八年级数学上学期12月月考试题(含解析)

合集下载

2021-2022学年江苏省苏州市高新一中八年级(上)月考数学试卷(12月份)(解析版)

2021-2022学年江苏省苏州市高新一中八年级(上)月考数学试卷(12月份)(解析版)

2021-2022学年江苏省苏州市高新一中八年级第一学期月考数学试卷(12月份)一.选择题(本大题共有8小题,每小题2分,共16分)1.3的平方根是()A.±B.9C.D.±92.已知点A(3,y1)和点B(﹣2,y2)是一次函数y=﹣2x+3图象上的两点,比较y1与y2的大小关系()A.y1>y2B.y1=y2C.y1<y2D.不能确定3.下列条件中,不能判断△ABC(a、b、c为三边,∠A、∠B、∠C为三内角)为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:54.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°5.一次函数y=mx+m2(m≠0)的图象过点(0,4),且y随x的增大而增大,则m的值为()A.﹣2B.﹣2或2C.1D.26.如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)7.如图,在平面直角坐标系中,线段AB的端点坐标为A(﹣3,﹣5),B(2,﹣3),若直线y=kx+1与线段AB有交点,则k的值不可能是()A.﹣5B.﹣1C.3D.58.如图,直线y=与x轴、y轴分别交于点A,B,点C是直线AB上的一个动点,在平面直角坐标系中,点P(0,2)是y轴上的一个点,则线段PC的最小值为()A.5B.2C.4D.39.如图,在平面直角坐标系中,A(0,3),B(5,3),C(5,0),点D在线段OA上,将△ABD沿着直线BD折叠,点A的对应点为E,当点E在线段OC上时,则AD的长是()A.1B.C.2D.10.甲、乙两人分别从A,B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了3min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x (min)之间的函数关系如图所示.有下列说法:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=700;④a=33.以上结论正确的有()A.①②B.①②③C.①③④D.①②④二.填空题(本大题共8小题,每小题2分,共16分)11.=.12.如图,在△ABC中,AB=AC,若∠B=70°,则∠C=度.13.点A(4,﹣2)关于x轴的对称点B的坐标为.14.在平面直角坐标系中,第二象限内有一点M,点M到x轴的距离为5,到y轴的距离为4,则点M的坐标是.15.某商店今年6月初销售纯净水的数量如下表所示:日期1234数量(瓶)120125130135观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量约为瓶.16.已知直角三角形的两边长为3厘米和5厘米,则第三边长为.17.如图,Rt△ABC中,∠ABC=90°,DE是边AB的垂直平分线,D为垂足,DE交AC 于点,且AB=8,BC=6,则△BEC的周长是.18.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=12,BC=18,CD=8,则四边形ABCD的面积是.三.解答题19.计算或化简:(1);(2).20.已知一次函数y=﹣2x+4,完成下列问题:(1)图象与x轴交点A()、与y轴交点B();(2)画出函数图象,并根据图象回答:当x时,y>2;当x≥0时,y的取值范围.当1<x≤3时,y的取值范围.21.一次函数y=kx+4的图象经过点(﹣3,﹣2),则(1)求这个函数表达式;(2)建立适当坐标系,画出该函数的图象;(3)判断(﹣5,3)是否在此函数的图象上;(4)把这条直线向下平移4个单位长度后的函数关系式是.22.已知一次函数的图象与y=﹣x的图象平行,且与y轴交点(0,﹣3),求此函数关系式.23.如图,△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若AB=10,AC=8,求四边形AEDF的周长;(2)求证:EF垂直平分AD.24.如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B′处.求:(1)点B′的坐标;(2)直线AM所对应的函数关系式.25.如图,在△ABC中,AB=AC,DE垂直平分AC,CE⊥AB,AF⊥BC.(1)求证:CF=EF;(2)求∠EFB的度数.26.如图1,某物流公司恰好位于连接A,B两地的一条公路旁的C处.某一天,该公司同时派出甲、乙两辆货车以各自的速度匀速行驶.其中,甲车从公司出发直达B地;乙车从公司出发开往A地,并在A地用1h配货,然后掉头按原速度开往B地.图2是甲、乙两车之间的距离S(km)与他们出发后的时间x(h)之间函数关系的部分图象.(1)由图象可知,甲车速度为km/h;乙车速度为km/h;(2)已知最终甲、乙两车同时到达B地.①从乙车掉头到乙车到达B地的过程中,求S与x的函数表达式以及关于x的取值范围,并在图2中补上函数图象;②从两车同时从C地出发到两车同时到达B地的整个过程中,两车之间的距离何时为80km?27.如图,直线l:y=﹣x+3与x轴、y轴分别交于A、B两点,OM⊥AB于点M,点P 为直线l上不与点A、B重合的一个动点.(1)求线段OM的长;(2)当△BOP的面积是6时,求点P的坐标;(3)在y轴上是否存在点Q,使得以O、P、Q为顶点的三角形与△OMP全等,若存在,请直接写出所有符合条件的点P的坐标,否则,说明理由.参考答案一.选择题(本大题共有8小题,每小题2分,共16分)1.3的平方根是()A.±B.9C.D.±9【分析】直接根据平方根的概念即可求解.解:∵()2=3,∴3的平方根是为.故选:A.2.已知点A(3,y1)和点B(﹣2,y2)是一次函数y=﹣2x+3图象上的两点,比较y1与y2的大小关系()A.y1>y2B.y1=y2C.y1<y2D.不能确定【分析】根据一次函数的性质:k<0时,y随x的增大而减小,可得y1与y2的大小关系.解:∵k=﹣2<0,∴y随x的增大而减小,∵3>﹣2,∴y1<y2,故选:C.3.下列条件中,不能判断△ABC(a、b、c为三边,∠A、∠B、∠C为三内角)为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5【分析】根据勾股定理的逆定理和三角形内角和,可以判断各个选项中的条件是否可以构成直角三角形,从而可以解答本题.解:当a2=1,b2=2,c2=3时,则a2+b2=c2,即△ABC是直角三角形,故选项A不符合题意;当a:b:c=3:4:5时,设a=3x,b=4x,c=5x,则a2+b2=(3x)2+(4x)2=(5x)2=c2,即△ABC是直角三角形,故选项B不符合题意;当∠A+∠B=∠C时,则∠C=90°,即△ABC是直角三角形,故选项C不符合题意;当∠A:∠B:∠C=3:4:5时,则最大的∠C=180°×=75°,即△ABC不是直角三角形,故选项D符合题意;故选:D.4.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【分析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°,故选:A.5.一次函数y=mx+m2(m≠0)的图象过点(0,4),且y随x的增大而增大,则m的值为()A.﹣2B.﹣2或2C.1D.2【分析】由y随x的增大而增大,根据一次函数的性质得m>0;再由于一次函数y=mx+m2(m≠0)的图象过点(0,4),则m2=4,然后解方程,求出满足条件的m的值.解:根据题意得m>0且m2=4,解得m=2.故选:D.6.如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)【分析】作PQ⊥y轴于Q,如图,把点P(2,3)绕原点O顺时针旋转90°得到点P'看作把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,利用旋转的性质得到∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,从而可确定P′点的坐标.解:作PQ⊥y轴于Q,如图,∵P(2,3),∴PQ=2,OQ=3,∵点P(2,3)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,∴点P′的坐标为(3,﹣2).故选:D.7.如图,在平面直角坐标系中,线段AB的端点坐标为A(﹣3,﹣5),B(2,﹣3),若直线y=kx+1与线段AB有交点,则k的值不可能是()A.﹣5B.﹣1C.3D.5【分析】当直线y=kx+1过点A时,求出k的值,当直线y=kx+1过点B时,求出k的值,介于二者之间的值即为使直线y=kx+1与线段AB有交点的x的值.解:①当直线y=kx+1过点A时,将A(﹣3,﹣5)代入解析式y=kx+1得,k=2,②当直线y=kx+1过点B时,将B(2,﹣3)代入解析式y=kx+1得,k=﹣2,∵|k|越大,它的图象离y轴越近,∴当k≥2或k≤﹣2时,直线y=kx+1与线段AB有交点.故选:B.8.如图,直线y=与x轴、y轴分别交于点A,B,点C是直线AB上的一个动点,在平面直角坐标系中,点P(0,2)是y轴上的一个点,则线段PC的最小值为()A.5B.2C.4D.3【分析】根据垂线段最短得出PC⊥AB时线段PC最短,分别求出PB、OB、OA、AB的长度,利用△PBC≌△ABO,即可求出本题的答案.解:如图,过点P作PC⊥AB,则∠PCB=90°,当PC⊥AB时,PC最短,∵直线y=x﹣3与x轴、y轴分别交于点A,B,∴点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB==5,∵∠BCP=∠AOB=90°,∠B=∠B,PB=OP+OB=5=AB,∴△PBC≌△ABO(AAS),∴PC=OA=4.解法二:连接PA,△PBA的面积=PB×OA=×BA×PC,因为PB=BA=5,所以PC=OA=4.故选:C.9.如图,在平面直角坐标系中,A(0,3),B(5,3),C(5,0),点D在线段OA上,将△ABD沿着直线BD折叠,点A的对应点为E,当点E在线段OC上时,则AD的长是()A.1B.C.2D.【分析】由点的坐标得出∠DAB=∠AOC=90°,由折叠的性质得出AD=DE,AB=BE =5,根据勾股定理可得出答案.【解答】∵A(0,3),B(5,3),C(5,0),∴AB∥x轴,BC∥y轴,AB=OC=5,AO=BC=3,∴∠DAB=∠AOC=90°,∴∠BCE=90°,∵将△ABD沿着直线BD折叠,点A的对应点为E,∴AD=DE,AB=BE=5,∴CE===4,设AD=DE=x,则OD=3﹣x,OE=1,∵OD2+OE2=DE2,∴(3﹣x)2+12=x2,解得x=.∴AD=.故选:D.10.甲、乙两人分别从A,B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了3min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x (min)之间的函数关系如图所示.有下列说法:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=700;④a=33.以上结论正确的有()A.①②B.①②③C.①③④D.①②④【分析】①由x=0时y=1200,可得出A、B之间的距离为1200m,结论①正确;②根据速度=路程÷时间可求出乙的速度,再根据甲的速度=路程÷时间﹣乙的速度可求出甲的速度,二者相除即可得出乙行走的速度是甲的1.5倍,结论②正确;③根据路程=二者速度和×运动时间,即可求出b=800,结论③错误;④根据甲走完全程所需时间=两地间的距离÷甲的速度+4,即可求出a=34,结论④错误.综上即可得出结论.解:①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②正确;③b=(60+40)×(24﹣4﹣12)=800,结论③错误;④a=1200÷40+4=34,结论④错误.故结论正确的有①②.故选:A.二.填空题(本大题共8小题,每小题2分,共16分)11.=2.【分析】如果一个正数x的平方等于a,那么x是a的算术平方根,由此即可求解.解:∵22=4,∴=2.故答案为:212.如图,在△ABC中,AB=AC,若∠B=70°,则∠C=70度.【分析】由已知条件判断出∠B、∠C是底角,结合等腰三角形的两个底角相等,可知∠C=∠B=70°.解:∵在△ABC中,AB=AC∴∠B=∠C∵∠B=70°∴∠C=70°13.点A(4,﹣2)关于x轴的对称点B的坐标为(4,2).【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,即可求解.解:∵关于x轴对称的点横坐标相同,纵坐标互为相反数,∴点A(4,﹣2)关于x轴的对称点B的坐标为(4,2).故答案为(4,2).14.在平面直角坐标系中,第二象限内有一点M,点M到x轴的距离为5,到y轴的距离为4,则点M的坐标是(﹣4,5).【分析】根据点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,得到点M的横纵坐标可能的值,进而根据所在象限可得点M的具体坐标.解:设点M的坐标是(x,y).∵点M到x轴的距离为5,到y轴的距离为4,∴|y|=5,|x|=4.又∵点M在第二象限内,∴x=﹣4,y=5,∴点M的坐标为(﹣4,5),故答案为:(﹣4,5).15.某商店今年6月初销售纯净水的数量如下表所示:日期1234数量(瓶)120125130135观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量约为150瓶.【分析】这是一个一次函数模型,设y=kx+b,利用待定系数法即可解决问题,解:这是一个一次函数模型,设y=kx+b,则有,解得,∴y=5x+115,当x=7时,y=150,∴预测今年6月7日该商店销售纯净水的数量约为150瓶,故答案为150.16.已知直角三角形的两边长为3厘米和5厘米,则第三边长为cm或4cm.【分析】根据勾股定理直接解答即可.不过要分情况讨论,即5厘米的边是斜边还是直角边.解:∵两边长为3厘米和5厘米,当均为直角边时,∴由勾股定理得第三边长为=cm;当5厘米的线段为斜边时,第三边长为=4cm.17.如图,Rt△ABC中,∠ABC=90°,DE是边AB的垂直平分线,D为垂足,DE交AC 于点,且AB=8,BC=6,则△BEC的周长是16.【分析】根据勾股定理求出AC,根据线段垂直平分线的性质得到EA=EB,根据三角形的周长公式计算,得到答案.解:在Rt△ABC中,∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是边AB的垂直平分线,∴EA=EB,∴△BEC的周长=BC+EC+BE=BC+EC+EA=BC+AC=16,故答案为:16.18.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=12,BC=18,CD=8,则四边形ABCD的面积是120.【分析】过点D作DE⊥BA的延长线于点E,利用角平分线的性质可得出DE=DC=8,再利用三角形的面积公式结合S四边形ABCD=S△ABD+S△BCD可求出四边形ABCD的面积.解:过点D作DE⊥BA的延长线于点E,如图所示.∵BD平分∠ABC,∴DE=DC=8,∴S四边形ABCD=S△ABD+S△BCD,=AB•DE+BC•CD,=×12×8+×18×8,=120.故答案为:120.三.解答题19.计算或化简:(1);(2).【分析】(1)先分母有理化,再利用零指数幂的意义计算,然后合并即可;(2)先把各二次根式化为最简二次根式,再把括号内合并,然后进行二次根式的除法运算.解:(1)原式=+1+3﹣1=4;(2)原式=(﹣9a)÷=(1﹣9a)××=3﹣27a.20.已知一次函数y=﹣2x+4,完成下列问题:(1)图象与x轴交点A(2,0)、与y轴交点B(0,4);(2)画出函数图象,并根据图象回答:当x<1时,y>2;当x≥0时,y的取值范围y≤4.当1<x≤3时,y的取值范围﹣2≤y<2.【分析】(1)分别代入y=0及x=0,求出与之对应的x,y的值,进而可得出点A,B 的坐标;(2)画出函数图象,利用一次函数图象上点的坐标特征及函数图象,即可得出结论.解:(1)当y=0时,﹣2x+4=0,解得:x=2,∴点A的坐标为(2,0);当x=0时,y=﹣2×0+4=4,∴点B的坐标为(0,4).故答案为:2,0;0,4;(2)画出函数图象,如图所示.当y>2时,﹣2x+4>2,解得:x<1;当x=0时,y=4,且y随x的增大而减小,∴当x≥0时,y的取值范围为y≤4;当x=1时,y=﹣2×1+4=2,当x=3时,y=﹣2×3+4=﹣2,∴当1<x≤3时,y的取值范围为﹣2≤y<2.故答案为:<1;y≤4;﹣2≤y<2.21.一次函数y=kx+4的图象经过点(﹣3,﹣2),则(1)求这个函数表达式;(2)建立适当坐标系,画出该函数的图象;(3)判断(﹣5,3)是否在此函数的图象上;(4)把这条直线向下平移4个单位长度后的函数关系式是y=2x.【分析】(1)待定系数法即可求解;(2)根据函数解析式即可画出图象;(3)把点代入即可判断是否在直线解析式上;(4)根据上加下减的规律即可得出答案;解:(1)∵一次函数y=kx+4的图象经过点(﹣3,﹣2),∴﹣3k+4=﹣2,∴k=2,∴函数表达式y=2x+4;(2)图象如图:(3)把(﹣5,3)代入y=2x+4,∵﹣10+4=﹣6≠3,∴(﹣5,3)不在此函数的图象上;(4)∵把这条直线向下平移4个单位,∴函数关系式是:y=2x;故答案为:y=2x.22.已知一次函数的图象与y=﹣x的图象平行,且与y轴交点(0,﹣3),求此函数关系式.【分析】一次函数的图象与y=﹣x的图象平行,可得k=﹣,将点(0,﹣3)代入即可求解.解:设所求函数为y=kx+b,∵函数的图象与y=﹣x的图象平行,∴k=﹣,又∵所求函数过点(0,﹣3),∴﹣3=b,∴所求函数为关系式为:y=x﹣3.23.如图,△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若AB=10,AC=8,求四边形AEDF的周长;(2)求证:EF垂直平分AD.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得DE=AE=AB,DF =AF=AC,再根据四边形的周长的定义计算即可得解;(2)根据到到线段两端点距离相等的点在线段的垂直平分线上证明即可.【解答】(1)解:∵AD是高,E、F分别是AB、AC的中点,∴DE=AE=AB=×10=5,DF=AF=AC=×8=4,∴四边形AEDF的周长=AE+DE+DF+AF=5+5+4+4=18;(2)证明:∵DE=AE,DF=AF,∴EF垂直平分AD.24.如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B′处.求:(1)点B′的坐标;(2)直线AM所对应的函数关系式.【分析】(1)先确定点A、点B的坐标,再由AB=AB',可得AB'的长度,求出OB'的长度,即可得出点B'的坐标;(2)设OM=m,则B'M=BM=8﹣m,在Rt△OMB'中利用勾股定理求出m的值,得出M的坐标后,利用待定系数法可求出AM所对应的函数解析式.解:(1)y=﹣x+8,令x=0,则y=8,令y=0,则x=6,∴A(6,0),B(0,8),∴OA=6,OB=8 AB=10,∵A B'=AB=10,∴O B'=10﹣6=4,∴B'的坐标为:(﹣4,0).(2)设OM=m,则B'M=BM=8﹣m,在Rt△OMB'中,m2+42=(8﹣m)2,解得:m=3,∴M的坐标为:(0,3),设直线AM的解析式为y=kx+b,则,解得:,故直线AM的解析式为:y=﹣x+3.25.如图,在△ABC中,AB=AC,DE垂直平分AC,CE⊥AB,AF⊥BC.(1)求证:CF=EF;(2)求∠EFB的度数.【分析】(1)由等腰三角形的性质可得BF=CF,由直角三角形的性质可证CF=EF;(2)由垂直平分线的性质可证AE=EC,由等腰三角形的性质可求∠B=∠ACB=67.5°,即可求解.【解答】证明:(1)∵AB=AC,AF⊥BC,∴BF=CF,又∵CE⊥AB,∴CF=EF;(2)∵DE垂直平分AC,∴AE=EC,又∵∠AEC=90°,∴∠ACE=∠EAC=45°,∴∠B=∠ACB=67.5°,∵EF=CF=BF,∴∠BEF=∠FBE=67.5°,∴∠EFB=45°.26.如图1,某物流公司恰好位于连接A,B两地的一条公路旁的C处.某一天,该公司同时派出甲、乙两辆货车以各自的速度匀速行驶.其中,甲车从公司出发直达B地;乙车从公司出发开往A地,并在A地用1h配货,然后掉头按原速度开往B地.图2是甲、乙两车之间的距离S(km)与他们出发后的时间x(h)之间函数关系的部分图象.(1)由图象可知,甲车速度为40km/h;乙车速度为80km/h;(2)已知最终甲、乙两车同时到达B地.①从乙车掉头到乙车到达B地的过程中,求S与x的函数表达式以及关于x的取值范围,并在图2中补上函数图象;②从两车同时从C地出发到两车同时到达B地的整个过程中,两车之间的距离何时为80km?【分析】(1)根据题意和函数图象中的数据,可以计算出甲车和乙车的速度;(2)①根据题意和(1)中的结果,可以写出S与x的函数表达式以及关于x的取值范围,并在图2中补上函数图象;②根据题意,利用分类讨论的方法可以得到从两车同时从C地出发到两车同时到达B地的整个过程中,两车之间的距离何时为80km.解:(1)由图象可知,甲车速度为:(100﹣60)÷(1.5﹣0.5)=40÷1=40(km/h),乙车的速度为:60÷0.5﹣40=120﹣40=80(km/h),故答案为:40,80;(2)①由题意可得,S=80×0.5+40x﹣80(x﹣1.5)=﹣40x+160,当80×0.5+40x=80(x﹣1.5)时,解得x=4,即S与x的函数表达式是S=﹣40x+160(1.5≤x≤4),补全的函数图象如右图所示;②当0.5≤x≤1.5时,60+40(x﹣0.5)=80,解得x=1,当1.5≤x≤4时,40x+80×0.5﹣80(x﹣1.5)=80,解得x=2,即从两车同时从C地出发到两车同时到达B地的整个过程中,两车之间的距离在1小时或2小时时为80km.27.如图,直线l:y=﹣x+3与x轴、y轴分别交于A、B两点,OM⊥AB于点M,点P 为直线l上不与点A、B重合的一个动点.(1)求线段OM的长;(2)当△BOP的面积是6时,求点P的坐标;(3)在y轴上是否存在点Q,使得以O、P、Q为顶点的三角形与△OMP全等,若存在,请直接写出所有符合条件的点P的坐标,否则,说明理由.【分析】(1)先求得点A、B的坐标,可求得OA、OB、AB的长,利用面积法即可求得OM的长;(2)先画图,确定△BOP面积可以BO为底,P到y轴距离为高求得P到y轴距离,再分类讨论求得答案;(3)分△OMP≌△PQO与△OMP≌△OQP两种情况讨论,结合图形分析即可求解.解:(1)对于直线y=﹣x+3,令x=0,则y=3,令y=0,则﹣x+3=0,解得:x=4,∴点A、B的坐标分别是(4,0),(0,3),∴OA=4,OB=3,∴AB===5,∵S△OAB=AB•OM,∴OM=;(2)过P作PC⊥y轴于C,如图1,∴S△BOP=OB•PC=6,∴PC=4,∴点P的横坐标为4或﹣4,∵点P为直线l上的一个动点且不与A、B重合,∴横坐标为4时,与A重合,不合题意,∴横坐标为﹣4时,纵坐标为:﹣×(﹣4)+3=6,∴当点P坐标为(﹣4,6)时,△BOP的面积是6;(3)存在,理由如下:①当△OMP≌△PQO时,如图2和图3,由(1)得OM=,∴PQ=OM=,即P点横坐标为﹣或,当P点横坐标为﹣时,纵坐标为:﹣×+3=,∴P(﹣,),当P点横坐标为时,纵坐标为:﹣,∴P(),此时点P的坐标为(﹣,),(,);②当△OMP≌△OQP时,如图4和图5,∴OQ=OM=,即点P、点Q纵坐标为﹣或,由﹣,解得:x=;由﹣,解得:x=;此时点P的坐标为(,﹣),(,);综上所述,符合条件的点P的坐标为(﹣,)或(,)或(,﹣)或(,).。

