会篇120xx年10月,我有幸成为田老师“省能手工作站”中的成员。

在田老师的带领下,我们团队积极开展活动,首先确立了第一个研讨主题—————“关于小学数学思想方法在课堂中的渗透”。

为了更好的开展课题研究活动,我们首先收集了许多资料、文献,进行基础理论学习,为后面的研究实践奠定良好的基础。

通过一次又一次的学习、交流,让我对数学思维能力培养的重要性和小学阶段常用的数学思维方法有了更新、更深刻的认识。

数学思维能力是数学能力的核心,是我们运用数学知识分析和解决问题能力的前提。

但数学思维能力的形成需要一个漫长过程,是离不开一节节数学课的积淀的。

我想,作为一名数学老师,在课堂上不仅仅要传授数学知识,更重要的是渗透数学思想方法,培养孩子创新独立能力,这样才能有助于学生形成良好的思维习惯和品质,使其终生受益。

一、注重独立思考当我们遇到新问题的时候,首先要给予学生独立思考判断的空间。

如:这个问题中已经给出的条件是什么,要干什么?需要用到哪些知识,怎么来解决比较合理等等。

当学生的思维判断有困难时,我们进行适当的点拨,或跟他们合作进行研究来解决。

在这样的过程中,学生的思维力会得到训练和提高。

二、强调实践操作在学生的学习过程中,我们要创设有利于质疑、探究的情境,让学生在独立学习的基础上学会与他人合作。

同时,引导学生主动参与、乐于探索、勤于动手、学思结合,把抽象的知识具体化、形象化,从中感受认识、理解、掌握知识,在解决问题的过程中提高思维能力。

三、提倡逆向思维课堂的40分钟是有限的,但学生的思维方向不能是单一的。

这就要求我们在教学设计是,充分研读教材、整合资源,同时把握顺向、逆向这两条思维主线,通过“观察、实验、比较、归纳、猜想、推理、反思”等活动,优化思维品质,提高思维能力,培养创新精神和实践能力。

《数学思想方法与中学数学》读书心得体会2篇

《数学思想方法与中学数学》读书心得体会2篇

《数学思想方法与中学数学》读书心得体会 (2) 《数学思想方法与中学数学》读书心得体会 (2)精选2篇(一)读《数学思想方法与中学数学》让我对数学的思维方式有了更深入的理解,也让我意识到数学思维对于解决问题和提高自己的能力有很大的帮助。

首先,这本书强调了数学的思维方法,即抽象思维和逻辑思维。

数学并不是简单地进行计算和应用公式,而是需要我们具备良好的思维能力。

通过抽象思维,我们能够将具体问题归纳为一般问题,并运用相关的数学方法进行求解。

逻辑思维则是保证我们能够正确地推理和论证,使我们的解答更加严谨和准确。

这让我明白到,学习数学不是死记硬背公式,而是要培养自己的思维能力,具备灵活运用数学知识解决问题的能力。

其次,这本书还介绍了数学的证明方法。

数学的证明是数学思维的重要组成部分,也是培养逻辑思维的重要方式。

通过学习数学的证明,不仅能够理解数学命题的真实性,还能够培养我们的推理能力。

这让我对数学的认识更加深入,也让我对解决问题有了更系统的思考方式。

最后,这本书还详细介绍了中学数学的一些重要内容,如代数、几何、概率与统计等。

通过学习这些数学的基础知识,我发现可以更好地应用数学思维方法解决实际问题。

这让我对数学的认识更加全面,也让我在学习中学数学时有了更明确的方向。

总的来说,读《数学思想方法与中学数学》让我对数学有了更深入的理解和认识。

数学思维方法和证明方法的学习让我明白了数学学习的重要性,也让我对解决问题有了更系统和科学的思考方式。

同时,对中学数学的学习和了解让我在实际应用中能够更好地运用数学知识。

这本书对我来说是一本非常有价值的数学学习指南,我会在以后的学习和实践中继续运用其中的思想和方法。

《数学思想方法与中学数学》读书心得体会 (2)精选2篇(二)《数学思想方法与中学数学》是一本很有启发性的数学读物,它对于提升中学数学思维能力和方法论非常有帮助。

在阅读这本书的过程中,我获得了一些深刻的体会。

首先,这本书的作者很善于引导读者思考数学问题的本质。

数学心得体会(通用17篇)

数学心得体会(通用17篇)

