函数的周期性(基础+复习+习题+练习)

合集下载

函数的周期性--经典例题

函数的周期性--经典例题

函数的周期性--经典例题函数的周期性周期函数的定义:对于函数()x f ,存在非0常数T ,使得对于其定义域内总有()()x f T x f =+,则称的常数T 为函数的周期。

周期函数的性质:1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;2、若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。

3、若函数()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数4、y=f(x)满足f(x+a)=()x f 1(a>0),则f(x)为周期函数且2a 是它的一个周期。

5、若函数y=f(x)满足f(x+a)=()x f 1-(a>0),则f(x)为周期函数且2a是它的一个周期。

6、1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数.7、1()()1()f x f x a f x ++=--,则()x f 是以4T a =为周期的周期函数.8、若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2(b-a )是它的一个周期。

9、函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;10、函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数;11、若偶函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且2a 是它的一个周期。

12、若奇函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且4a 是它的一个周期。

13、若函数y=f(x)满足f(x)=f(x-a)+f(x+a)(a>0),则f(x)为周期函数,6a 是它的一个周期。

函数的周期性练习题

函数的周期性练习题

函数的周期性练习题函数是数学中的重要概念之一,它描述了输入和输出之间的对应关系。

在数学中,周期性函数是一类特殊的函数,它们具有周期性的特征。

本文将为大家介绍一些与函数周期性相关的练习题,以帮助大家更好地理解和应用函数的周期性。

练习题1:正弦函数的周期性考虑函数y = sin(x)。

我们知道正弦函数是一个周期为2π的函数,即在区间[0, 2π]内完整地重复自身。

请回答以下问题:1. 在区间[0, π]内,sin(x)的取值范围是多少?2. 在区间[π, 2π]内,sin(x)的取值范围是多少?3. 在区间[0, 4π]内,sin(x)的取值范围是多少?4. 在区间[0, 8π]内,sin(x)的取值范围是多少?练习题2:余弦函数的周期性考虑函数y = cos(x)。

余弦函数也是一个周期为2π的函数,它与正弦函数在图像上有类似的特点。

请回答以下问题:1. 在区间[0, π]内,cos(x)的取值范围是多少?2. 在区间[π, 2π]内,cos(x)的取值范围是多少?3. 在区间[0, 4π]内,cos(x)的取值范围是多少?4. 在区间[0, 8π]内,cos(x)的取值范围是多少?练习题3:周期性函数的图像变换现在考虑函数y = sin(x) + 1。

这个函数是对正弦函数进行了图像上的平移。

请回答以下问题:1. 在区间[0, 2π]内,sin(x) + 1的取值范围是多少?2. 在区间[0, 4π]内,sin(x) + 1的取值范围是多少?3. 在区间[0, 8π]内,sin(x) + 1的取值范围是多少?练习题4:周期性函数的复合考虑函数y = sin(2x)。

这个函数是对正弦函数进行了图像上的压缩。

请回答以下问题:1. 在区间[0, π]内,sin(2x)的取值范围是多少?2. 在区间[0, 2π]内,sin(2x)的取值范围是多少?3. 在区间[0, 4π]内,sin(2x)的取值范围是多少?练习题5:周期性函数的复合和平移考虑函数y = cos(2x - π)。

高中函数周期性问题(含训练题及解析)

高中函数周期性问题(含训练题及解析)

f x-【详解】(2由条件可知函数在区间)(252f=函数在区间[0,4C .(sin)(cos )33f f ππ> D .33(sin )(cos )22f f >【答案】B 【解析】因为()()2f x f x =+,所以()f x 周期为2,因为当[]3,4x ∈时, ()2f x x =-单调递增,所以[]()1,0?,x f x 时∈- 单调递增,因为()f x 偶函数,所以[]()0,1,x f x ∈时 单调递减,因为110sin cos 122<<<,1sin1cos10,>>> 1> sin cos 033ππ>>,331sin cos 022>>> 所以11sin cos 22f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭, ()()sin1cos1f f <, sin cos 33f f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭ ,33sin cos 22f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭.6.已知()f x 是在R 上的奇函数,满足()()2f x f x =-,且[]0,1x ∈时,函数()21x f x =-,函数()()log (1)a g x f x x a =->恰有3个零点,则a 的取值范围是( )A .10,9⎛⎫ ⎪⎝⎭B .11,95⎛⎫ ⎪⎝⎭C .()1,5D .()5,9【答案】D【解析】由题得,令()log ah x x =,定义域为0x >,()()log (1)a g x f x x a =->恰有3个零点,即()f x 和()h x 的图像在定义域内有3个交点,()(2)(2)[2(2)](4)(4)f x f x f x f x f x f x =-=--=---=--=-,故函数()f x 的一个周期是4,又[]0,1x ∈时,函数()21x f x =-,且图像关于轴x=1对称,由此可做出函数(),()f x h x 图像如图,若两个函数有3个交点,则有log 51log 91a a <⎧⎨>⎩,解得59a <<,则a 的取值范围是(5,9).7.已知函数()y f x =的定义域为R ,且满足下列三个条件:∵任意[]12,4,8x x ∈,当12x x <时,都有。