福建省永春县崇贤中学2022-2023学年八年级上学期12月月考数学试题(含答案解析)

福建省永春县崇贤中学2022-2023学年八年级上学期12月月考数学试题(含答案解析)
4 故选 B. 【点睛】此题考查了翻折变换的问题,找到翻折后图形中的直角三角形,利用勾股定理来解 答,解答过程中要充分利用翻折不变性. 9.D 【分析】若 AP+BP+CP 最小,就是说当 BP 最小时,AP+BP+CP 才最小,因为不论点 P 在 AC 上的那一点,AP+CP 都等于 AC.那么就需从 B 向 AC 作垂线段,交 AC 于 P.先设 AP=x, 再利用勾股定理可得关于 x 的方程,解即可求 x,在 Rt△ABP 中,利用勾股定理可求 BP.那 么 AP+BP+CP 的最小值可求.
19.如图,在 4 3 的正方形网格中, ABC 的顶点都在正方形网格的格点上请你在图① 和图②中分别画出一个三角形,同时满足以下两个条件:
(1)以点 A 为一个顶点,另外两个顶点也在正方形网格点上; (2)与 ABC 全等,且不与 ABC 重合. 20.如图,△ABC 中,AB=AC,点 E,F 在边 BC 上,BE=CF,点 D 在 AF 的延长线上, AD=AC,
在 Rt△ABP 中,BP= 52 -1.42 = 23.04=4.8, ∴AP+BP+CP=AC+BP=5+4.8=9.8. 故选:D.
由勾股定理可得, Rt△ADE 中, DE AD2 AE2 5 , 又CE 3 ,
CD 3 5 ,
故选:C.
答案第 2页,共 16页
【点睛】本题考查了勾股定理的运用,由勾股定理求出 DE 是解决问题的关键. 8.B 【分析】已知,∠C=90°BC=6,AC=8,由勾股定理求 AB,根据翻折不变性,可知 △DAE≌△DBE,从而得到 BD=AD,BE=AE,设 CE=x,则 AE=8-x,在 Rt△CBE 中,由勾 股定理列方程求解. 【详解】∵△CBE≌△DBE, ∴BD=BC=6,DE=CE, 在 RT△ACB 中,AC=8,BC=6, ∴AB= AC2 BC2 = 62 82 =10. ∴AD=AB-BD=10-6=4. 根据翻折不变性得△EDA≌△EDB ∴EA=EB ∴在 Rt△BCE 中,设 CE=x, 则 BE=AE=8-x, ∴BE2=BC2+CE2, ∴(8-x)2=62+x2, 解得 x= 7 .