数学心得体会(通用17篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、工作计划、活动方案、规章制度、心得体会、演讲致辞、观后感、读后感、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, work plans, activity plans, rules and regulations, personal experiences, speeches, reflections, reading reviews, essay summaries, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!数学心得体会(通用17篇)在平日里,心中难免会有一些新的想法,往往会写一篇心得体会,从而不断地丰富我们的思想。

读《小学数学与数学思想方法》心得体会

读《小学数学与数学思想方法》心得体会

读《小学数学与数学思想方法》心得体会读《小学数学与数学思想方法》心得体会;(以下内容希望对您又所帮助!)一、教学进一步的升华;读《小学数学与数学思想方法》,对数学老师是一次思想和教学的提升,让我们能够明白数学的本质是什么?做为一名小学数学老师,我们究竟该进行怎样的教学?XXX告诉我们当面对新一轮课程改革,我们需要转变观念,逐步培养重视数学思想的意识,同时又需要在数学的专业素养上的提高自己,这;样才能更好地落实“四基”目标。

这也让我们明白不能纯粹地教会学生一些知识,一些解决问题的技巧,更重要的是关注学生的思维,帮助学生初步地学会数学思想。

全书分为上篇和下篇两部分,上篇主要阐述与小学数学有关的数学思想方法,下篇是义务教育人教版小学数学中的数学思想方法案例解读。

本书思想脉络清晰,上篇主要帮助教师认识数学思想方法,具有理论指导意义,下篇旨在通过生动形象的案例,让教师感悟如何传授数学思想,具有实践指导意义。

二、我和大家一起分享我研究第二节“数学思想方法的教学”的心得;此书读过之后,我发现XXX阐述二年级下册《表内除法(一)》的教学过程,回想起自己所教的还是发现自己有很多不足,我只顾教学生数学方法,忽略传授数学思想,例如从文中了解到除法在教学的过程中分五个模块让学生经历除法概念的形成过程做了很多铺垫,如设计参观科技园准备分食物的大情境,如图1-3,通过例1把6块糖果分成3份理解平均分,通过例2和例3体验平均分有两种实际情况及平均分的过程、方法与结果,再通过例4把12个竹笋平均分成第1页4盘引出除法、除号的概念,最后通过例5把20个竹笋每4个放一盘引出被除数、除数和商的概念。

整个教学过程非常丰富,有观察、操作、演示、语言表达、画图、书写、符号特征、思考等多种活动,学生在已有的生活经验和积累的活动经验的基础上,逐步抽象出除法,初步理解除法的概念。

再通过适当的练和利用乘法口诀求商,进一步理解除法的概念。

在这教学过程中,只有引导学生感受从直观操作的具体情境中抽象出除法概念的抽象思想,认识用除法符号表达的具有简洁性的符号化思想,体会用实物、图形帮助理解除法的具有直观性的数形结合思想,体会再出发中商随着被除数、除数的变化而变化的函数思想。

学习数学思想方法心得体会(最新6篇)

学习数学思想方法心得体会(最新6篇)

学习数学思想方法心得体会(最新6篇)学习数学思想方法心得体会篇1有了一个积极的学习态度,接下来就是方法的问题了。

其实,如果肯下功夫,肯钻研,是没有学不会的知识,掌握不了的概念的。

课前的预习很重要,预习后心里就有了底。

这样听课时就好比是一次复习。

关于听课时的状态,我崇拜的著名的数学教师孙维刚曾经说过这样一段话:“一个概念提出来了,不妨试着自己先给它下定义;一个定理或公式写出来了,自己先试着去证明它;一个例题写出来了,自己先试着分析、解出它。