三角函数的周期性练习题

三角函数的周期性练习题

三角函数的周期性练习题在数学中,三角函数是研究角的函数关系,常见的三角函数有正弦函数、余弦函数和正切函数。

这些函数在周期性方面具有重要的特点,本文将通过一些练习题来探讨三角函数的周期性。

1. 练习题1:正弦函数的周期正弦函数的基本周期是2π,即当自变量x增加2π时,正弦函数的值会重复出现。

考虑正弦函数y = sin(x),当x = π/6 时,求y的值。

解答:由于正弦函数的周期是2π,我们可以将x = π/6 用2π来表示,即x = π/6 + 2πn,其中n为整数。

代入正弦函数的表达式,得到y = sin(π/6 + 2πn)。

根据三角函数的性质,sin(π/6) 的值为1/2。

所以,y = sin(π/6 + 2πn) = 1/2,其中n为整数。

2. 练习题2:余弦函数的周期余弦函数的基本周期也是2π。

考虑余弦函数y = cos(x),当x = 3π/4 时,求y的值。

解答:同样地,我们可以将x = 3π/4 用2π来表示,即x = 3π/4 +2πn,其中n为整数。

代入余弦函数的表达式,得到y = cos(3π/4 + 2πn)。

根据三角函数的性质,cos(3π/4) 的值为-√2/2。

所以,y = cos(3π/4 + 2πn) = -√2/2,其中n为整数。

3. 练习题3:正切函数的周期正切函数的周期是π。

考虑正切函数y = tan(x),当x = π/3 时,求y的值。

解答:正切函数的周期是π,因此当x = π/3 + πn,其中n为整数时,正切函数的值会重复出现。

代入正切函数的表达式,得到y = tan(π/3 + πn)。

根据三角函数的性质,tan(π/3) 的值为√3。

所以,y = tan(π/3 + πn) = √3,其中n为整数。

通过这些练习题,我们可以看到三角函数的周期性特点。

正弦函数、余弦函数和正切函数在固定的周期内,它们的函数值会重复出现。

这一特性在实际问题的建模和解决中具有重要的应用价值。

高中数学函数的周期性练习

高中数学函数的周期性练习

高中数学函数的周期性练习题型一:求周期问题【例1】 已知()f x 是定义在R 上的函数,(10)(10)f x f x +=-且(20)(20)f x f x -=-+,则()f x 是( )A . 周期为20的奇函数 B. 周期为20的偶函数C. 周期为40的奇函数D. 周期为40的偶函数【例2】 求函数tan cot y αα=- 的最小正周期【例3】 定义在R 上的函数()f x 满足(3)()0f x f x ++=,且函数32f x ⎛⎫- ⎪⎝⎭为奇函数.给出以下3个命题:①函数()f x 的周期是6;②函数()f x 的图象关于点302⎛⎫- ⎪⎝⎭,对称; ③函数()f x 的图象关于y 轴对称,其中,真命题的个数是( ).A .3B .2C .1D .0【例4】 若y =f (2x )的图像关于直线2a x =和()2b x b a =>对称,则f (x )的一个周期为( ) A .2a b + B .2()b a - C .2b a - D .4()b a -【例5】 已知函数()f x 对于任意,a b ∈R ,都有()()f a b f a b ++-2()()f a f b =⋅,且(0)0f ≠.⑴求证:()f x 为偶函数;⑵若存在正数m 使得()0f m =,求满足()()f x T f x +=的1个T 值(T ≠0).典例分析【例6】 设()f x 是定义在R 上的偶函数,其图象关于直线1x =对称.且对任意121,[0,]2x x ∈,都有1212()()()f x x f x f x +=⋅,(1)0f a =>.⑴求1()2f 及1()4f ; ⑵证明()f x 是周期函数;题型二:求值问题【例7】 已知定义在R 上的函数()f x 的图象关于点304⎛⎫- ⎪⎝⎭,成中心对称图形,且满足3()2f x f x ⎛⎫=-+ ⎪⎝⎭,(1)1f -=,(0)2f =-.那么,(1)(2)(2006)f f f +++L 的值是( ) A .1 B .2 C .1- D .2-【例8】 (2005天津卷)设f (x )是定义在R 上的奇函数,且()y f x =的图象关于直线12x =对称,则f (1)+ f (2)+ f (3)+ f (4)+ f (5)=_0_______________.【例9】 (2006年安徽卷理)函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________。