2023-2024学年江苏省苏州市吴江区八年级上学期12月月考数学模拟试题(含答案)

2023-2024学年江苏省苏州市吴江区八年级上学期12月月考数学模拟试题(含答案)

2023-2024学年江苏省苏州市吴江区八年级上学期12月月考数学模拟试题一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在答题卷相应的位置上)1.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录.下列四幅作品分别代表“立春”、“谷雨”、“立夏”、“小满”,其中是轴对称图形的是()A. B.C. D.2.下列各数中,属于有理数的是()B.2-227C. D.1.…(每相邻两个1之间0的个数依次多1个)3π3.若,则的值是()24x =x A.2 B.±2 C.16 D. ±164.我国是最早了解勾股定理的国家之一.三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于下列哪部著名数学著作中()A.《周髀算经》B.《九章算术》C.《海岛算经》D.《几何原本》5.已知点和点关于y 轴对称,则ab 的值为()()1,P a -(),6Q b A.-5 B.5 C.-7 D.76.“一座姑苏城,半卷江南诗.”2023年苏州市文旅行业势头强劲,经综合测算,国庆长假期间,我市累计接待游客1781.5万人次,按可比口径较2019年增长43.3%.近似数1781.5万精确到()A.十分位B.百位C.千位D.千分位7.如图,在平分角的仪器中,,,将点A 放在一个角的顶点,AB 和AD 分别AB AD =BC DC =与这个角的两边重合,能说明AC 就是这个角的平分线的数学依据是()A.SSSB.ASAC.SASD.AAS8.如图,在中,,以的三边为边向外做正方形ACDE ,正方形Rt ABC △90C ∠=︒ABC △CBGF ,正方形AHIB ,连结EC ,CG ,作交HI 于点P ,记正方形ACDE 和正方形AHIB CP CG ⊥的面积分别为,,若,,则等于()1S 2S 14S =27S =:ACP BCP S S △△A. B.4:3 D.7:42二、填空题(本大题共8小题,每小题3分,共24分,把答案填在答题卷相应的横线上)9.64的立方根是_________.10._________.+=11.在函数的取值范围是_________.y =x 12.已知直角三角形的两边长为5和12,则其斜边上的中线为_________.13.点P 在第二象限,距x 轴2个单位长度,距y 轴3个单位长度,则点P 的坐标为_________.14.如图所示,,,若,,则的度数是ABC ADE ≌△△AE BC ∥30B ∠=︒100C ∠=︒BAD ∠_________.15.如图,在数轴上,点A 与原点重合,点A 、B 之间的距离为1,于点B ,且,BC AB ⊥12BC =连接AC ,在AC 上截取,以A 为圆心,AD 的长为半径画弧,交线段AB 于点E ,则点CD BC =E 表示的实数是___________.16.如图,在中,,,点E 和点F 分别为AC 和BC 上的动点,ABC △6AC BC ==120ACB ∠=︒且,连接BE ,AF ,当的值最小时,点F 到AB 的距离为___________.AE CF =AF BE +三、解答题(本大题共11题,共82.分.解答时应写出文字说明、证明过程或演算步骤.)17.(本题满分4分)求x 的值.()31242x -=18.(本题满分8分)计算:(1.(2).))2222+--19.(本题满分6分)下列正方形网格图中,部分方格涂上了阴影,请按照不同要求作图.(1)如图①,整个图形是轴对称图形,画出它的对称轴.(2)如图②,将某一个方格涂上阴影,使整个图形有两条对称轴.(3)如图③,将某一个方格涂上阴影,使整个图形有四条对称轴.20.(本题满分7分)已知与成正比例,且时,.1y -2x +1x =7y =(1)求y 与x 之间的函数关系式;(2)设点在(1)中函数的图象上,求a 的值.(),2a -21.(本题满分7分)如图,在中,,,,点D 为内ABC △13AB =12AC =AC BC ⊥ABC △一点,且,.3CD =4BD =(1)求BC 的长;(2)求图中阴影部分(四边形ABDC )的面积.22.(本题满分9分)阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:;等运算都是分母有==1===理化.根据上述材料,(1;(2;(3)计算.)1+⋅⋅⋅+23.(本题满分9分)如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给出的数据信息,解答下列问题:(1)若整齐叠放在桌面上的饭碗的高度与饭碗数x (个)成一次函数关系,求y 与x 之间()cm y 的函数表达式;(2)若把这两摞饭碗整齐地叠放成一摞时,求这摞饭碗的高度;(3)若桌面上若干个饭碗整齐地叠放成一摞,测得它的高度是37.5cm ,求碗的个数.24.(本题满分8分)古希腊的几何学家海伦在他的《度量》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:如果一个三角形的三边长分别为a 、b 、c ,设,则三角形的2a b c p ++=面积.我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面S =积的“秦九韶公式”(三斜求积术):如果一个三角形的三边长分别为a 、b 、c ,则三角形的面积S =选择上述合适的公式,解决下列问题:(1)若一个三角形的三边长分别是5,6,7,求这个三角形的面积;(23,.25.(本题满分6分)阅读并解答问题明朝数学家程大位在数学著作《直指算法统宗》中以《西江月》词牌叙述了一道“荡秋千”问题:原文:平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索有几?译文:如图,有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?(注古代5尺为1步)建立数学模型,解决问题:如图,秋千绳索OA 静止的时候,踏板离地高一尺(尺),将它往前推进两步(尺)1AC =10EB =,此时踏板升高离地五尺(尺),已知于点C ,于点D ,5BD =OC CD ⊥BD CD ⊥于点E ,,求秋千绳索(OA 或OB )的长度.BE OC ⊥OA OB =26.(本题满分8分)如图,点D ,E 在的边BC 上,,.ABC △AB AC =AD AE =(1)如图1,求证:;BD CE =(2)如图2,若点E 在AB 的垂直平分线上,过点B 作于点G ,,求BG AE ⊥3EG =的值.BE CE -图1图227.(本题满分10分)如图,在平面直角坐标系中,点A 的坐标为(0,4),点B 的坐标为(-2,0),点C 的坐标为(3,0).(1)求证:是等腰三角形;ABC △(2)若点P 在AO 上且点P 到两边的距离相等,利用尺规作图,找出点P 的位置(保留作ACB ∠图痕迹),并求出的面积;ACP △(3)若动点Q 从点O 出发,沿着的路径运动,当是等腰三角形时,直接写O A C →→COQ △出点Q 的坐标.初二数学答案1~5C ,B ,B ,A ,D ;6~8C ,A ,A9.4;10.11.且;12.6.5或6;13.;2x ≥-0x ≠()3,2-14.80°;;16. ;17. ;324x =18.(1);(2)1π-19.20.(1);(2)25y x =+72a =-21.(1)5;(2)24;22.(1;(2;(3)1011.23.(1);(2)21cm ;(3)22个.1.5 4.5y x =+24.(1);(2)3.25.14.5尺.26.(1)证明方法不唯一;(2)6;27.(1)理由略;(2)如图所示,分别以A ,B 为圆心,大于长为半径画弧,交于点M ,连接CM 交AO 于12AB P ,则点P 即为所求;的面积为;ACP △154(3)①;②;③;④.()0,32172,2525⎛⎫ ⎪⎝⎭612,55⎛⎫ ⎪⎝⎭3,22⎛⎫ ⎪⎝⎭。