让思维跑在老师的面前,这样听课,才会体会到思维的乐趣。

”写在这里和大家分享,希望大家能够从中得到一些启示。

数学的学习本身就包含很多的思想和概念,有时候这些思想概念是靠自己感悟获得的,但大多数时候他们是通过和别人的交流中获得的。

试着去和身边的同学、老师交流你的感想,利用各种机会和别人交流。

一定会有收获的!学有余力的同学可以看一些数学竞赛方面教程,开阔一下眼界。

就算是看不太懂也没有关系。

因为通过深层次的学习,你大体可以知道某一个独立的知识点在更高的能力层次上有什么要求。

这样反过来再看课本上的内容的时候,你就会恍然大悟——原来这么简单啊!平时有意识地培养自己对数学的兴趣,当然不能只把知识局限在所学的书本上。

我平时就喜欢读一些小册子,有的是讲数学家的故事的,有的是讲数学上的大发现,也有的是讲数学史上的有趣的故事。

配合着课本读,会提高你对数学的兴趣的。

当然,最实用的学好数学的方法就是肯下苦功夫。

孙维刚老师曾经说过:“要热爱枯燥和痛苦,要耐得住寂寞,要学会享受不是享受的享受。

”这其实也正暗示了“学数学如做人”,“不是享受的享受”对那些视数学为拦路虎的人永远不是享受,而只有那些钻进去了,在数学这个领域有了一定程度的“彻悟”的人才会把学习数学当成一种享受,并永远珍藏在心中。

学习数学思想方法心得体会篇2寒窗苦读,孜孜不倦;踏破黎明,披星归来。

新一轮期中考,几家欢喜几家愁?时间流向过去,但其中的经验教训仍在进行时,对未来依然受用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

听《在课堂教学中培养学生数学思想与方法
的探索与实践》讲座有感
时光,不言不语,一路前行。

看一叶飘零,知浅秋而至;望层林尽染,晓晚秋迟暮。

九月刚落下帷幕,十月早已悄然而至。

国庆节之后接到通知去参加刘主任的讲座,满心窃喜,又可以偷偷学点手艺了,课堂又可以充实一些了。

2018年10月11日,在二小西校区有幸聆听了刘主任的《在课堂教学中培养学生数学思想方法的探索与实践—让数学思想成为学生发展的隐形翅膀》的讲座,本来心中总是模糊不清却用忽隐忽现的数学思想方法,在这次讲座之后顿时豁然开朗,在之后的校内优质课蓬莱优质课准备中,帮助我深度挖掘了教材内容。

结合我的具体工作我的心得体会如下:数学思想方法是数学学科的精髓,是数学素养和重要内容之一。

学生只有领会了数学思想方法,才能有效地应用知识,形成能力,而数学思想方法在教学实践方面的应用,更能加强教师的数学思想方法教学意识,更新教学观念,形成有效的数学思想方法教学策略,提高教学水平。

第一,数学思想。

数学思想是人们对数学科学研究的本质,及规律的深刻认识。

它是指导学习数学,解决数学问题的思维方式、观点、策略、指导原则。

它具有导向性、统摄性、迁移性。

中学数学教学中的基本数学思想有对应思想(函数思想、数形结合思想),系统与统计思想(整体思想、最优化思想、统计思想),化归与辩证思想(化归思想、转换思想)等。

第二,数学方法。

数学方法是指某一数学活动过程的途径、程序、手段。

它具有过程性、层次性、可操作性。

中学数学教学中的基本数学方法:一是科学认识方法:观察与实验,比较与分类,归纳与类比,想象、直觉与顿悟;二是推理论证方法:综合法与分析法,完全归纳法与数学归纳法,演绎法、反证法与同一法。

第三,数学思想方法。

数学思想与数学方法既有差异性,又有同一性。

数学方法是数学思想的表现形式和得以实现的手段。

“方
法”指向“实践”。

数学思想是数学方法的灵魂,它指导方法的运用;数学思想与数学方法同属于数学方法论的范畴,它们有时是等同的,并没有明确的界限。

由于数学思想与数学方法的这种特殊关系,我们在中学数学教学中把它们统称为数学思想方法。

第四,数学思想方法教学。

因为数学教学内容始终反映着显形的数学知识(概念、定理、公式、性质等)和隐形的数学知识(数学思想方法)这两方面。

所以,在教学中,我们不仅应当注意显形的数学知识的传授,而且也应注意数学思想方法的训练和培养。

只有注意思想方法的分析,我们才能把课讲活、讲懂、讲深。

“讲活”,就是让学生看到活生生的数学知识的来龙去脉,形成过程,而不是死的数学知识;“讲懂”就是让学生真正理解有关的数学内容,而不是囫囵吞枣,死记硬背;“讲深”是指学生不仅能掌握具体的数学知识,而且也能感受、领会、形成、运用内在的思想方法。

正如波利亚强调:在数学教学中“有益的思考方式、应有的思维习惯”应放在教学的首位。

加强数学思想方法教学,必然对提高数学教学的质量起到积极的作用。

总之,教师要自觉帮助学生在积极参与数学学习中,重视数学思想的渗透和数学活动经验的积累。

关注学生隐性的思维经验,隐性的心理经验。

相关文档
最新文档