计算圆中阴影部分的面积
圆中阴影部分面积的计算

圆中阴影部分面积的计算
要计算圆的阴影部分的面积,首先需要了解一些基本的几何概念和公式。
下面将逐步介绍计算过程。
1.圆的面积公式:
2.圆的周长公式:
3.阴影部分的面积计算:
首先,我们假设有一个大圆,其半径为R。
然后,在大圆的中心位置画一个小圆,其半径为r。
阴影部分的面积就是大圆的面积减去小圆的面积。
那么,阴影部分的面积可以用以下公式表示:
Shadow Area = π * R^2 - π * r^2
为了计算具体的值,需要知道大圆和小圆的半径。
假设大圆的半径为10单位,小圆的半径为8单位。
那么,可以将这些值代入上述公式,得到阴影部分的面积:
Shadow Area = π * 10^2 - π * 8^2
=π*100-π*64
≈314.159-201.0624
≈113.0966
所以,在这个假设中,阴影部分的面积约为113.1单位。
如果想要通过给定的半径来计算阴影部分的面积,可以根据需要修改上述公式。
另外,如果阴影部分的形状不是简单的圆形,而是由多个形状组成的复杂曲线,那么计算面积的方法也会有所不同。
在那种情况下,可能需要使用数值积分等更高级的数学方法来计算。
圆与阴影部分的面积计算

圆与阴影部分的面积计算
在几何学中,我们经常需要计算圆形和阴影部分的面积。
在这篇文章中,我将介绍如何计算一个圆的面积,以及如何计算圆形和阴影部分的面积。
接下来,我们来计算圆形和阴影部分的面积。
假设有一块有一个圆形
孔的纸板,它的半径是r,整块纸板的面积是A1,圆形孔的面积是A2,
阴影部分的面积是A3、我们想计算出阴影部分的面积A3
首先,我们计算圆形孔的面积A2、根据之前的公式,A2=πr²。
然后,我们计算整块纸板的面积A1、整块纸板的面积等于圆形孔的
面积加上阴影部分的面积,即A1=A2+A3
最后,我们可以解出阴影部分的面积A3、A3=A1-A2
除了上述的方法外,还有其他的方法可以计算圆形和阴影部分的面积,例如使用微积分的方法。
然而,这种方法需要一些高级的数学知识,对于
一般的问题来说可能过于复杂。
因此,使用上述的几何方法可以更简单地
计算圆形和阴影部分的面积。
总结一下,计算圆形的面积可以使用公式A=πr²,其中A表示面积,π是一个常数,r是圆的半径。
计算圆形和阴影部分的面积时,需要计算
圆形孔的面积A2,整块纸板的面积A1,然后通过A3=A1-A2来计算阴影部
分的面积。
通过这些方法,我们可以简单地计算圆形和阴影部分的面积。
圆-阴影部分面积(附答案)

求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
五年级《圆》求阴影部分面积的十大方法

求与圆相关的阴影部分面积的十大方法(一)、相加法(分割法):将不规则图形分割成成几个基础规则图形,分别计算它们的面积,然后相加求出整个图形的面积。
例:下图只要先求出上面半圆的面积,再求出下面正方形的面积,然后相加即可。
(二)、相减法:将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。
例:下图只需先求出正方形面积再减去里面圆的面积即可。
(三)、直接求法:根据已知条件,从整体出发直接求出不规则图形面积。
例:下图阴影部分的面积,分析发现它是一个底为2,高为4的三角形,就可以直接求面积了。
(四)、重新组合法:将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可。
S 阴影=S 半圆+S 正方形S 阴影=S 正方形-S 圆S 阴影=S 三角形例:下图可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了。
(五)、辅助线法:根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可。