2020-2021学年南通市崇川区启秀中学八年级(上)月考数学试卷(12月份) word版含解析

2020-2021学年南通市崇川区启秀中学八年级(上)月考数学试卷(12月份) word版含解析

2020-2021学年江苏省南通市崇川区启秀中学八年级(上)月考数学试卷(12月份)一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)下列运算结果为a ﹣1的是( ) A .a 2−1a ⋅a a+1B .1−1aC .a+1a÷a a−1D .a 2+2a+1a+12.(3分)下列运算正确的是( ) A .3a +2a =5a 2 B .x 2﹣4=(x +2)(x ﹣2) C .(x +1)2=x 2+1 D .(2a )3=6a 23.(3分)如果将分式x+y 6xy中的x 和y 都扩大为原来的3倍,那么分式的值( )A .缩小到原来的13B .扩大到原来的3倍C .不变D .扩大到原来的9倍4.(3分)估计√32×√12+√20的运算结果应在( ) A .6到7之间B .7到8之间C .8到9之间D .9到10之间5.(3分)一个等腰三角形两边的长分别为√75和√18,则这个三角形的周长为( ) A .10√3+3√2B .5√3+6√2C .10√3+3√2或5√3+6√2D .无法确定6.(3分)已知√5=a ,√14=b ,用含a 、b 的式子表示√0.063,则下列结果正确的是( ) A .ab 10B .3ab 10C .ab100D .3ab 1007.(3分)小颖用4张长为a ,宽为b (a >b )的长方形纸片,按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积为S 1,阴影部分的面积为S 2.若a =2b ,则S 1,S 2之间的数量关系为( )A .S 1=32S 2B .S 1=2S 2C .S 1=52S 2D .S 1=3S 28.(3分)把(x −1)√−1x−1根号外的因式移入根号内,化简的结果是( ) A .√1−xB .√x −1C .−√x −1D .−√1−x9.(3分)已知x 2﹣3x ﹣4=0,则代数式xx 2−x−4的值是( )A .3B .2C .13D .1210.(3分)如图,大正方形的边长为m ,小正方形的边长为n ,x ,y 表示四个相同长方形的两边长(x >y ).则①x ﹣y =n ;②xy =m 2−n 24;③x 2﹣y 2=mn ;④x 2+y 2=m 2−n 22中,正确的是( )A .①②③B .①②④C .①③④D .①②③④二、填空题(本大题共8小题,11′12题,每小题3分,13~18题,每题4分,共30分) 11.(3分)若分式2x−6x+1的值为0,则x 的值为 .12.(3分)分解因式:a ﹣6ab +9ab 2= . 13.(4分)当x 时,√x+1|x|−2有意义. 14.(4分)若a 2=3b =81,则代数式a ﹣2b = .15.(4分)若△ABC 三边a 、b 、c 满足a 2﹣ab ﹣ac +bc =0,则△ABC 是 三角形. 16.(4分)若整数x 满足|x |≤3,则使√7−x 为整数的x 的值是 (只需填一个). 17.(4分)关于x 的分式方程x x−1+k x−1−x x+1=0无解,则k 的值为 .18.(4分)已知方程3−a a−4−a =14−a ,且关于x 的不等式组{x >a x ≤b只有4个整数解,那么b 的取值范围是 .三、解答题(本大题共8小题,共92分) 19.(20分)计算:(1)(a +b )2+a (a ﹣2b );(2)(2.5×1012)﹣2÷(2×10﹣2)6;(结果用科学记数法表示)(3)√20+√5√5−√13×√12;(4)√15÷(1√31√5). 20.(15分)化简: (1)√2−2√2⋅√5+5;(2)√(x −1x )2+4−√(x +1x )2−4(0<x <1);(3)当a =1−3时,求a 2−1a−1−√a 2+2a+1a 2+a −1a的值.21.(10分)解方程: (1)2x−1=4x 2−1;(2)(x 2−x+7x+1−x −1)÷x 2−4x+1=1.22.(7分)已知x =2−3,x 的整数部分为a ,小数部分为b ,求a−b−2a+b的值. 23.(8分)已知实数a 满足|2020﹣a |+√a −2021=a ,求a ﹣20202的值. 24.(8分)当x 取什么整数时,3x+6x+1−x−1x÷x 2−1x 2+2x的值是整数.25.(12分)新冠肺炎疫情爆发后,国内口罩需求激增,某地甲、乙两个工厂同时接到200万个一次性医用外科口罩的订单,已知甲厂每天比乙厂多生产2万个口罩,且甲厂生产50万个口罩所用的时间与乙厂生产40万个口罩所用的时间相同. (1)求甲、两厂每天各生产多少万个一次性医用外科口罩.(2)已知甲、乙两个工厂每天生产这种口罩的原料成本分别是4万元和3万元,若两个工厂一起生产这400万个口罩,生产一段时间后,乙停产休整,剩下订单由甲单独完成若本次生产过程中,原料总成本不超过156万元,那么两厂至少一起生产了多少天? 26.(12分)先阅读下列的解答过程,然后作答:形如√m ±2√n 的化简,只要我们找到两个数a 、b 使a +b =m ,ab =n ,这样(√a )2+(√b )2=m ,√a •√b =√n ,那么便有√m ±2√n =√(√a ±√b)2=√a ±√b (a >b )例如:化简√7+4√3解:首先把√7+4√3化为√7+2√12,这里m =7,n =12; 由于4+3=7,4×3=12,即(√4)2+(√3)2=7,√4•√3=√12,∴√7+4√3=√7+2√12=√(√4+√3)2=2+√3由上述例题的方法化简:(1)√13−2√42;(2)√7−√40;(3)√2−√3.2020-2021学年江苏省南通市崇川区启秀中学八年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)下列运算结果为a ﹣1的是( ) A .a 2−1a ⋅a a+1B .1−1a C .a+1a÷a a−1D .a 2+2a+1a+1【解答】解:A 、原式=(a−1)(a+1)a •aa+1=a ﹣1,符合题意; B 、1−1a =a−1a ,故此选项不合题意;C 、原式=a+1a •a−1a =a 2−1a 2,故此选项不合题意;D 、原式=(a+1)2a+1=a +1,故此选项不合题意;故选:A .2.(3分)下列运算正确的是( ) A .3a +2a =5a 2 B .x 2﹣4=(x +2)(x ﹣2) C .(x +1)2=x 2+1D .(2a )3=6a 2【解答】解:A 、3a +2a =5a ,故此选项不符合题意; B 、x 2﹣4=(x +2)(x ﹣2),正确,故此选项符合题意; C 、(x +1)2=x 2+2x +1,故此选项不符合题意; D 、(2a )3=8a 3,故此选项不符合题意; 故选:B . 3.(3分)如果将分式x+y 6xy中的x 和y 都扩大为原来的3倍,那么分式的值( )A .缩小到原来的13B .扩大到原来的3倍C .不变D .扩大到原来的9倍【解答】解:因为3(x+y)9×6xy=13×x+y 6xy,所以分式的值变为原来的13.故选:A .4.(3分)估计√32×√12+√20的运算结果应在( )A .6到7之间B .7到8之间C .8到9之间D .9到10之间【解答】解:∵√32×√12+√20=4+√20,而4<√20<5, ∴原式运算的结果在8到9之间; 故选:C .5.(3分)一个等腰三角形两边的长分别为√75和√18,则这个三角形的周长为( ) A .10√3+3√2B .5√3+6√2C .10√3+3√2或5√3+6√2D .无法确定【解答】解:(1)若√18=3√2为腰长,√75=5√3为底边长, ∵6√2<5√3, ∴三角形不存在;(2)若5√3为腰长,所以这个三角形的周长为10√3+3√2. 故选:A .6.(3分)已知√5=a ,√14=b ,用含a 、b 的式子表示√0.063,则下列结果正确的是( ) A .ab 10B .3ab 10C .ab100D .3ab 100【解答】解:∵√5=a ,√14=b , ∴√0.063=√9×7010000=√9×√7010000=3×√5×√14100=3ab100. 故选:D .7.(3分)小颖用4张长为a ,宽为b (a >b )的长方形纸片,按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积为S 1,阴影部分的面积为S 2.若a =2b ,则S 1,S 2之间的数量关系为( )A .S 1=32S 2B .S 1=2S 2C .S 1=52S 2D .S 1=3S 2【解答】解:S 1=12b (a +b )×2+12ab ×2+(a ﹣b )2=a 2+2b 2, S 2=(a +b )2﹣S 1=(a +b )2﹣(a 2+2b 2)=2ab ﹣b 2,∵a =2b ,∴S 1=a 2+2b 2=6b 2,S 2=2ab ﹣b 2=3b 2 ∴S 1=2S 2, 故选:B .8.(3分)把(x −1)√−1x−1根号外的因式移入根号内,化简的结果是( ) A .√1−xB .√x −1C .−√x −1D .−√1−x【解答】解:由已知可得,x ﹣1<0,即1﹣x >0,所以,(x −1)√−1x−1=−√−(1−x)2x−1=−√1−x .故选:D .9.(3分)已知x 2﹣3x ﹣4=0,则代数式xx 2−x−4的值是( )A .3B .2C .13D .12【解答】解:已知等式整理得:x −4x=3, 则原式=1x−4x−1=13−1=12, 故选:D .10.(3分)如图,大正方形的边长为m ,小正方形的边长为n ,x ,y 表示四个相同长方形的两边长(x >y ).则①x ﹣y =n ;②xy =m 2−n 24;③x 2﹣y 2=mn ;④x 2+y 2=m 2−n 22中,正确的是( )A .①②③B .①②④C .①③④D .①②③④【解答】解:①x ﹣y 等于小正方形的边长,即x ﹣y =n ,正确; ②∵xy 为小长方形的面积, ∴xy =m 2−n 24, 故本项正确;③x 2﹣y 2=(x +y )(x ﹣y )=mn ,故本项正确; ④x 2+y 2=(x +y )2﹣2xy =m 2﹣2×m 2−n 24=m 2+n 22, 故本项错误. 所以正确的有①②③. 故选:A .二、填空题(本大题共8小题,11′12题,每小题3分,13~18题,每题4分,共30分) 11.(3分)若分式2x−6x+1的值为0,则x 的值为 3 .【解答】解:由题意可得:2x ﹣6=0且x +1≠0, 解得x =3. 故答案为:3.12.(3分)分解因式:a ﹣6ab +9ab 2= a (1﹣3b )2 . 【解答】解:a ﹣6ab +9ab 2, =a (1﹣6b +9b 2), =a (1﹣3b )2. 故答案为:a (1﹣3b )2.13.(4分)当x ≥﹣1且x ≠2. 时,√x+1|x|−2有意义. 【解答】解:由题意得,x +1≥0且|x |﹣2≠0, 解得x ≥﹣1且x ≠±2. 故x 取值范围是x ≥﹣1且x ≠2. 故答案为:≥﹣1且x ≠2.14.(4分)若a 2=3b =81,则代数式a ﹣2b = ﹣17或1 . 【解答】解:∵a 2=3b =81,(±9)2=34=81, ∴a =±9,b =4, 则a ﹣2b =﹣17或1. 故答案为:﹣17或1.15.(4分)若△ABC 三边a 、b 、c 满足a 2﹣ab ﹣ac +bc =0,则△ABC 是 等腰 三角形. 【解答】解:∵a 2﹣ab ﹣ac +bc =0, ∴(a ﹣b )(a ﹣c )=0,∴a ﹣b =0或a ﹣c =0,即a =b 或a =c ,∴△ABC 是等腰三角形, 故答案为:等腰.16.(4分)若整数x 满足|x |≤3,则使√7−x 为整数的x 的值是 ﹣2或3 (只需填一个). 【解答】解:∵|x |≤3, ∴﹣3≤x ≤3,∴当x =﹣2时,√7−x =√7−(−2)=3, x =3时,√7−x =√7−3=2.故,使√7−x 为整数的x 的值是﹣2或3(填写一个即可). 故答案为:﹣2或3. 17.(4分)关于x 的分式方程x x−1+k x−1−x x+1=0无解,则k 的值为 ﹣2或﹣1 .【解答】解:方程两边同乘(x +1)(x ﹣1)得:x (x +1)+k (x +1)﹣x (x ﹣1)=0, 整理得:(2+k )x =﹣k ,当2+k =0时,整式方程无解,即k =﹣2,当x =1或x =﹣1时,代入(2+k )x =﹣k 得k =﹣1. ∴k =﹣2或﹣1时,分式方程x x−1+k x−1−x x+1=0无解,故答案为:﹣2或﹣1. 18.(4分)已知方程3−aa−4−a =14−a ,且关于x 的不等式组{x >a x ≤b只有4个整数解,那么b 的取值范围是 3≤b <4 .【解答】解:分式方程去分母得:3﹣a ﹣a 2+4a =﹣1,即a 2﹣3a ﹣4=0, 分解因式得:(a ﹣4)(a +1)=0, 解得:a =﹣1或a =4,经检验a =4是增根,分式方程的解为a =﹣1,当a =﹣1时,由{x >−1x ≤b 只有4个整数解,得到3≤b <4. 故答案为:3≤b <4.三、解答题(本大题共8小题,共92分) 19.(20分)计算:(1)(a +b )2+a (a ﹣2b );(2)(2.5×1012)﹣2÷(2×10﹣2)6;(结果用科学记数法表示)(3)√20+√5√5−√13×√12;(4)√15÷(1√31√5). 【解答】解:(1)原式=a 2+2ab +b 2+a 2﹣2ab =2a 2+b 2;(2)原式=2.5﹣2×10﹣24÷(26×10﹣12)=2.5﹣2×10﹣24×2﹣6×1012=5×10﹣15;(3)原式=√205+1−√13×12 =2+1﹣2 =1;(4)原式=√15÷√5+√3√5×√3=√15√155+3=√5−√3)(5+3)(5−3)=15√5−15√32. 20.(15分)化简: (1)√2−2√2⋅√5+5;(2)√(x −1x )2+4−√(x +1x )2−4(0<x <1);(3)当a =1−3时,求a 2−1a−1−√a 2+2a+1a 2+a −1a的值.【解答】解:(1)原式=√(√2)2−2×√2×√5+(√5)2 =√(√2−√5)2 =√5−√2;(2)原式=√(x +1x )2−√(x −1x )2 =|x +1x |﹣|x −1x | ∵0<x <1,∴原式=x +1x +x −1x=2x ;(3)a =3−1=−(√3+1)=−√3−1, 原式=(a+1)(a−1)a−1−√(a+1)2a(a+1)−1a=a +1−−(a+1)a(a+1)−1a=a +1 =−√3−1+1=−√3.21.(10分)解方程: (1)2x−1=4x 2−1;(2)(x 2−x+7x+1−x −1)÷x 2−4x+1=1. 【解答】解:(1)方程变形为:2x−1=4(x+1)(x−1),两边同乘以(x +1)(x ﹣1),去分母得:2(x +1)=4,解得x =1,把x =1代入(x +1)(x ﹣1)=(1+1)(1﹣1)=0,∴x =1是原方程的增根,∴原方程无解.(2)方程变形为:[x 2−x+7x+1−(x+1)2x+1]÷(x+2)(x−2)x+1=1, −3(x−2)x+1•x+1(x+2)(x−2)=1, −3x+2=1,两边同乘以x +2得:x +2=﹣3,解得x =﹣5,把x =﹣5代入原方程,左边=[(−5)2−(−5)+7−5+1−(﹣5)﹣1]÷(−5)2−4−5+1=1,右边=1, ∴左边=右边,∴原方程的解为x =﹣5.22.(7分)已知x =2−3,x 的整数部分为a ,小数部分为b ,求a−b−2a+b 的值. 【解答】解:∵2−√3=√3)(2−√3)(2+√3)=2+√3,∴x 的值为2+√3,∵1<3<4,∴1<√3<2,∴1+2<2+√3<2+2,即3<2+√3<4,∴x 的整数部分a =3,小数部分b =2+√3−3=√3−1,∴a−b−2a+b =√3−1)−23+3−1 =2−√32+√3 =(2−√3)(2−√3)(2+3)(2−3)=(2−√3)2=4﹣4√3+3=7﹣4√3.23.(8分)已知实数a 满足|2020﹣a |+√a −2021=a ,求a ﹣20202的值.【解答】解:∵要使√a −2021有意义,∴a ﹣2021≥0,解得a ≥2021,∴a ﹣2020+√a −2021=a ,即√a −2021=2020,∴a ﹣2021=20202,∴a =20202+2021,∴原式=20202+2021﹣20202=2021.24.(8分)当x 取什么整数时,3x+6x+1−x−1x ÷x 2−1x +2x 的值是整数.【解答】解:原式=3x+6x+1−x−1x •x(x+2)(x+1)(x−1)=3x+6x+1−x+2x+1=4x+8x+1=4+4x+1,当x =﹣5、﹣3、﹣2、0、1、3时,4x+1为整数, 由题意得:x ≠±1,0,﹣2,∴x =﹣5,﹣3,3时,原式为整数.25.(12分)新冠肺炎疫情爆发后,国内口罩需求激增,某地甲、乙两个工厂同时接到200万个一次性医用外科口罩的订单,已知甲厂每天比乙厂多生产2万个口罩,且甲厂生产50万个口罩所用的时间与乙厂生产40万个口罩所用的时间相同.(1)求甲、两厂每天各生产多少万个一次性医用外科口罩.(2)已知甲、乙两个工厂每天生产这种口罩的原料成本分别是4万元和3万元,若两个工厂一起生产这400万个口罩,生产一段时间后,乙停产休整,剩下订单由甲单独完成若本次生产过程中,原料总成本不超过156万元,那么两厂至少一起生产了多少天?【解答】解:(1)设乙厂每天生产x 万个口罩,则甲厂每天生产(x +2)万个, 由题意可得:50x+2=40x ,解得:x =8,经检验得:x =8是原方程的根,故x +2=10(万个),答:乙厂每天生产8万个口罩,甲厂每天生产10万个;(2)设两厂一起生产了a 天,甲一共生产b 天,由题意可得:{8a +10b =400①3a +4b ≤156②, 由①得:b =40﹣0.8a ,代入②得:a ≥20,答:两厂至少一起生产了20天.26.(12分)先阅读下列的解答过程,然后作答:形如√m ±2√n 的化简,只要我们找到两个数a 、b 使a +b =m ,ab =n ,这样(√a )2+(√b )2=m,√a•√b=√n,那么便有√m±2√n=√(√a±√b)2=√a±√b(a>b)例如:化简√7+4√3解:首先把√7+4√3化为√7+2√12,这里m=7,n=12;由于4+3=7,4×3=12,即(√4)2+(√3)2=7,√4•√3=√12,∴√7+4√3=√7+2√12=√(√4+√3)2=2+√3由上述例题的方法化简:(1)√13−2√42;(2)√7−√40;(3)√2−√3.【解答】解:(1)√13−2√42=√(√7−√6)2=√7−√6;(2)√7−√40=√7−2√10=√(√5−√2)2=√5−√2;(3)√2−√3=√8−434=√6−√22.。

云南省昭通市昭阳区2023-2024学年八年级上学期12月月考数学试卷(含答案)

云南省昭通市昭阳区2023-2024学年八年级上学期12月月考数学试卷(含答案)

2023年秋季学期学生综合素养阶段性评价八年级数学(4)试题卷【命题范围:第11至14章】(全卷三个大题,共24个小题,共4页:满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答。