高中高考函数的周期性复习资料

高中高考函数的周期性复习资料

函数的周期性一.知识点:1.周期函数的定义:对于函数f(x),如果存在一个非零常数T,使得定义域内任何值f(x+T)=f(x),那么就称f(x)为周期函数,T为f(x)的周期。

2.周期函数的性质:(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。

(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。

(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。

(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。

(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。

(6)周期函数f(x)的定义域M必定是至少一方无界的集合3.判定定理:定理1. 若f(x)是在数集M上以T*为最小正周期的周期函数,则K f(x)+C(K≠0)和1/ f(x)分别是集M和集{X/ f(x)≠0,X ∈M}上的以T*为最小正周期的周期函数。

定理2. 若f(x)是集M上以T*为最小正周期的周期函数,则f(ax+b)是集{x|ax+b∈M}上的以T/ a为最小正周期的周期函数,(其中a、b为常数)。

定理3. 设f(u)是定义在集M上的函数,u=g(x)是集M1上的周期函数,且当X∈M1时,g(x)∈M,则复合函数f(g(x))是M1上的周期函数。

定理4. 设f1(x)、f2(x)都是集合M上的周期函数,T1、T2分别是它们的周期,若T1/T2∈Q则它们的和差与积也是M上的周期函数,T1与T2的公倍数为它们的周期。