例:下图虽然可以用相减法解决,但不如添加一条辅助线后用直接法计算2个三角形面积之和更简便。
(六)、割补法:把原图形的一部分切割下来,补在图形中的另一部分,使之成为规则图形,从而使问题得到解决。
例:下图只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半。
(七)、平移法:将图形中某一部分切割下来,平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积。
S 阴影=S 正方形-S 圆S 阴影=S 正方形÷2S 阴影=S 三角形①+S 三角形②例:下图可先沿中间切开,把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
(八)、旋转法:将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度,贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积。
专题8 巧求圆中阴影部分的面积(含答案)

专题8 巧求圆中阴影部分的面积【知识解读】求与圆有关的阴影部分的面积,能考查同学们的观察能力、随机应变能力和综合运用数学知识的能力,解答此类问题要注意观察和分析图形的形成,学会分解和组合图形,消除思路中的“阴影”,明确要计算图形的面积,可以通过哪些图形的和或差得到,就能给解决问题带来一片光明,切勿盲目计算;下面介绍几种常用的解法.培优学案【典例示范】等积变换法:是在不改变图形面积的前提下,利用“等底、等高的两个三角形的面积相等”,将不规则图形转化为规则图形的面积来求解的方法.例1 如图1-8-1,点P 是半径为1的⊙O 外一点,OP =2,P A 切⊙O 于点A ,弦AB ∥OP ,连接PB ,则图中阴影部分的面积是.图181AB OP图182ABCDEMNO【跟踪训练】如图1-8-2,AB 是⊙O 的直径,MN 是⊙O 的切线,C 为切点,过点A 作AD ⊥MN 于点D ,交⊙O 于点E .已知AB =6,BC =3,求图中阴影部分的面积.【解答】和差法:是指将阴影部分看作两个规则图形的和或差.例2 如图1-8-3,扇形OAB 中,∠AOB =60°,扇形半径为4,点C 在BC 上,CD ⊥OA ,垂足为点D ,当CD =OD 时,图中阴影部分的面积为.图183BCD图184CEF【跟踪训练】如图1-8-4,在等腰直角三角形ABC 中,∠C =90°,点D 为AB 的中点,已知扇形EAD 和扇形FBD 的圆心分别为点A 、点B ,且AC =2,则图中阴影部分的面积为(结果不取近似值).割补法:是在不改变图形面积的前提下,通过割补,将发散的图形面积集中在一起,把不规则的图形凑合成规则图形的方法.例3 如图1-8-5,半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA ,OB 为直径作半圆,则图中阴影部分的面积为cm 2.图185ABO图186A 'O 'O ABC【跟踪训练】如图1-8-6,将半圆O 绕直径AB 的端点B 逆时针旋转30°,得到半圆O ′,A ′B 交直径AB 于点C ,若BC =23,则图中阴影部分的面积为 .【提示】连接O ′C ,A ′C ,将阴影部分的面积通过割补,转化为△BO ′C 的面积加上扇形O ′AC 的面积.特殊位置法:是在不改变题意的前提下,通过取特殊位置,将图形特殊化,以方便求解.例4 如图1-8-7,一个半径为r 的圆形纸片在边长为a (a >3r )的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“接触不到的部分”的面积是()A .23r πB 233π- C .