答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效。

2.考试结束后,请将试题卷和答题卡一并交回.一、选择题(本大题共12小题,每小题只有一个正确选项,每小题3分,共36分)1.下列交通标志中,不是轴对称图形的是()A.B.C.D.2.若一个三角形的两边长分别为3和6,则该三角形的周长可能是()A.9 B.12 C.15 D.12或153.多边形的内角和不可能是()A.B.C.D.4.点关于y轴对称的点的坐标是()A.B.C.D.5.下列运算正确的是()A.B.C.D.6.如图,,下列条件中,能判定的条件是()A.B.C.D.7.如图所示,,则AB的长是()A.10 B.8 C.6 D.48.下列等式从左到右的变形,属于因式分解的是()A.B.C.D.9.如图,在中,交BC于点D,若,,则BC的长为()A.B.C.D.10.三个连续偶数,若中间一个数为,则它们的积为()A.B.C.D.11.如图,在中,,直线m是中AB边的垂直平分线,点P是直线m上的一动点.则周长的最小值为()A.10 B.11 C.13 D.1512.如图,已知长方形ABCD的边长,点E在边AB上,,如果点P 从点B出发在线段BC上以的速度向点C运动,同时,点Q以同样的速度在线段CD上由点D向点C运动.则当t为多少s时,与全等.A.1 B.3 C.1或3 D.2或3二、填空题(本大题共4小题,每小题2分,共8分)13.分解因式:___________.14.如图,,则AE等于__________.15.如图,在中,于E,于F,AD为∠B AC的平分线,的面积是,__________.16.如果等腰三角形一腰上的高与另一腰的夹角为,那么这个等腰三角形的底角为__________.三、解答题(本大题共8小题,共56分)17.(本题满分6分,每小题3分)(1)计算:(2)因式分解:18.(本题满分6分)先化简,再求值:,其中.19.(本题满分6分)在如图所示的平面直角坐标系中,每个小方格都是边长为1的正方形,的顶点均在格点上.(1)画出关于x轴对称的,并写出点的坐标.(2)求的面积.20.(本题满分6分)如图,.求的度数和CF的长.21.(本题满分7分)如图,已知四边形ABCD中,,垂足为E.求证:.22.(本题满分7分)公式的探究及应用.(1)如图,用两种方法表示阴影部分的面积可以得到等式:______________________________.(2)根据你得到的等式计算:23.(本题满分8分)如图,已知,AC与BD相交于点O,.(1)求证:是等腰三角形;(2)若,求证:.24.(本题满分10分)已知,OE平分,点A,B,C分别是射线OM,OE,ON上的动点(A,B,C不与点O重合),连接AC交射线OE于点D.设.图1 图2(1)如图1,若,则①的度数为__________;②当时,x=__________.(2)如图2,若,则是否存在这样的x的值,使得中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.2023年秋季学期学生综合素养阶段性评价八年级数学(4)参考答案及评分标准(满分100分)一、选择题(本大题共12小题,每小题3分,共36分)题号123456789101112答案C C B D B A A D A C B B 二、填空题(本大题共4小题,每小题2分,共8分)13.14.3 15.2 16.20或70三、解答题(本大题共8小题,共56分)17.(本题满分6分,每小题3分)(1)解:原式1分2分3分(2)因式分解:解:原式4分5分6分18.(6分)解:1分2分3分又4分把代入得,5分6分19.(6分)解:(1)图略,点的坐标为3分(2)6分20.(6分)解:,1分2分,3分,4分,5分.6分21.(7分)证明:,1分.2分又,3分.4分在和中,6分7分22.(7分)解:(1)3分(2)解:原式4分5分6分7分23.(8分)证明:(1),.1分在和中,2分.3分.,即是等腰三角形.4分(2)由(1)得..5分,.6分.7分.8分24.(10分)解:(1)如图1,①,OE平分,.,.2分②当时,,,.故答案为①;②4分(2)如图2,存在这样的x的值,使得中有两个相等的角.,OE平分,,①当AC在AB左侧时:若,则;5分若,则;6分若,则,故.7分②当AC在AB右侧时:,且三角形的内角和为,只有,则.9分综上所述,当,33.75,45或123.75时,中有两个相等的角.10分。

2023-2024学年江苏省苏州市星海实验初级中学八年级上学期12月月考数学试题

2023-2024学年江苏省苏州市星海实验初级中学八年级上学期12月月考数学试题

2023-2024学年江苏省苏州市星海实验初级中学八年级上学期12月月考数学试题1.下列曲线不能表示y是x的函数的是()A.B.C.D.2.如图,表示了自变量x与因变量y的关系,当x每增加1时,y增加()A.1B.3C.6D.123.下列图形中,表示一次函数与正比例函数(为常数,且)的图象的是()A.B.C.D.4.一辆快车和一辆慢车按相同的路线从地行驶到地,所行驶的路程与时间的函数图象如图所示,下列说法不正确的是()A.快车追上慢车需小时B.慢车的速度是千米时C.,两地相距千米D.快车比慢车早到小时5.若一次函数的图象不经过第二象限,则()A .,B .,C .,D .,6.若是关于的方程的解,则一次函数的图象与轴的交点坐标是()A .B .C .D .7.在平面直角坐标系中,将函数的图象向上平移个单位长度,使其与的交点在位于第二象限,则的取值范围为()A .B .C .D .8.如图,在平面直角坐标系xoy 中,,线段,B 为的中点.点C 在y 轴上滑滑动,当线段长为最小值时点D 的坐标是()A .B .C .D .9.在平面直角坐标系中,一次函数的图象与y 轴交点坐标为__________.10.若点在函数的图象上,则代数式的值为________.11.已知一次函数的图象经过,两点,则________.(填“”“<”或“=”)12.已知一次函数的图象与直线平行,且经过点关于y 轴的对称点,则该函数的表达式为________.13.如图,直线过点与直线交于点,则不等式的解集为______.14.已知:如图(1),长方形中,E 是边上一点,且,,点P 从B 出发,沿折线匀速运动,运动到点C 停止.P 的运动速度为2,运动时间为t (s ),的面积为y ().y 与t 的函数关系式图象如图(2),则下列结论:①;②;③;④当时,为等腰三角形;⑤当时,.其中正确的是______.15.我们知道,若.则有或.如图,直线与分别交轴于点、,则不等式的解集是______.16.已知两个函数图像的表达式分别为:,,,与相交于,求__________.17.已知一次函数.(1)为何值时,它的图象经过原点;(2)为何值时,它的图象经过点.18.某校甲、乙两班参加植树活动.乙班先植树20棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为(棵),乙班植树的总量为(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x(时),分别与x之间的部分函数图象如图所示.(1)当时,分别求与x之间的函数关系式.(2)如果甲、乙两班均保持前4个小时的工作效率,通过计算说明,当时,甲、乙两班植树的总量之和能否超过180棵.19.如图,在正方形网格中(图中每个小正方形的边长均为1个单位长度),若点的坐标为,点的坐标为,请按要求解决下列问题:(1)在图中建立正确的平面直角坐标系;(2)点的坐标为_____________;(3)的面积为_____________;(4)如果的面积为1,且点在轴上,则点的坐标为_____________;(5)如果的周长最小,且点在轴上,则的周长最小值为_____________,点的坐标为_____________.20.如图,已知直线与坐标轴分别交于A,B两点,与直线交于点.(1)求t,b的值;(2)若点在线段上运动,过点M作直线平行于y轴,该直线与直线交于点N,与x轴交于点D,如图所示.①若,求四边形的面积;②若M是线段的3等分点,求m的值.21.某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台冰箱进价1500元,每台空调的进价1200元.现在商场准备一次购进这两种家电共100台,设购进电冰箱台,这100台家电的销售利润为元,(1)求出与之间的函数关系式;(2)要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16400元,请分析合理的方案共有多少种?(3)实际进货时,厂家对电冰箱出厂价下调()元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,求出这100台家电销售时的最大利润.22.如图1,等腰直角三角形中,,,过点作交于点,过点作交于点,易得,我们称这种全等模型为“型全等”.如图2,在直角坐标系中,直线:分别与轴,轴交于点、(,).(1)求的值和点的坐标;(2)在第二象限构造等腰直角,使得,求点的坐标;(3)将直线绕点旋转得到,求的函数表达式.。

湖北省武汉市光谷实验中学2019-2020学年度上学期12月月考八年级数学试题 (解析版)

湖北省武汉市光谷实验中学2019-2020学年度上学期12月月考八年级数学试题  (解析版)