4.几个常见常考周期函数的关系式:(其中a≠0)(1)f(x+a)= -f(x) =>f(x+2a)=f(x)(2)f(x+a)=1/f(x) =>f(x+2a)=f(x)(3)f(x+a)= -1/f(x) =>f(x+2a)=f(x)(4)若奇函数f(x)的图像关于直线x=a对称,则f(x+4a)=f(x)(5)若偶函数f(x)的图像关于直线x=a对称,则f(x+2a)=f(x)二.典型例题(难):例题1:已知定义在R上的奇函数f(x)的图像关于直线x=1对称,则f(1)+f(2)+…+f(2019)=_______例题2:已知定义在R上的函数f(x)满足f(x+2)=12f(x)且当x∈[0,2]时,f(x)= -2sinπ2x①若当x∈[ -4,-2]时,f(x)≥t➖9t恒成立,则t的取值范围为________②函数g(x)=f(x) ➖12log16X 零点的个数为________例题答案:例题一:0 例题二:t≤9或0<t≤1 ; 5三.基础例题1.若函数f(x)=x2+bx+c对一切实数都有f(x+2)=f(2 -x)则有()A.f(2)<f(1)<f(4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)2.已知定义在R上的函数f(x)满足f(-x)= - f(x),f(3-x)=f(x),则f(2019)=()A.- 3 B.0 C.1 D.33.已知定义在R上的函数f(x)满足:y=f(x - 1)的图像关于点(1,0)对称,且当0≥0时恒有f(x)=f(x+2),当x∈[0,1]时,f(x)=ex – 1,则f(2016)+f(-2015)=()A.1 – e B. e – 1 C. – 1 – e D.e+14.定义在R上奇函数f(x)满足f(x+2)= -f(x),且在[0,2)上单调递减,则下列结论正确的是()A.0<f(1)<f(3) B. f(3)<0<f(1)C.f(1)<0<f(3) D. f(3)<f(1)<05.已知函数f(x)的图像关于点(- 3 ,2 )对称,则函数h(x)=f(x+1)- 3的图像的对称中心是_______6.设f(x)是定义在R上的奇函数,且在( -∞,0 )上是减函数,f(-2)=0,则xf(x)<0的解集为________7.已知f(x),g(x)都是定义在R上的函数,且f(x)为奇函数,g(x)的图像关于直线x=1对称,则下列四个结论中错误的是()A.y=g[f(x)+1]为偶函数 B.y=g[f(x)]为奇函数C.函数y=f[g(x)]的图像关于直线x=1对称D.y=f[g(x+1)]为偶函数8.定义在R上得函数f(x)满足f( - x)=f(x),且当x≥0时,f(x)={−x2+1,0≤x≤12−2x,x≥1若对任意得x∈[m,m+1],不等式f(1-x)≤f(x+m)恒成立,则实数m的最大值是()A.- 1 B.12C. - 13D.13答案:1. A由已知得:对称轴为x=2,由于抛物线开口向上,所以越靠近对称轴值越小2.B∵f(- x)= - f(x),∴f(3 - x)= - f(x - 3),且f(0)=0.又∵f(3 - x)=f(x),∴f(x)= - f(x - 3),∵f(x - 3)= - f(x - 6),∴f(x)=f(x - 6),∴f(x)是周期为6的函数,∴f(2019)=f(6×336+3)=f(3)=(0)=03.A∵y=f(x - 1)的图像关于点(1,0)对称,∴f(x)的图像关于远点对称,∵当x≥0时恒有f(x)=f(x+2),∴函数f(x)的周期为2∴f(2016)+f(- 2015)=f(0)- f(1)=1 – e4.C由函数f(x)时定义在R上的奇函数,得f(0)=0,由f(x+2)= - f(x),得f(x+4)= - f (x+2)=f(x),故函数f(x)是以4为周期的周期函数∴f(3)=f(- 1)又∵f(x)在[0,2)上单调递减,∴函数f(x)在(- 2,2 )上单调递减∴f(-1)>f(0)>f(1)5.(- 4,- 1)函数h(x)=f(x+1)- 3的图象是由函数f(x)的图像向左平移1个单位,再向下平移1个单位,再向下平移3个单位得到的,又f(x)的图像关于点(- 3,2)对称,所以函数h(x)的图像的对称中心为(-4,-1)6.(-∞,-2]∪[0,2](1)x=0时,xf(x)=0,满足要求;(2)x<0时xf(x)≤0,所以,f(x)≥0f(x)在(-∞,0)上是减函数,f(-2)=0所以,x≤-2(3)x>0时,xf(x)≤0,所以,f(x)≤0f(x)为R上的奇函数,且在(-∞,0)上是减函数,所以在(0,+∞)上是减函数,f(2)=0f(x)≤0,解得,0<x≤2所以,不等式 xf(x)≤0 的解集为(-∞,-2]∪[0,2]7. B已知得f (- x )= - f (x ),g (1 - x )=g (1+x ), ∵g[f(-x)+1]=g[ - f(x)+1]=g[f(x)+1],∴y=g[f(x)+1]为偶函数∵f[g(x)]=f[g(2 - x)]∴y=f[g(x)]得图像关于直线x=1对称∵f[g( - x+1)]=f[g(x+1)]∴y=f[g(x+1)]为偶函数∵g[f( - x)]=g[ - f(x)]=g[2+f(x)]∴y=g[f(x)]不是基函数8. C由题知函数f(x)为偶函数,且当x ≥0时,函数f(x)为减函数,则当x <0时,函数f (x )为增函数。

函数的周期性(基础复习习题练习)

函数的周期性(基础复习习题练习)