()233r πD .2r π【提示】解答本题的关键是搞清楚圆形纸片“不能接触到的部分”的面积,即圆形纸片与正三角形的相邻两边都相切时,两切点与正三角形的一个顶点形成的曲边三角形的面积.图187图188【跟踪训练】如图1-8-8,一张半径为1的圆形纸片在边长为a (a ≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是() A .2a π-B .()24a π-C .πD .4π-整体代换法:是指在解答过程中,可将某些不易求的且不发生变化的量看作整体处理. 例5 如图1-8-9,在Rt △ABC 中,∠C =90°,CA =CB =4,分别以A ,B ,C 为圆心,以12AC 为半径画弧,三条弧与边AB 所围成的阴影部分的面积是.图189CBA【提示】直接求阴影部分的面积是不可能的,根据题意结合图形,知阴影部分的面积等于直角三角形的面积减去三个扇形的面积,其中A ,B 两个扇形的面积无法直接求出,但若把它们看作一个“整体”,则问题易求.【跟踪训练】1.如图1-8-10,正方形的边长a ,以各边为直径在正方形内画半圆,则图中阴影部分的面积为 . 【提示】图中阴影部分的面积可以看作四个半圆的面积之和与正方形的面积之差.CBAOFEDCBA2.如图1-8-11,⊙A ,⊙B ,⊙C 两两不相交,且半径都是2cm ,则图中三个扇形(即阴影部分)面积之和是 cm 2.【提示】图中3个扇形正好拼成一个圆心角为180°的大扇形。
关于圆的阴影部分面积六年级奥数题

关于圆的阴影部分面积一、问题描述一个圆的直径为10厘米,内切一个半径为6厘米的圆,在外部再加一条宽为2厘米的弯线,求阴影的面积。
二、问题分析1. 可以利用几何知识解题,求阴影面积。
首先求大圆和小圆的面积,再减去小圆的面积,最后再加上两个扇形的面积即可。
2. 需要注意的是,计算扇形的面积时要求小圆的圆心作为扇形的圆心,大圆上两条弧的度数分别是多少。
3. 具体求解过程需要严谨的计算,包括几何图形的均分、圆的周长和面积等运算。
三、解题步骤1. 计算大圆的半径大圆的直径为10厘米,所以半径r1=10/2=5厘米,大圆的面积S1=πr1^2。
2. 计算小圆的面积小圆的半径为6厘米,所以小圆的面积S2=πr2^2。
3. 计算弯线的长度弯线的宽度为2厘米,根据勾股定理可知,弯线的长度等于大圆的周长减去小圆的周长。
大圆的周长为2πr1,小圆的周长为2πr2,所以弯线的长度L=2πr1-2πr2。
4. 计算两个扇形的面积两个扇形的面积分别为1/2r1^2θ1和1/2r2^2θ2。
需要计算出两个扇形的圆心角度数θ1和θ2。
a. θ1=360°-2θ2b. 根据等腰三角形的性质可知,扇形的周长等于等腰三角形的周长,即2πr1θ1=2(5+2)θ1。
c. 解得θ1=120°,θ2=30°。
四、计算阴影的面积阴影的面积=大圆的面积-小圆的面积+两个扇形的面积=S1-S2+1/2r1^2θ1+1/2r2^2θ2=πr1^2-πr2^2+1/2r1^2θ1+1/2r2^2θ2=π*5^2-π*6^2+1/2*5^2*120°+1/2*6^2*30°=25π-36π+150+54=179+204=383(单位:厘米²)。
五、结论所以阴影的面积为383平方厘米。
六、拓展1. 类似的题目还有,在平面几何中经常会遇到圆的阴影部分面积的求解问题,可以通过分析题目的几何特征和利用圆的性质来解决。
圆 阴影部分面积(含答案)

圆阴影部分面积(含答案)求一个图形的阴影部分面积是一个基本的几何问题。
下面给出一些例子:例1:求一个圆形和一个等腰直角三角形组成的阴影部分的面积。
首先计算圆的面积,假设半径为r,则圆面积为πr²。
然后计算三角形的面积,假设直角边长为a,则三角形面积为a²/2.最终阴影部分的面积为πr²-a²/2.例2:求一个正方形中的阴影部分面积。
假设正方形面积为7平方厘米,则阴影部分可以用正方形的面积减去圆的面积来计算。
如果圆的半径为r,则圆的面积为πr²,阴影部分面积为7-πr²。