湖北省武汉市光谷实验中学2019-2020学年度上学期12月月考八年级数学试题一.选择题(共10小题)1.下列图形中,只有一条对称轴的是()A.B.C.D.2.当分式有意义时,x的取值范围是()A.x<2B.x>2C.x≠2D.x≥23.到三角形的三个顶点距离相等的点是()A.三条角平分线的交点B.三条边的垂直平分线的交点C.三条高的交点D.三条中线的交点4.如图,△ABC中,AB=AC,AB的垂直平分线交AB于D,交AC于E,且BE平分∠ABC,求∠A的度数为()A.72°B.60°C.54°D.36°5.下列式子一定成立的是()A.a+2a2=3a3B.a2•a3=a6C.(a3)2=a6D.a6÷a2=a36.若4x2﹣2(k﹣1)x+9是完全平方式,则k的值为()A.±2B.±5C.7或﹣5D.﹣7或57.点A(a,4),点B(3,b)关于x轴对称,则(a+b)2019的值为()A.0B.﹣1C.1D.720198.等腰Rt△ABC中,∠BAC=90°,D是AC的中点,EC⊥BD于E,交BA的延长线于F,若BF=12,则△FBC的面积为()A.40B.46C.48D.509.已知等腰三角形△ABC,BC边上的高恰好等于BC边长的一半,则∠BAC的度数是()A.90°B.90°或75°C.90°或75°或15°D.90°或75°或15°或60°10.如图,在平面直角坐标系中,A(﹣3,0),B(0,3),DA⊥x轴,点C在OA上且∠CDB=∠OBD,则∠CBD的度数是()A.72°B.60°C.45°D.36°二.填空题(共6小题)11.如果等腰三角形的两边长分别为3和7,那么它的周长为.12.若分式的值为0,则x=.13.在直角△ABC中,已知∠ACB=90°,AB=13,AC=5,BC=12.在△ABC的内部找一点P,使得P到△ACB的三边的距离相等,则这个距离是.14.已知10m=2,10n=3,则103m+2n=.15.已知:x﹣y=1,z﹣y=2,则xy+yz+zx﹣x2﹣y2﹣z2的值是.16.如图,A(4,3),B(2,1),在x轴上取两点P、Q,使P A+PB值最小,|QA﹣QB|值最大,则PQ=.三.解答题(共5小题)17.(1)计算:(x+2y)(x﹣y)﹣(x+y)2(2)因式分解:a3﹣2a2+a18.先化简,后求值:•÷,其中a=2,b=﹣1.19.如图,在△ABC中,∠A=50°,O是△ABC内一点,且∠ABO=20°,∠ACO=30°,求∠BOC的度数.20.如图所示,在平面直角坐标系中,A(﹣1,5)、B(﹣1,0)、C(﹣4,3).(1)直接写出△ABC的面积为.(2)在图形中作出△ABC关于x轴的对称图形△A1B1C1.(3)若△DAB与△CAB全等(D点不与C点重合),则点D的坐标为.21.如图,在△ABC中,∠C=60°,∠A=40°.(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)求证:BD平分∠CBA.22.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF =BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.23.△ABC是等边三角形,点E、F分别为射线AC、射线CB上两点,CE=BF,直线EB、AF交于点D.(1)当E、F在边AC、BC上时如图(1),求证:△ABF≌△BCE.(2)当E在AC延长线上时,如图(2),AC=10,S△ABC=25,EG⊥BC于G,EH ⊥AB于H,HE=8,EG=.(3)E、F分别在AC、CB延长线上时,如图(3),BE上有一点P,CP=BD,∠CPB 是锐角,求证:BP=AD.24.如图1,在平面直角坐标系中A(a,0),B(0,b),且a,b满足+(b﹣4)2=0.(1)A、B坐标分别为A、B.(2)P为x轴上一点,C为AB中点,∠APC=∠PBO,求AP的长.(3)如图2,点E为第一象限一点,AE=AB,以AE为斜边构造等腰直角△AFE,连BE,连接OF并延长交BE于点G,求证:BG=EG.参考答案与试题解析一.选择题(共10小题)1.下列图形中,只有一条对称轴的是()A.B.C.D.【分析】根据轴对称图形的概念,分别判断四个图形的对称轴的条数.【解答】解:A、有2条对称轴;B、有2条对称轴;C、有1条对称轴;D、有6条对称轴.故选:C.2.当分式有意义时,x的取值范围是()A.x<2B.x>2C.x≠2D.x≥2【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:当分母x﹣2≠0,即x≠2时,分式有意义.故选:C.3.到三角形的三个顶点距离相等的点是()A.三条角平分线的交点B.三条边的垂直平分线的交点C.三条高的交点D.三条中线的交点【分析】根据到线段两端点的距离相等的点在这条线段的垂直平分线上得出即可.【解答】解:∵OA=OB,∴O在线段AB的垂直平分线上,∵OC=OA,∴O在线段AC的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,即O是△ABC的三边垂直平分线的交点,故选:B.4.如图,△ABC中,AB=AC,AB的垂直平分线交AB于D,交AC于E,且BE平分∠ABC,求∠A的度数为()A.72°B.60°C.54°D.36°【分析】根据等腰三角形的性质得到∠ABC=∠C,根据线段垂直平分线的性质得到EA =EB,得到∠ABE=∠A,根据三角形内角和定理计算即可.【解答】解:∵AB=AC,∴∠ABC=∠C,∵AB的垂直平分线交AB边于点D,交AC边于点E,∴EA=EB,∴∠ABE=∠A,∵BE平分∠ABC,∴∠ABE=∠EBC=∠A,由三角形内角和定理可得:∠ABC+∠C+∠A=5∠A=180°,解得:∠A=36°,故选:D.5.下列式子一定成立的是()A.a+2a2=3a3B.a2•a3=a6C.(a3)2=a6D.a6÷a2=a3【分析】根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据幂的乘方,可判断C;根据同底数幂的除法,可判断D;可得答案.【解答】解:A、不是同类项,不能合并,故A选项错误;B、a2•a3=a5,故B选项错误;C、(a3)2=a6,故C选项正确;D、a6÷a2=a4,故D选项错误;故选:C.6.若4x2﹣2(k﹣1)x+9是完全平方式,则k的值为()A.±2B.±5C.7或﹣5D.﹣7或5【分析】利用完全平方公式的结构特征判断即可确定出k的值.【解答】解:∵4x2﹣2(k﹣1)x+9是完全平方式,∴k﹣1=±6,解得:k=7或﹣5,故选:C.7.点A(a,4),点B(3,b)关于x轴对称,则(a+b)2019的值为()A.0B.﹣1C.1D.72019【分析】根据关于关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,可得a、b的值,进而得到答案.【解答】解:∵点A(a,4)、点B(3,b)关于x轴对称,∴a=3,b=﹣4,∴(a+b)2019=﹣1,故选:B.8.等腰Rt△ABC中,∠BAC=90°,D是AC的中点,EC⊥BD于E,交BA的延长线于F,若BF=12,则△FBC的面积为()A.40B.46C.48D.50【分析】求出∠ABD=∠ACF,根据ASA证△ABD≌△ACF,推出AD=AF,得出AB=AC=2AD=2AF,求出AF长,求出AB、AC长,根据三角形的面积公式得出△FBC的面积等于BF×AC,代入求出即可.【解答】解:∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠F AC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,∵在△ABD和△ACF中,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D为AC中点,∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴△FBC的面积是×BF×AC=×12×8=48,故选:C.9.已知等腰三角形△ABC,BC边上的高恰好等于BC边长的一半,则∠BAC的度数是()A.90°B.90°或75°C.90°或75°或15°D.90°或75°或15°或60°【分析】本题要分情况讨论,根据等腰三角形的性质来分析:①当AD在三角形的内部,②AD在三角形的外部以,③BC边为等腰三角形的底边三种情况.【解答】解:如下图,分三种情况:①AB=BC,AD⊥BC,AD在三角形的内部,由题意知,AD=BC=AB,∵sin∠B==,∴∠B=30°,∠C==75°,∴∠BAC=∠C=75°;②AC=BC,AD⊥BC,AD在三角形的外部,由题意知,AD=BC=AC,∵sin∠ACD==,∴∠ACD=30°=∠B+∠CAB,∵∠B=∠CAB,∴∠BAC=15°;③AC=BC,AD⊥BC,BC边为等腰三角形的底边,由等腰三角形的底边上的高与底边上中线,顶角的平分线重合知,点D为BC的中点,由题意知,AD=BC=CD=BD,∴△ABD,△ADC均为等腰直角三角形,∴∠BAD=∠CAD=45°,∴∠BAC=90°,∴∠BAC的度数为90°或75°或15°,故选:C.10.如图,在平面直角坐标系中,A(﹣3,0),B(0,3),DA⊥x轴,点C在OA上且∠CDB=∠OBD,则∠CBD的度数是()A.72°B.60°C.45°D.36°【分析】如图,过点B作BH⊥AD,交AD的延长线于H,作BE⊥CD于点E,可证四边形AOBH是矩形,可得BH=AO=3,∠HBO=90°,通过证明△BDH≌△BDE,Rt △BEC≌Rt△BOC可得BH=BE=3,∠DBH=∠DBE,∠CBO=∠CBE,可求解.【解答】解:如图,过点B作BH⊥AD,交AD的延长线于H,作BE⊥CD于点E,∵A(﹣3,0),B(0,3),∴OA=OB=3,∵BH⊥AD,AD⊥AO,AO⊥BO,∴四边形AOBH是矩形,∴BH=AO=3,∠HBO=90°,∵AD∥BO,∴∠HDB=∠DBO,又∵∠CDB=∠OBD,∴∠HDB=∠BDC,∠BHD=∠BED=90°,BD=BD,∴△BDH≌△BDE(AAS)∴BH=BE=3,∠DBH=∠DBE,∴BE=BO,且BC=BC,∴Rt△BEC≌Rt△BOC(HL)∴∠CBO=∠CBE,∴∠CBO+∠DBH=∠CBE+∠DBE=45°,∴∠DBC=45°,故选:C.二.填空题(共6小题)11.如果等腰三角形的两边长分别为3和7,那么它的周长为17.【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若3为腰长,7为底边长,由于3+3<7,则三角形不存在;(2)若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为7+7+3=17.故答案为:17.12.若分式的值为0,则x=2.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:根据题意得:3x﹣6=0,解得:x=2.故答案是:2.13.在直角△ABC中,已知∠ACB=90°,AB=13,AC=5,BC=12.在△ABC的内部找一点P,使得P到△ACB的三边的距离相等,则这个距离是2.【分析】设P到△ACB的三边的距离为x,根据三角形的面积公式计算即可.【解答】解:设P到△ACB的三边的距离为x,由三角形的面积公式得,×5×12=×5×x+×12×x+×13×x,解得,x=2,故答案为:2.14.已知10m=2,10n=3,则103m+2n=72.【分析】根据同底数幂相乘的逆运算和幂的乘方的逆运算法则计算.【解答】解:103m+2n=103m102n=(10m)3(10n)2=23•32=8×9=72.故答案为:72.15.已知:x﹣y=1,z﹣y=2,则xy+yz+zx﹣x2﹣y2﹣z2的值是﹣3.【分析】将x=y+1,z=y+2,代入所求的式子,化简整理即可.【解答】解:∵x﹣y=1,z﹣y=2,∴x=y+1,z=y+2,∴xy+yz+zx﹣x2﹣y2﹣z2=(y+1)y+(y+2)y+(y+1)(y+2)﹣(y+1)2﹣y2﹣(y+2)2=﹣3,故答案为﹣3.16.如图,A(4,3),B(2,1),在x轴上取两点P、Q,使P A+PB值最小,|QA﹣QB|值最大,则PQ= 1.5.【分析】作出A点关于x轴的对称点A′,连接A′B交x轴于P即为所求,此时P A+PB 的值最小,根据待定系数法求出直线A′B的解析式,即可求得P的坐标.作直线AB交x轴于Q即为所求,此时QA﹣QB的值最长,根据待定系数法求得求出直线AB的解析式,即可求得Q的坐标,然后根据两点间的距离公式即可得到结论.【解答】解:作出A点关于x轴的对称点A′,连接A′B交x轴于P即为所求,此时P A+PB的值最小;∵A(4,3),∴A′(4,﹣3),设直线A′B的解析式为y=kx+b,∵A′(4,﹣3),B(2,1),∴,解得,∴直线A′B的解析式为y=﹣2x+5,令y=0,则x=,∴P的坐标为(,0).作直线AB交x轴于Q即为所求,此时QA﹣QB的值最长;设直线AB的解析式为y=mx+n,∴,解得∴直线AB的解析式为y=x﹣1,令y=0,则x=1,∴Q的坐标为(1,0),∴PQ=1.5,故答案为:1.5.三.解答题(共5小题)17.(1)计算:(x+2y)(x﹣y)﹣(x+y)2(2)因式分解:a3﹣2a2+a【分析】(1)原式利用多项式乘以多项式法则,以及完全平方公式化简,去括号合并即可得到结果;(2)原式提取a,再利用完全平方公式分解即可.【解答】解:(1)原式=x2﹣xy+2xy﹣2y2﹣x2﹣2xy﹣y2=﹣xy﹣3y2;(2)原式=a(a2﹣2a+1)=a(a﹣1)2.18.先化简,后求值:•÷,其中a=2,b=﹣1.【分析】先把分式的分子和分母因式分解,再把除法化为乘法,约分后得到原式=,然后把a、b的值代入计算.【解答】解:原式=••=,当a=2,b=﹣1时,原式==﹣.19.如图,在△ABC中,∠A=50°,O是△ABC内一点,且∠ABO=20°,∠ACO=30°,求∠BOC的度数.【分析】延长BO交AC于E,根据三角形内角与外角的性质可得∠1=∠A+∠ABO,∠BOC=∠ACO+∠1,再代入相应数值进行计算即可.【解答】解:延长BO交AC于E,∵∠A=50°,∠ABO=20°,∴∠1=50°+20°=70°,∵∠ACO=30°,∴∠BOC=∠1+∠ACO=70°+30°=100°20.如图所示,在平面直角坐标系中,A(﹣1,5)、B(﹣1,0)、C(﹣4,3).(1)直接写出△ABC的面积为.(2)在图形中作出△ABC关于x轴的对称图形△A1B1C1.(3)若△DAB与△CAB全等(D点不与C点重合),则点D的坐标为(2,3)或(2,2)或(﹣4,2).【分析】(1)根据三角形的面积公式可得答案;(2)根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数可得点A1,B1,C1的坐标;(3)依据△DAB与△CAB全等(D点不与C点重合),即可得出点D的坐标.【解答】解:(1)△ABC的面积=×5×3=;故答案为:;(2)如图所示:△A1B1C1即为所求;(3)如图所示:点D的坐标为(2,3)或(2,2)或(﹣4,2).故答案为:(2,3)或(2,2)或(﹣4,2).21.如图,在△ABC中,∠C=60°,∠A=40°.(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)求证:BD平分∠CBA.【分析】(1)分别以A、B两点为圆心,以大于AB长度为半径画弧,在AB两边分别相交于两点,然后过这两点作直线即为AB的垂直平分线;(2)根据线段垂直平分线的性质和三角形的内角和证明即可.【解答】解:(1)如图1所示:(2)连接BD,如图2所示:∵∠C=60°,∠A=40°,∴∠CBA=80°,∵DE是AB的垂直平分线,∴∠A=∠DBA=40°,∴∠DBA=∠CBA,∴BD平分∠CBA.22.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF =BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【考点】KD:全等三角形的判定与性质.【分析】(1)在△CBF和△DBG中,利用SAS即可证得两个三角形全等,利用全等三角形的对应边相等即可证得;(2)根据全等三角形的对应角相等,以及三角形的内角和定理,即可证得∠DHF=∠CBF =60°,从而求解.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.23.△ABC是等边三角形,点E、F分别为射线AC、射线CB上两点,CE=BF,直线EB、AF交于点D.(1)当E、F在边AC、BC上时如图(1),求证:△ABF≌△BCE.(2)当E在AC延长线上时,如图(2),AC=10,S△ABC=25,EG⊥BC于G,EH ⊥AB于H,HE=8,EG=3.(3)E、F分别在AC、CB延长线上时,如图(3),BE上有一点P,CP=BD,∠CPB 是锐角,求证:BP=AD.【考点】KY:三角形综合题.【专题】152:几何综合题;69:应用意识.【分析】(1)根据SAS证明三角形全等即可.(2)利用三角形的面积公式求出AC,解直角三角形求出AE,EC即可解决问题.(3)如图3中,作CM⊥BE于M,BN⊥AF于N.想办法证明△ABD≌△BCP(AAS)可得结论.【解答】(1)证明:如图1中,∵△ABC是等边三角形,∴∠ABF=∠C=60°,BA=CB,∵BF=CE,∴△ABF≌△BCE(SAS).(2)解:如图2中,∵S△ABC=AC2=25,∴AC=10(负根已经舍弃),在RtAEH中,∵∠AHE=90°,∠A=60°,HE=8,∴AE===16,∴EC=AE﹣AC=16﹣10=6,在Rt△ECG中,∵∠G=90°,∠ECG=∠ACB=60°,EC=6,∴EG=EC•sin60°=6×=3.故答案为3.(3)解:如图3中,作CM⊥BE于M,BN⊥AF于N.∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,BA=CB,∴∠ABF=∠BCE=120°,∵BF=CE,∴△ABF≌△BCE(SAS),∴∠F=∠E,∠BAF=∠CBE,∴∠BNF=∠CME=90°,BF=EC,∴△BNF≌△CME(AAS),∴CM=BN,∵∠BND=∠CMP=90°,BD=CP,∴Rt△BND≌Rt△CMP(HL),∴∠BDN=∠CPM,∵∠BAD=∠CBP,AB=CB,∴△ABD≌△BCP(AAS),∴BP=AD.24.如图1,在平面直角坐标系中A(a,0),B(0,b),且a,b满足+(b﹣4)2=0.(1)A、B坐标分别为A(4,0)、B(0,4).(2)P为x轴上一点,C为AB中点,∠APC=∠PBO,求AP的长.(3)如图2,点E为第一象限一点,AE=AB,以AE为斜边构造等腰直角△AFE,连BE,连接OF并延长交BE于点G,求证:BG=EG.【考点】KY:三角形综合题.【专题】152:几何综合题;69:应用意识.【分析】(1)利用非负数的性质求出a,b即可解决问题.(2)设P(m,0).可得直线PC的解析式为y=x+,推出直线PC与y轴交于F(0,),再利用相似三角形的性质构建方程即可解决问题.(3)连接AG,想办法证明AG⊥BE,利用等腰三角形是三线合一的性质即可解决问题.【解答】解:(1)∵+(b﹣4)2=0,又∵≥0,(b﹣4)2≥0,∴a=b=4,∴A(4,0),B(0,4),故答案为(4,0),(0,4).(2)如图1中,∵A(4,0),B(0,4),BC=AC,∴C(2,2),设P(m,0).∴直线PC的解析式为y=x+,∴直线PC与y轴交于F(0,),∵∠POF=∠POB,∠OPF=∠PBO,∴△OPF∽△OBP,∴OP2=OF•OB,∴m2=×4,解得m=4(舍弃)或﹣2,∴P(﹣2,0),∴OP=2,P A=OP+OA=2+4=6.(3)如图2中,连接AG.∵△AOB,∠AFE都是等腰直角三角形,∴AB=AO,AE=AF,∠OAB=∠F AE=45°,∴=,∠OAF=∠BAE,∴△OAF∽△BAE,∴∠AOF=∠ABE,∴B,O,A,G四点共圆,∴∠AOB+∠AGB=90°,∵∠AOB=90°,∴∠AGB=90°,∴AG⊥BE,∵AB=AE,∴BG=GE.。