函数的周期性(基础复习习题练习)课题:函数的周期性考纲要求:了解函数周期性、最⼩正周期的含义,会判断、应⽤简单函数的周期性.教材复习()1 周期函数:对于函数()y f x =,如果存在⾮零常数T ,使得当x 取定义域内的任何值时,都有,那么就称函数()y f x =为周期函数,称T 为这个函数的⼀个周期.()2最⼩正周期:如果在周期函数()f x 的所有周期中的正数,那么这个最⼩正数就叫作()f x 的最⼩正周期.基本知识⽅法 1.周期函数的定义:对于()f x 定义域内的每⼀个x ,都存在⾮零常数T ,使得 ()()f x T f x +=恒成⽴,则称函数()f x 具有周期性,T 叫做()f x 的⼀个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最⼩正数叫()f x 的最⼩正周期. 2.⼏种特殊的抽象函数:具有周期性的抽象函数:函数()y f x =满⾜对定义域内任⼀实数x (其中a 为常数),① ()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;②()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数;③()()1f x a f x +=±,则()x f 是以2T a =为周期的周期函数;④()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数;⑤1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数. ⑥1()()1()f x f x a f x -+=-+,则()x f 是以4T a =为周期的周期函数. ⑦1()()1()f x f x a f x ++=-,则()x f 是以4T a =为周期的周期函数. ⑧函数()y f x =满⾜()()f a x f a x +=-(0a >),若()f x 为奇函数,则其周期为4T a =,若()f x 为偶函数,则其周期为2T a =.⑨函数()y f x =()x R ∈的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;⑩函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;⑾函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数;3.判断⼀个函数是否是周期函数要抓住两点:⼀是对定义域中任意的x 恒有()()f x T f x +=;⼆是能找到适合这⼀等式的⾮零常数T ,⼀般来说,周期函数的定义域均为⽆限集.4.解决周期函数问题时,要注意灵活运⽤以上结论,同时要重视数形结合思想⽅法的运⽤,还要注意根据所要解决的问题的特征来进⾏赋值.问题1.(06⼭东)已知定义在R 上的奇函数()f x 满⾜(2)()f x f x +=-,则(6)f 的值为 .A 1- .B 0 .C 1 .D 2问题2.()1(00上海) 设()f x 的最⼩正周期2T =且()f x它在区间[]0,1上的图象如右图所⽰的线段AB ,则在区间[]1,2上, ()2已知函数()f x 是周期为2的函数,当11x -<<时,2()1f x x =+当1921x << 时,()f x 的解析式是 ()3 ()x f 是定义在R 上的以2为周期的函数,对k Z ∈,⽤k I 表⽰区间已知当0x I ∈时,()2f x x =,求()x f 在k I 上的解析式。

函数的周期性(基础+复习+习题+练习).docx

函数的周期性(基础+复习+习题+练习).docx

基本知识方法1.周期函数的定义:对于 f (X)定义域内的每一个X ,都存在非零常数T ,使得f(x TH f (X)恒成立,则称函数f (X)具有周期性,T叫做f(x)的一个周期,则kT( k∙ Z,k=O)也是f (X)的周期,所有周期中的最小正数叫 f (X)的最小正周期2. 几种特殊的抽象函数:具有周期性的抽象函数:函数y = f X满足对定义域内任一实数X (其中a为常数),①fx=fχ∙a ,贝U y=fx是以T = a为周期的周期函数;②f X ∙ a = -f X ,则f X是以T ≡2a为周期的周期函数;1③f X ∙ a,贝U f X是以T =2a为周期的周期函数;f(X)④f X a = f X -a ,则f X是以T =2a为周期的周期函数;⑤f (X a) J - f (X),贝U f X是以T =2a为周期的周期函数1+ f(x)⑥f(Xa^-Fff,则fx是以T s为周期的周期函数⑦f(X ∙ a) = 1 f (X),贝y f X是以T =4a为周期的周期函数.1-f(χ)1 .已知定义在R上的奇函数f (X)满足f(X • 2) = -f (X),贝U f⑹的值为A. -1B. 0C. 1D. 2 22(1)设f(x)的最小正周期T =2且f (X)为偶函数,它在区间1.0, 1上的图象如右图所示的线段AB,则在区间∣1,2 ]上,f (X)=-----------函数的周期性2已知函数f(χ)是周期为2的函数,当-1:::x:::1时,f(x) = χ2∙1 , 当19 :::X ::: 21时,f (X)的解析式是___________________3 f X是定义在R上的以2为周期的函数,对k∙ Z ,用I k表示区间2k-1,2k∙11, 已知当X I0时,f X = X2,求f X在I k上的解析式。