例3:求一个由四个圆和一个正方形组成的阴影部分的面积。
首先将四个圆组成一个大圆,然后用正方形的面积减去这个大圆的面积。
假设正方形边长为2,则大圆的半径为1,面积为π,阴影部分面积为2²-π=0.86平方厘米。
例4:求一个正方形中的阴影部分面积。
同样可以用正方形的面积减去圆的面积来计算。
假设正方形面积为16平方厘米,则阴影部分面积为16-πr²=3.44平方厘米。
例5:求一个由两个圆和一个正方形组成的阴影部分的面积。
将阴影部分分成两个“叶形”,每个“叶形”由两个圆和一个正方形组成。
假设圆的半径为r,则每个“叶形”的面积为2πr²-4,阴影部分的面积为2(2πr²-4)=4πr²-8.例6:已知一个小圆的半径为2厘米,大圆的半径是小圆的3倍,求空白部分甲比乙的面积多多少厘米?两个空白部分面积之差就是两圆面积之差。
假设小圆的半径为2,则小圆面积为4π,大圆面积为36π,空白部分的面积为32π-4π=28π=100.48平方厘米。
例7:求一个正方形中的阴影部分面积。
首先计算正方形的面积,假设对角线长为5,则正方形面积为25/2.然后计算圆的面积,假设圆的半径为r,则圆的面积为πr²,阴影部分的面积为πr²/4-25/2=7.125平方厘米。
圆求阴影部分面积方法

圆求阴影部分面积方法圆的阴影部分面积可以通过多种方法求解。
下面将介绍两种常用的方法:几何解法和积分解法。
1.几何解法:首先,我们需要明确阴影的形成原理。
当一个圆形物体在光源的照射下,会在其周围产生一个暗影区域。
暗影区域形状类似于圆形,阴影的大小与光源与圆心之间的位置有关。
在这个问题中,我们假设光源位于圆的正上方,圆位于坐标原点(0,0),光源到圆心的距离为r,圆的半径为R。
首先,我们可以将圆分为四个象限,每个象限的阴影部分面积相同。
以第一象限为例,阴影部分面积可以通过扇形面积和三角形面积之和求解。
扇形面积的计算公式为:A1 = πR^2 θ / 360°,其中θ为扇形的圆心角,可以通过余弦定理计算得到:cosθ = r / (r+R)。
将θ代入公式可得:A1 = πR^2 cosθ。
三角形面积的计算公式为:A2 = (1/2)R^2 sinθ。
四个象限的阴影部分面积之和即为圆的阴影部分面积:A = 4(A1 +A2) = 4(πR^2 cosθ + (1/2)R^2 sinθ)。
2.积分解法:在这种方法中,我们将阴影部分分为无限多个面积微元,然后对每个面积微元求和来计算阴影部分的总面积。
设一些面积微元的宽度为dx,圆上该位置的半径为r(x),根据图形关系可知,r(x) = (R/x) * sqrt(x^2 - r^2)。
那么微元dA的面积可以表示为:dA = 2πr(x)dx,由此可得阴影部分面积的积分公式为:A =∫dA = ∫2πr(x)dx。
所以,我们需要确定积分的上下限。
当x从-r到r变化时,即为圆的直径上的每个点,阴影部分面积的范围。
将r(x)代入积分公式,可得:A = ∫(-r,r)2π(R/x) * sqrt(x^2 - r^2)dx。
这个积分在计算上可能比较复杂,可以改写为:A = 2πR * ∫(-r,r)(1 / sqrt(1 - (r/x)^2))dx。
使用换元法,令 u = r/x,可得到:dx= -r/u^2 du。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算圆中阴影部分的面积
1 Rt ABC △中,90C ∠=o
,8AC =,6BC =,两等圆⊙A ,⊙B 外切,那么图1中两个扇形(即阴影部分)的面积之和为( ) A .254π B .
258
π C .2516π D .2532
π 2 如图2,梯形ABCD 中,AD BC ∥,90C ∠=o ,4AB AD ==,6BC =,以A 为圆心在梯形内画出一个最大的扇形(图中阴影部分)的面积是 .