2022-2023学年安徽省蚌埠市蚌山区八年级上学期12月月考数学试卷带讲解

2022-2023学年安徽省蚌埠市蚌山区八年级上学期12月月考数学试卷带讲解
又因为甲、丁在路程相同的情况下,甲用的时间较少,故甲的速度最快,
故选A
【点睛】本题考查了从图象中获取信息的能力,正确的识图是解题的关键.
6.已知正比例函数 的图像上一点 ,且 ,则m的值可能是()
A.-0.5B.0C.1D.1.5
D
【分析】根据 可知, 异号,点 应该在第二象限或第四象限,所以正比例函数应该过二四象限,即可推出 的取值范围.
故答案为:( 1,3),(-3,1);
【小问2详解】
解:∵A(1,3), ,
∴-3-1=-4,1-3=-2,
∴△ABC向左平移4个单位,再向下平移2个单位得到 ,
∴P(x,y)的对应点 (x-4,y-2),
故答案为:(x-4,y-2);
【小问3详解】
解:∵A(1,3), ,
∴-3-1=-4,1-3=-2,
B、∠A=40°,∠B=50°,AB=5cm,则利用“ASA ”可判断△ABC是唯一的,故符合题意;
C、AB=5cm,AC=4cm,∠B=30°,△ABC的形状和大小不能确定,故不符合题意;
D、AB=6cm,BC=4cm,∠A=30°,△ABC的形状和大小不能确定,故不符合题意.
故选:B.
【点睛】本题主要考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法.选用哪一种方法,取决于题目中的已知条件.
证明见解析
【分析】按题中要求,选3个作条件,1个作结论,则有:① ② ③ ⇒④;①②④⇒③;①③④⇒②;②③④⇒①;共计四种组合方式.然后根据全等三角形的判定方法,可知其中①②④⇒③不能判定△ABD≌△ACE,从而不能得到结论,其余的三种组合都可以通过证△ABD≌△ACE而得到结论,故有三种组合方式是成立的,根据全等三角形的判定证明即可.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省东营市垦利县胜坨中学-八年级数学上学期12月月考试题一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下列从左到右的变形,哪一个是因式分解()A.(a+b)(a﹣b)=a2﹣b2B.x2﹣y2+4y﹣4=(x+y)(x﹣y)+4(y﹣1)C.(a+b)2﹣2(a+b)+1=(a+b﹣1)2D.2.下列是某同学在一次作业中的计算摘录:①3a+2b=5ab,②4m3n﹣5mn3=﹣m3n,③4x3•(﹣2x2)=﹣6x5,④4a3b÷(﹣2a2b)=﹣2a,⑤(a3)2=a5,⑥(﹣a)3÷(﹣a)=﹣a2,其中正确的个数有()A.1个B.2个C.3个D.4个3.下列各式中,相等关系一定成立的是()A.(x﹣y)2=(y﹣x)2B.(x+6)(x﹣6)=x2﹣6C.(x+y)2=x2+y2D.6(x﹣2)+x(2﹣x)=(x﹣2)(x﹣6)4.计算:(π﹣3.14)0+(﹣0.125)2008×82008的结果是()A.π﹣3.14 B.0 C.1 D.25.计算(﹣x+2y)(2y+x)的结果是()A.4y﹣x B.4y+x C.4y2﹣x2D.2y2﹣x26.计算(2x﹣3y+1)(2x+3y﹣1)的结果是()A.4x2﹣12xy+9y2﹣1 B.4x2﹣9y2﹣6y﹣1C.4x2+9y2﹣1 D.4x2﹣9y2+6y﹣17.代数式x4﹣81,x2﹣9与x2﹣6x+9的公因式为()A.x+3 B.(x+3)2C.x﹣3 D.x2+98.下列多项式:①x2+2xy﹣y2;②﹣x2﹣y2+2xy;③x2+xy+y2;④.其中能用完全平方公式分解因式的有()A.1个B.2个C.3个D.4个9.若二项式16m4+4m2加上一个单项式后构成的三项式是一个完全平方式,则这样的单项式的个数有()A.1个B.2个C.3个D.4个10.已知,在△ABC中,AC=BC,∠ACB=90°,AD是中线,CE⊥AD交AB于点F,垂足为E,连接DF,则结论①∠BDF=∠ADC;②∠BFD=∠AFC;③CF+DF=AD.其中结论正确的个数是()A.0 B.1 C.2 D.3二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.已知等腰三角形一边等于4,另一边等于9,它的周长是.12.如图,在△ABC中,若AB=AC,D为BC边上一点,E为AC边上的一点,且有AE=AD,∠BAD=30°,则∠CDE= .13.如图,AB比AC长2,DE垂直平分BC,△ACD周长为14,则AB2﹣AC2= .14.分解因式:4+12(x﹣y)+9(x﹣y)2= .15.若多项式m2+6m+k2是完全平方式,则k的值是.16.已知2m=a,8n=b,则24m+6n﹣2的值是(用含字母a、b的式子表示).17.已知等腰△ABC中,由顶点A所引BC边上的高线恰好等于BC长的一半,则∠BAC的度数是.18.观察下列各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…请猜测,第n个算式(n为正整数)应表示为.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.计算:(1)4x2y•(﹣xy2)3;(2)a3•a4•a+(a2)4+(﹣2a4)2;(3)7m(4m2p)2÷7m2.20.计算:(1)(2x+1)2﹣(x+3)2﹣(x﹣1)2+1;(2)﹣(x﹣1)(x+1)﹣(x+2)(x﹣3);(3)(2a+3b﹣c)(2a﹣3b+c);(4)4(x+1)2﹣(2x+5)(2x﹣5).21.因式分解:(1)m(a﹣3)+2(3﹣a);(2)2(1﹣x)2+6a(x﹣1)2;(3)(2x+y)2﹣(x+2y)2;(4)(p﹣4)(p+1)+3p(5)4xy2﹣4x2y﹣y3;(6)(m+n)2﹣4m(m+n)+4m2.22.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.23.阅读材料,回答下列问题:我们知道对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式将它分解成(x+a)2的形式,但是,对于二次三项式x2+2ax﹣3a2就不能直接用完全平方公式,可以采用如下方法:x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像上面这样把二次三项式分解因式的数学方法是配方法.请同学们借助这种数学思想方法把多项式a4+b4+a2b2分解因式.24.已知△ABC中,∠ACB=2∠B,(1)如图1,图2中AD是∠BAC的平分线,①若∠C=90°,∠B=45°,可得AB=AC+CD(如图1)(不需要证明)②图2中,AB,AC,CD有什么关系,直接写出来.(2)若AD是△ABC的外角的平分线,那么AB,AC,CD有什么关系,写出来,并进行证明.25.如图1,是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的面积为;(2)观察图2,请你写出三个代数式(m+n)2、(m﹣n)2、mn之间的等量关系式:;(3)根据(2)中的结论,若x+y=﹣6,xy=2.75,则x﹣y= .(4)有许多代数恒等式可以用图形的面积来表示.如图3,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.2015-2016学年山东省东营市垦利县胜坨中学八年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下列从左到右的变形,哪一个是因式分解()A.(a+b)(a﹣b)=a2﹣b2B.x2﹣y2+4y﹣4=(x+y)(x﹣y)+4(y﹣1)C.(a+b)2﹣2(a+b)+1=(a+b﹣1)2D.【考点】因式分解的意义.【分析】根据因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,逐一进行判断即可得正确的答案.【解答】解:A、B中最后结果不是乘积的形式,不属于因式分解;C、(a+b)2﹣2(a+b)+1=(a+b﹣1)2,是运用完全平方公式进行的因式分解;D、不是在整式范围内进行的分解,不属于因式分解.故选C.2.下列是某同学在一次作业中的计算摘录:①3a+2b=5ab,②4m3n﹣5mn3=﹣m3n,③4x3•(﹣2x2)=﹣6x5,④4a3b÷(﹣2a2b)=﹣2a,⑤(a3)2=a5,⑥(﹣a)3÷(﹣a)=﹣a2,其中正确的个数有()A.1个B.2个C.3个D.4个【考点】整式的混合运算.【分析】根据合并同类项、单项式的乘法、除法以及积的乘方、幂的乘方进行计算即可.【解答】解:①3a+2b=5ab,不能合并,故①错误;②4m3n﹣5mn3=﹣m3n,不是同类项,不能合并,②错误;③4x3•(﹣2x2)=﹣8x5,故③错误;④4a3b÷(﹣2a2b)=﹣2a,④正确;⑤(a3)2=a6,故⑤错误;⑥(﹣a)3÷(﹣a)=a2,故⑥错误;故选A.3.下列各式中,相等关系一定成立的是()A.(x﹣y)2=(y﹣x)2B.(x+6)(x﹣6)=x2﹣6C.(x+y)2=x2+y2D.6(x﹣2)+x(2﹣x)=(x﹣2)(x﹣6)【考点】平方差公式;完全平方公式.【分析】A、C符合完全平方公式,根据相反数的平方相等,可得A正确;B、(x+6)(x﹣6)符合平方差公式,可看出后一项没有平方;D可以提取公因式,符号没有处理好.【解答】解:A、(x﹣y)2=(y﹣x)2,故A正确;B、应为(x+6)(x﹣6)=x2﹣36,故B错误;C、应为(x+y)2=x2+2xy+y2,故C错误;D、应为6(x﹣2)+x(2﹣x)=(x﹣2)(6﹣x),故D错误.故选:A.4.计算:(π﹣3.14)0+(﹣0.125)2008×82008的结果是()A.π﹣3.14 B.0 C.1 D.2【考点】零指数幂;有理数的乘方.【分析】分别根据零指数幂及幂的乘方运算法则进行计算即可.【解答】解:原式=1+(﹣×8)2008=1+1=2.故选D.5.计算(﹣x+2y)(2y+x)的结果是()A.4y﹣x B.4y+x C.4y2﹣x2D.2y2﹣x2【考点】平方差公式.【分析】根据平方差公式,即可解答.【解答】解:(﹣x+2y)(2y+x)=4y2﹣x2,故选:C.6.计算(2x﹣3y+1)(2x+3y﹣1)的结果是()A.4x2﹣12xy+9y2﹣1 B.4x2﹣9y2﹣6y﹣1C.4x2+9y2﹣1 D.4x2﹣9y2+6y﹣1【考点】平方差公式.【分析】首先把(2x﹣3y+1)(2x+3y﹣1)写成[2x﹣(3y﹣1)][2x+(3y﹣1],再利用平方差公式计算,然后展开(3y﹣1)2整理即可.【解答】解:(2x﹣3y+1)(2x+3y﹣1),=[2x﹣(3y﹣1)][2x+(3y﹣1],=(2x)2﹣(3y﹣1)2,=4x2﹣9y2+6y﹣1.故选D.7.代数式x4﹣81,x2﹣9与x2﹣6x+9的公因式为()A.x+3 B.(x+3)2C.x﹣3 D.x2+9【考点】公因式.【分析】首先将各多项式分解因式,再观察3个多项式,都可以运用公式法进一步因式分解.【解答】解:x4﹣81=(x2+9)(x2﹣9),=(x2+9)(x+3)(x﹣3);x2﹣9=(x+3)(x﹣3);x2﹣6x+9=(x﹣3)2.因此3个多项式的公因式是x﹣3.故选:C.8.下列多项式:①x2+2xy﹣y2;②﹣x2﹣y2+2xy;③x2+xy+y2;④.其中能用完全平方公式分解因式的有()A.1个B.2个C.3个D.4个【考点】因式分解-运用公式法.【分析】各式利用完全平方公式判断即可得到结果.【解答】解:①x2+2xy﹣y2,不能分解,错误;②﹣x2﹣y2+2xy=﹣(x﹣y)2;③x2+xy+y2,不能分解,错误;④1+x+x2=(1+x)2.其中能用完全平方公式分解因式的有2个,为②④.故选B9.若二项式16m4+4m2加上一个单项式后构成的三项式是一个完全平方式,则这样的单项式的个数有()A.1个B.2个C.3个D.4个【考点】完全平方式.【分析】式子4m2和16m4分别是2m和4m2的平方,可当作首尾两项,根据完全平方公式可得中间一项为加上或减去2m和3的乘积的2倍,即±16m3,或把4m2看作中间项,添加,由此得出答案即可.【解答】解:二项式16m4+4m2加上一个单项式后构成的三项式是一个完全平方式可添加±16m3或.故选:C.10.已知,在△ABC中,AC=BC,∠ACB=90°,AD是中线,CE⊥AD交AB于点F,垂足为E,连接DF,则结论①∠BDF=∠ADC;②∠BFD=∠AFC;③CF+DF=AD.其中结论正确的个数是()A.0 B.1 C.2 D.3【考点】全等三角形的判定与性质;等腰直角三角形.【分析】如图1,作BG⊥CB,交CF的延长线于点G,根据已知条件得到∠BCG=∠CAD,推出△ACD≌△CGB(AAS),根据全等三角形的性质得到CD=BG,∠CDA=∠CGB,推出△BFG≌△BFD,根据全等三角形的性质得到∠FGB=∠FDB,∠BFD=∠BFG,由于∠BFG=∠CFA,于是得到∠BFD=∠AFC,∠ADC=∠BDF,故①②正确;如图3,延长CF到G,使GF=DF,连接AG,证得△ADF ≌△AGF,根据全等三角形的性质得到AG=AD,∠ADF=∠G,根据余角的性质得到∠ACE=∠ADC,根据三角形的内角和和平角的定义得到∠BDF=∠CAG,等量代换得到∠ACG=∠CAG,根据等腰三角形的判定得到AG=CG,于是得到结论.