3. 1定义在R上的函数f X满足f X A f X 2 ,当X 3,5】时,fπλ(πλf (x )= 2 - X -4 ,贝U A. f sin —JC f cos—; B- f (Sin1 )> f (COSI);I 6丿V 6 JC2兀、f2兀、C. f . cos一< f . Sin 一: D- f (COS2)A f (sιn2 )I 3 丿I 3 J2 设f (X)是定义在R上以6为周期的函数,f (X)在(0,3)内单调递减,且y = f (X)的图像关于直线X = 3对称,则下面正确的结论是A. f (1.5) ::f(3.5) ::f (6.5)B. f (3.5) ::f(1.5) ::f(6.5)C. f (6.5) :: f(3.5) ::: f (1.5)D. f(3.5) ::: f (6.5) :: f (1.5)4.已知函数f(x)是定义在(-∞,+ ∞)上的奇函数,若对于任意的实数X≥0,都有f(x+2)=f(x), 且当x∈[0,2)时,•';•二’‘工,'— 1 ',贝U f(-2013)+f(2014) 的值为5. 已知是'上最小正周期为2的周期函数,且当' -时,' ,则函数的图象在区间[0,6]上与轴的交点的个数为________________则"沁=6. 已知f(X)为偶函数,且f(2+X)=f(2-X) ,当-2≤X≤ 0 时,一 -;若•「,… 一,7. 已知定义在R 上的奇函数f 迥,满足/(j →) = -ΛJ ),且在区间上是增函数,则()o A: B : C :' ■D :;:廷:密:Y 曲氏A. B.2 + M C. 2 - 2√2D. 29定义在R 上的函数f X ,对任意χ. R ,有f χ . y . f x _y =2f χ f y ,且fOF ,1求证:fO=1 ;2判断f X 的奇偶性;3若存在非零常数c ,使 2,①证明对任意x∙ R 都有f χ ∙ c = -f χ成立;②函数f X 是不是周期函数,为什么?8.已知函数定义在R 上,对任意实数X 有f{τ) I 2v2,若函数 "=1'的图象关于直线对称,,则」(则"沁=8.已知f (X)是定义在R 上的奇函数,满足f (X • 2) = - f (X),且χ∙ [0, 2时, f(x)= 2x- X . 1求证:f (X)是周期函数;2当χ∙ [2, 4]时,求f(x)的表达式;3 计算 f (1) +f (2) +f ( 3) +……+f (2013)9. ( 05朝阳模拟)已知函数f (X)的图象关于点-3,0对称,且满足f(x)--f(χP), I 4丿2课后作业:1. ( 2013榆林质检)若已知f(x)是R 上的奇函数,且满足f(χ∙4)=f(x),当X 0时,f(x)=2χ2 ,贝U f(7)等于 A -2B. 2C.-98D. 982. 设函数f X ( X ∙ R )是以3为周期的奇函数,且 f 11, f 2 = a ,则A. a 2B. a —2C. a 1D. a -13.函数f(x)既是定义域为 R 的偶函数,又是以2为周期的周期函数,若f (X)在∣-1,0 1上是减函数,那么 f (X)在∣2,3 1上是A.增函数B.减函数C.先增后减函数D.先减后增函数,记 f n (X )= f{ f [ f f (X )]},则 f 2007 (X) X 1 n 个 fI 3 I5.已知定义在R 上的函数f (X)满足f(X ^-f x - ,且 f -2=3,则 f (2014)=6.设偶函数 f (x)对任意X R , 1,且当X t 3,-2]时, f(x)f (X )=2x , A.--7则 f (113.5)= B. - C.-7D.- 57.设函数 f (X)是定义在R 上的奇函数,对于任意的1 - f(X ) χ∙ R ,都有 f(x T)= 1 f(X),当 O :: X ≤ 1 时,f (X) =2x ,则 f(11∙5A.1 -1B. 1C.-2又f (-1) =1 , f(0) 一2 ,求f (1) f(2) f (3)…f (2006)的值高考真题:1. f (x)是定义在R 上的以3为周期的奇函数,且 f(2)=0在区间0,6内解的个数的最小值是A. 2B. 3C. 4D. 52.定义在R 上的函数f(x)满足f (x ∙6) = f(x),当-3 ≤ X ” T 时,2f(x) =p x 2 ,当-1 ≤ X ::3时,f (X) =X ,则 f(1) f(2) f(3) —f (2012)=A. 335B. 338C. 1678D. 20123•已知函数f (x)为R 上的奇函数,且满足 f(χ∙2)=-f(x), 当 0 ≤ X <1 时,f(x) X ,贝U f (7.5)等于 A 0.5B. -0.5C. 1.5D. -1.514.函数f X 对于任意实数X 满足条件f X • 2,若f 1 - -5 ,f(X )则 f f 5= ___________7.设f(x)是定义在R 上的奇函数,且 目=f (X)的图象关于直线对称,则 f (1) f (2)f(3) f(4) f(5)=8.设函数 f (x)在上满足 f (2 -x) = f (2 ∙ x), f (7 -x) = f (7 ∙ x),且在闭区 间 0,7 1 上,只有 f(1)= f(3) =0 .(I )试判断函数 y = f (X)的奇偶性;(∏)试求方程f(X) =0在闭区间∣-2005,20051上的根的个数,并证明你的结论.5.已知 f (x)是周期为2的奇函数,当0:::x”:1时,f(x) 3 5=f( ), c= f(),则2 2 设 a = f (6),b5 A. a ::: :::C. C ::: b ::: a =Ig X.D. c :: a b 6.定义在R 上的函数 f(x)既是偶函数又是周期函数,若f (X)的最小正周期是二,且当 χ∙ [0, 2] ^, f (X H SinX ,则 f5T 的值为A. -12B.丄2C. 一 3D. 23。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的周期性
基本知识方法
1.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得 ()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,
则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期. 2.几种特殊的抽象函数:具有周期性的抽象函数:
函数()y f x =满足对定义域内任一实数x (其中a 为常数),
① ()()f x f x a =+,则()y f x =是以T a =为周期的周期函数; ②()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数;
③()()
1
f x a f x +=±
,则()x f 是以2T a =为周期的周期函数; ④()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数;
⑤1()
()1()
f x f x a f x -+=
+,则()x f 是以2T a =为周期的周期函数.
⑥1()
()1()
f x f x a f x -+=-
+,则()x f 是以4T a =为周期的周期函数.
⑦1()
()1()
f x f x a f x ++=
-,则()x f 是以4T a =为周期的周期函数.
1.已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(6)f 的值为
.A 1- .B 0 .C 1 .D 2
2.(1)设()f x 的最小正周期2T =且()f x 为偶函数,
它在区间[]0,1上的图象如右图所示的线段AB ,则在区间[]1,2上,
()f x =
()2已知函数()f x 是周期为2的函数,当11x -<<时,2()1f x x =+,
当1921x << 时,()f x 的解析式是
()3 ()x f 是定义在R 上的以2为周期的函数,对k Z ∈,用k I 表示区间(]21,21k k -+,
已知当0x I ∈时,()2f x x =,求()x f 在k I 上的解析式。