3如图3,两同心圆,大圆半径为3,小圆半径为1,则阴影部分面积为
4 如图4,Rt △ABC 中,AC=8,BC=6,∠C=90°,分别以AB 、BC 、AC 为直径作三个半圆,那么阴影部分的面积为
(平方单位)
5 如图1,A 是半径为2的⊙O 外一点,OA =4,AB 是⊙O 的切线,点B 是切点,弦BC ∥OA ,连结AC ,求图中阴影部分的面积。
等积变换法
6 如图5,在两个半圆中,大圆的弦MN 与小圆相切于点D ,MN ∥AB ,MN =8cm ,ON 、CD 分别是两圆的半径,求阴影部分的面积。
求圆中阴影部分的面积
1如图,求阴影部分的面积。
(单位:厘米) 2如图,求阴影部分的面积
3图中圆的半径为5厘米,求阴影部分的面积。
(单位:厘米)
图1 A B
C
A B C D 图2 E 图3 图4
4.如图,扇形AOB的圆心角为直角,若OA=4,以AB为直径作半圆,求阴影部分的面积。
割补法
5. 如图,⊙A、⊙B、⊙C、⊙D、⊙E相外离,它们的半径都是1,顺次连接五
个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是多少?
整体思想
例2 如图,A是半径为2的⊙O外一点,OA=4,OB垂直AB,交圆与点B,弦BC∥OA,连结AC,求图中阴影部分的面积。
等积变换法
例3 如图,⊙A、⊙B、⊙C、⊙D、⊙E相外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是多少?整体思想
练习:1如图,在两个半圆中,大圆的弦MN与小圆相切于点D,MN∥AB,MN=8cm,ON、CD分别是两圆的半径,求阴影部分的面积。
2已知直角扇形AOB,半径OA=2cm,以OB为直径在扇形内作半圆⊙M,过M引MP∥AO交于P,求与半圆弧及MP围成的阴影部分的面积S阴。
3.如下图,正方形的边长为a ,以各边为直径在正方形内画半圆,所以围成的图形(阴影部分)的面积为______________。
4如图所示,半径OA=2cm ,圆心角为90°的扇形AOB 中,C 为 的中点,D 为OB 的中点,求阴影部分的面积。
计算圆中阴影部分的面积
1. Rt ABC △中,90C ∠=o
,8AC =,6BC =,两等圆⊙A ,⊙B 外切,那么图1中两个扇形(即阴影部分)的面积之和为( ) A .254π B .258π C .2516π D .2532
π 2. 如图2,梯形ABCD 中,AD BC ∥,90C ∠=o ,4AB AD ==,6BC =,以A 为圆心在梯形内画出一个最大的扇形(图中阴影部分)的面积是 .
3. 如图3,两同心圆,大圆半径为3,小圆半径为1,则阴影部分面积为
图1 A B
C
A B C D 图2 E 图3 图4
4 .如图4,Rt△ABC中,AC=8,BC=6,∠C=90°,分别以AB、BC、AC为直径作三
个半圆,那么阴影部分的面积为(平方单位)
5.如图,求阴影部分的面积。
(单位:厘米)
6.如图,求阴影部分
的面积
7.图中圆的半径为5厘米,求阴影部分的面积。
(单位:厘米)
8.如图,扇形AOB的圆心角为直角,若OA=4,以AB为直径作半圆,求阴影部分的面积。
割补法
9..如图,A是半径为2的⊙O外一点,OA=4,OB垂直AB,交圆与点B,弦BC∥OA,连结AC,求图中阴影部分的面积。
等积变换法
10, 如图,⊙A、⊙B、⊙C、⊙D、⊙E相外离,它们的半径都是1,顺次连接五个圆心得
到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是多少?整体思想
11:1如图,在两个半圆中,大圆的弦MN与小圆相切于点D,MN∥AB,MN=8cm,ON、CD分别是两圆的半径,求阴影部分的面积。