【解答】解:如图1,作BG⊥CB,交CF的延长线于点G,∵CF⊥AD,∠ACB=90°,∴∠BCG+∠ACE=90°,∠ACE+∠CAD=90°,∴∠BCG=∠CAD,在△ACD与△CGB中,,∴△ACD≌△CGB(AAS),∴CD=BG,∠CDA=∠CGB,∵CD=BD∴BG=BD∵∠CBA=∠GBF=45°,在△BFG与△BFD中,,∴△BFG≌△BFD,∴∠FGB=∠FDB,∠BFD=∠BFG,∵∠BFG=∠CFA,∴∠BFD=∠AFC,∠ADC=∠BDF,故①②正确;如图3,延长CF到G,使GF=DF,连接AG,∵∠BFD=∠CFA,∴∠BFC=∠AFD,∵∠BFC=∠AFG,∴∠AFD=∠AFG,在△ADF与△AGF中,,∴△ADF≌△AGF,∴AG=AD,∠ADF=∠G,∵∠ACB=90°,CE⊥AD,∴∠ACE=∠ADC,∴∠BDF=180°﹣∠ADC﹣∠ADF,∠CAG=180°﹣∠ACF﹣∠G,∴∠BDF=∠CAG,∴∠ACG=∠CAG,∴AG=CG,∵CG=CF+FG=CF+DF,∴CF+DF=AD.故选D.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.已知等腰三角形一边等于4,另一边等于9,它的周长是22 .【考点】等腰三角形的性质;三角形三边关系.【分析】此题先要分类讨论,已知等腰三角形的一边等于4,另一边等于9,先根据三角形的三边关系判定能否组成三角形,若能则求出其周长.【解答】解:当4为腰,9为底时,∵4+4<9,∴不能构成三角形;当腰为9时,∵9+9>4,∴能构成三角形,∴等腰三角形的周长为:9+9+4=22,故答案为22.12.如图,在△ABC中,若AB=AC,D为BC边上一点,E为AC边上的一点,且有AE=AD,∠BAD=30°,则∠CDE= 15°.【考点】等腰三角形的性质.【分析】先根据三角形外角的性质得出∠ADC=∠B+∠BAD=∠B+22°,∠AED=∠C+∠EDC,再根据∠B=∠C,∠ADE=∠AED即可得出结论.【解答】解:∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=∠B+30°,∵∠AED是△CDE的外角,∴∠AED=∠C+∠EDC,∵AB=AC,∴∠B=∠C,∵∠ADE=∠AED,∴∠ADC﹣∠EDC=∠B+30°﹣∠EDC=∠B+∠EDC,解得∠EDC=15°.故答案为:15°.13.如图,AB比AC长2,DE垂直平分BC,△ACD周长为14,则AB2﹣AC2= 28 .【考点】线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到DB=DC,根据三角形的周长公式求出AB+AC=14,根据平方差公式计算即可.【解答】解:∵DE垂直平分BC,∴DB=DC,∵△ACD周长为14,∴AD+DC+AC=AB+AC=14,则AB2﹣AC2=(AB+AC)(AB﹣AC)=28,故答案为:28.14.分解因式:4+12(x﹣y)+9(x﹣y)2= (3x﹣3y+2)2.【考点】因式分解-运用公式法.【分析】原式利用完全平方公式分解即可.【解答】解:原式=[2+3(x﹣y)]2=(3x﹣3y+2)2.故答案为:(3x﹣3y+2)215.若多项式m2+6m+k2是完全平方式,则k的值是±3 .【考点】完全平方式.【分析】根据完全平方公式a2+2ab+b2=(a+b)2得出k2=9,求出即可.【解答】解:∵m2+6m+k2恰好是另一个整式的平方,∴k2=9,解得:k=±3.故答案为:±3.16.已知2m=a,8n=b,则24m+6n﹣2的值是(用含字母a、b的式子表示).【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法、除法,幂的乘方,即可解答.【解答】解:8n=(23)n=23n24m+6n﹣2=24m•26n÷22=(2m)4•(23n)2÷22=a4b2÷4=.故答案为:.17.已知等腰△ABC中,由顶点A所引BC边上的高线恰好等于BC长的一半,则∠BAC的度数是90°或75°或15°.【考点】含30度角的直角三角形;等腰三角形的性质.【分析】根据等腰三角形的性质来分析:①当AD在三角形的内部,②AD在三角形的外部,③BC边为等腰三角形的底边三种情况.【解答】解:分三种情况:①AB=BC,AD⊥BC,AD在三角形的内部,由题意知,AD=BC=AB,∵sin∠B==,∴∠B=30°,∠C=75°,∴∠BAC=∠C=75°;②AC=BC,AD⊥BC,AD在三角形的外部,由题意知,AD=BC=AC,∵sin∠ACD==,∴∠ACD=30°=∠B+∠CAB,∵∠B=∠CAB,∴∠BAC=15°;③AC=BC,AD⊥BC,BC边为等腰三角形的底边,由等腰三角形的底边上的高与底边上中线,顶角的平分线重合知,点D为BC的中点,由题意知,AD=BC=CD=BD,∴△ABD,△ADC均为等腰直角三角形,∴∠BAD=∠CAD=45°,∴∠BAC=90°,∴∠BAC的度数为90°或75°或15°故答案为:90°或75°或15°.18.观察下列各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…请猜测,第n个算式(n为正整数)应表示为5(2n﹣1)×5(2n﹣1)=100n(n﹣1)+25 .【考点】规律型:数字的变化类.【分析】根据数字变化规律得出个位是5的数字数字乘积等于十位数乘以十位数字加1再乘以100再加25,进而得出答案.【解答】解:∵5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…∴第n个算式(n为正整数)应表示为:100n(n﹣1)+25.故答案为:5(2n﹣1)×5(2n﹣1)=100n(n﹣1)+25.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.计算:(1)4x2y•(﹣xy2)3;(2)a3•a4•a+(a2)4+(﹣2a4)2;(3)7m(4m2p)2÷7m2.【考点】整式的混合运算.【分析】(1)根据积的乘方和幂的乘方进行计算即可;(2)根据同底数幂的乘法、积的乘方和幂的乘方进行计算即可;(3)根据积的乘方、单项式乘以单项式和幂的乘方进行计算即可.【解答】(1)4x2y•(﹣xy2)3=4x2y•(﹣x3y6)=﹣4x2+3y1+6=﹣4x5y7;(2)a3•a4•a+(a2)4+(﹣2a4)2=a3+4+1+a8+4a8=a8+a8+4a8=6a8(3)7m(4m2p)2÷7m2=7m•16m4p2÷7m2=(7×16÷7)•m1+4﹣2•p2=16m3p2.20.计算:(1)(2x+1)2﹣(x+3)2﹣(x﹣1)2+1;(2)﹣(x﹣1)(x+1)﹣(x+2)(x﹣3);(3)(2a+3b﹣c)(2a﹣3b+c);(4)4(x+1)2﹣(2x+5)(2x﹣5).【考点】整式的混合运算.【分析】(1)根据完全平方公式进行计算即可;(2)根据多项式乘以多项式和完全平方公式进行计算即可;(3)根据平方差公式进行计算即可;(4)根据完全平方公社平方差公式进行计算即可.【解答】解:(1)(2x+1)2﹣(x+3)2﹣(x﹣1)2+1=(4x2+4x+1)﹣(x2+6x+9)﹣(x2﹣2x+1)+1=4x2+4x+1﹣x2﹣6x﹣9﹣x2+2x﹣1+1=2x2﹣8;(2)﹣(x﹣1)(x+1)﹣(x+2)(x﹣3)=﹣(x2﹣1)﹣(x2﹣x﹣6)=﹣x2+1﹣x2+x+6=﹣2x2+x+7;(3)原式=[2a+(3b﹣c)][2a﹣(3b﹣c)]=(2a)2﹣(3b﹣c)2=4a2﹣9b2+6bc﹣c2;(4)4(x+1)2﹣(2x+5)(2x﹣5)=4(x2+2x+1)﹣(4x2﹣25)=4x2+8x+4﹣4x2+25=8x+29.21.因式分解:(1)m(a﹣3)+2(3﹣a);(2)2(1﹣x)2+6a(x﹣1)2;(3)(2x+y)2﹣(x+2y)2;(4)(p﹣4)(p+1)+3p(5)4xy2﹣4x2y﹣y3;(6)(m+n)2﹣4m(m+n)+4m2.【考点】提公因式法与公式法的综合运用.【分析】(1)利用提公因式法,进行因式分解;(2)利用提公因式法,进行因式分解;(3)利用平方差公式,进行因式分解;(4)利用平方差公式,进行因式分解;(5)利用提公因式法和完全平方公式,进行因式分解;(6)利用完全平方公式,进行因式分解.【解答】解:(1)m(a﹣3)+2(3﹣a)=m(a﹣3)﹣2(a﹣3)=(a﹣3)(m﹣2)(2)2(1﹣x)2+6a(x﹣1)2=2(x﹣1)2+6a(x﹣1)2=2(x﹣1)2(1+3a)(3))(2x+y)2﹣(x+2y)2=[(2x+y)+(x+2y)][(2x+y)﹣(x+2y)]=[3x+3y)][x﹣y)]=3(x+y)(x﹣y)(4)(p﹣4)(p+1)+3p=p2﹣3p﹣4+3p=p2﹣4=(p+2)(p+2).(5)4xy2﹣4x2y﹣y3;=﹣y(4x2﹣4xy+y2)═﹣y(2x﹣y)2(6)(m+n)2﹣4m(m+n)+4m2.=(m+n)2﹣2•(m+n)•2m+(2m)2=[(m+n)﹣2m]2.22.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)由AD⊥BC,CE⊥AB,易得∠AFE=∠B,利用全等三角形的判定得△AEF≌△CEB;(2)由全等三角形的性质得AF=BC,由等腰三角形的性质“三线合一”得BC=2CD,等量代换得出结论.【解答】证明:(1)∵AD⊥BC,CE⊥AB,∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B,∵∠CFD=∠AFE,∴∠AFE=∠B在△AEF与△CEB中,,∴△AEF≌△CEB(AAS);(2)∵AB=AC,AD⊥BC,∴BC=2CD,∵△AEF≌△CEB,∴AF=BC,∴AF=2CD.23.阅读材料,回答下列问题:我们知道对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式将它分解成(x+a)2的形式,但是,对于二次三项式x2+2ax﹣3a2就不能直接用完全平方公式,可以采用如下方法:x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像上面这样把二次三项式分解因式的数学方法是配方法.请同学们借助这种数学思想方法把多项式a4+b4+a2b2分解因式.【考点】完全平方式;因式分解-十字相乘法等.【分析】仿照阅读材料中的解法将原式分解即可.【解答】解:a4+b4+a2b2=a4+b4+2a2b2﹣2a2b2+a2b2=(a4+2a2b2+b4)﹣a2b2=(a2+b2)2﹣(ab)2=(a2+b2+ab)(a2+b2﹣ab).24.已知△ABC中,∠ACB=2∠B,(1)如图1,图2中AD是∠BAC的平分线,①若∠C=90°,∠B=45°,可得AB=AC+CD(如图1)(不需要证明)②图2中,AB,AC,CD有什么关系,直接写出来.(2)若AD是△ABC的外角的平分线,那么AB,AC,CD有什么关系,写出来,并进行证明.【考点】三角形综合题.【分析】(1)先构造全等三角形△ADE≌△ADC,得出结论再判断出△BDE是等腰三角形,转化即可;(2)同(1)的方法,(3)同(1)的方法,最后得出AB=CD﹣AC.【解答】解:(1)①如图1,在AB上截取AE=AC,连接DE,∵AD是∠BAC的平分线,∴∠BAD=∠CAD在△ADE和△ADC中,,∴△ADE≌△ADC,∴DE=DC,∠AED=∠C,∵∠ACB=2∠B,∴∠EBD=∠BDE,∴BE=DE,∴BE=DC,∴AB=AE+BE=AC+CD;②如图2,在AB上截取AE=AC,连接DE,∵AD是∠BAC的平分线,∴∠BAD=∠CAD在△ADE和△ADC中,,∴△ADE≌△ADC,∴DE=DC,∠AED=∠ACB,∵∠ACB=2∠B,∴∠EBD=∠BDE,∴BE=DE,∴BE=DC,∴AB=AE+BE=AC+CD;(2)如图3,在BA的延长线AF上取一点E,使得AE=AC,连接DE在△ADE和△ADC中,,∴△ADE≌△ADC,∴∠ACD=∠AED,CD=DE,∴∠ACB=∠FED,又∵∠ACB=2∠B,∴∠FAD=2∠B,又∵∠FED=∠B+∠EDB,∴∠EDB=∠B,∴DE=BE,∴BE=CD,∴AB=CD﹣AC.25.如图1,是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的面积为(m﹣n)2;(2)观察图2,请你写出三个代数式(m+n)2、(m﹣n)2、mn之间的等量关系式:(m﹣n)2+4mn=(m+n)2;(3)根据(2)中的结论,若x+y=﹣6,xy=2.75,则x﹣y= ±5 .(4)有许多代数恒等式可以用图形的面积来表示.如图3,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.【考点】完全平方公式的几何背景.【分析】(1)可直接用正方形的面积公式得到.(2)熟练掌握完全平方公式,并掌握和与差的区别.(3)此题可参照第二题.(4)可参照图3进行画图.【解答】解:(1)由图可得小正方形的边长为m﹣n,则它的面积为(m﹣n)2;故答案为:(m﹣n)2;(2)大正方形的边长为m+n,则它的面积为(m+n)2,另外,大正方形的面积可用4个小长方形和1个小正方形表示,即(m﹣n)2+4mn,所以有(m﹣n)2+4mn=(m+n)2;故答案为:(m﹣n)2+4mn=(m+n)2;(3)由(2)可知:(x﹣y)2+4xy=(x+y)2,将x+y=﹣6,xy=2.75代入该式得x﹣y=±5;故答案为:±5;(4)答案不唯一:例如:。

相关文档
最新文档