3.()1定义在R 上的函数()x f 满足()()2+=x f x f ,当[]5,3∈x 时,
()42--=x x f ,则 .A sin cos 66f f ππ⎛⎫⎛
⎫< ⎪ ⎪⎝⎭⎝
⎭; .B ()()sin1cos1f f >;
.C 22cos sin 33f f ππ⎛⎫⎛
⎫< ⎪ ⎪⎝⎭⎝
⎭ .D ()()cos2sin 2f f >
()2 设()f x 是定义在R 上以6为周期的函数,()f x 在(0,3)内单调递减,
且()y f x =的图像关于直线3x =对称,则下面正确的结论是 .A (1.5)(3.5)(6.5)f f f << .B (3.5)(1.5)(6.5)f f f << .C (6.5)(3.5)(1.5)f f f << .D (3.5)(6.5)(1.5)f f f << 4. 已知函数f(x)是定义在(-∞,+∞)上的奇函数,若对于任意的实数x≥0,都有f(x+2)=f(x),且当x ∈[0,2)时,,则f(-2013)+f(2014)的值
为 5. 已知是
上最小正周期为2的周期函数,且当
时, ,则函

的图象在区间[0,6]上与轴的交点的个数为
6. 已知f(x)为偶函数,且f(2+x)=f(2-x),当-2≤x≤0时,
;若


则=
7. 已知定义在上的奇函数,满足,且在区间上是增函数,则()。

A:
B:
C:
D:
8. 已知函数定义在R上,对任意实数x有,若函数
的图象关于直线对称,,则( )
A.
B.
C.
D. 2
9.定义在R上的函数()x f
,对任意R
x∈,有()()()()y f x f
y
x
f
y
x
f2
=
-
+
+
,且
()0 0≠
f
,()1
求证:
()1
0=
f

()2
判断
()x f
的奇偶性;
()3
若存在非零常数c,使
2
=




⎛c
f
,①证明对任意R
x∈都有()()x f
c
x
f-
=
+
成立;
②函数()x f
是不是周期函数,为什么?
课后作业:
1.(2013榆林质检)若已知()f x 是R 上的奇函数,且满足(4)()f x f x +=,当()0,2x ∈时,2
()2f x x =,则(7)f 等于 .A 2- .B 2 .C 98- .D 98
2.设函数()f x (x R ∈)是以3为周期的奇函数,且()()11,2f f a >=,则
.A 2a > .B 2a <- .C 1a > .D 1a <-
3.函数()f x 既是定义域为R 的偶函数,又是以2为周期的周期函数,若()f x 在[]1,0-上
是减函数,那么()f x 在[]2,3上是
.A 增函数 .B 减函数 .C 先增后减函数 .D 先减后增函数 4.设1
()1x f x x -=
+,记(){[()]}n n f
f x f f f f x =⋅⋅⋅14243个,则2007()f x =
5.已知定义在R 上的函数()f x 满足3()2f x f x ⎛
⎫=-+ ⎪⎝
⎭,且()23f -=,
则(2014)f =
6.设偶函数()f x 对任意x R ∈,都有1
(3)()
f x f x +=-
,且当[]3,2x ∈--时, ()2f x x =,则(113.5)f =
.A 27- .B 27 .C 15- .D 15
7.设函数()f x 是定义在R 上的奇函数,对于任意的x R ∈,都有1()
(1)1()f x f x f x -+=
+,
当0x <≤1时,()2f x x =,则(11.5)f = .A 1- .B 1 .C 12 .D 1
2
-
8.已知()f x 是定义在R 上的奇函数,满足(2)()f x f x +=-,且[0,2]x ∈时,
2()2f x x x =-.()1求证:()f x 是周期函数;()2当[2,4]x ∈时,求()f x 的表达式;
()3计算f (1)+f (2)+f (3)+……+f (2013)
9.(05朝阳模拟)
已知函数()f x 的图象关于点3,04⎛⎫
- ⎪⎝⎭
对称,且满足3()()2f x f x =-+,又(1)1f -=,(0)2f =-,求(1)(2)(3)f f f +++…(2006)f +的值
高考真题:
1.)(x f 是定义在R 上的以3为周期的奇函数,且0)2(=f 在区间()0,6内解
的个数的最小值是 .A 2 .B 3 .C 4 .D 5
2.定义在R 上的函数()f x 满足(6)()f x f x +=,当3-≤1x <-时,
()2
()2f x x =-+,当1-≤3x <时,()f x x =,则(1)(2)(3)(2012)f f f f +++=g
g g .A 335 .B 338 .C 1678 .D 2012
3.已知函数)(x f 为R 上的奇函数,且满足(2)()f x f x +=-, 当0≤1x <时,()f x x =,则(7.5)f 等于
.A 0.5 .B 0.5- .C 1.5 .D 1.5-
4.函数()f x 对于任意实数x 满足条件()()
1
2f x f x +=
,若()15f =-, 则()()5f
f =
5.已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =
设63(),(),52a f b f ==5
(),2
c f =则
.A a b c << .B b a c << .C c b a << .D c a b << 6.定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期
是π,且当]2,
0[π
∈x 时,x x f sin )(=,则53
f π
⎛⎫
⎪⎝⎭
的值为
.A 21-
.B 2
1
.C 2
3-
.D
2
3 7.设)(x f 是定义在R 上的奇函数,且)(x f y =的图象关于直线2
1=
x 对称,则(1)(2)(3)(4)(5)f f f f f ++++=
8.设函数()f x 在(,)-∞+∞上满足(2)(2)f x f x -=+,(7)(7)f x f x -=+,
且在闭区间[]0,7上,只有(1)(3)0f f ==. (Ⅰ)试判断函数()y f x =的奇偶性;
(Ⅱ)试求方程()0f x =在闭区间[]2005,2005-上的根的个数,并证明你的结论.。

相关文档
最新文档