材料力学-10-压杆的稳定问题

合集下载

材料力学10压杆稳定_1欧拉公式

材料力学10压杆稳定_1欧拉公式

◆ 本例中,三杆截面面积基本相等,但由于其形状不同, Imin 不
同,致使临界力相差很大。最合理的截面形状为圆环形。
14
[例3] 图示各杆均为圆形截面细长压杆。已知各杆的材料及直径相 等。问哪个杆先失稳? 解:由于各杆的材料及 截面均相同,故只需比
1.3 a F F F
较其相当长度 l 即可
a
杆A: 2 l 2a
F
F
2 1
0.7
压杆两端固定可轴向移动:
0.5
6
上述弹性压杆临界力的计算公式称为欧拉公式
Fc r
π 2 EI
l
2
说明: 1)欧拉公式的适用范围:线弹性( ≤ p)
2)在压杆沿各个方向约束性质相同的情况下(即各个方向上 的 相等),I 应取最小值 3) l 称为压杆的相当长度
2
2000年10月25日上午10 时,南 京电视台演播中心由于脚手架 失稳使屋顶模板倒塌,导致死 6 人,伤 34 人。
3
2010年1月3日,通往昆明新机场的一座在建桥梁施工时因 支撑结构中的压杆失稳而坍塌,共导致 40 余人死伤。
4
二、压杆的临界力 使压杆由稳定向失稳转化的轴向压力的界限值称为压杆的临界力, 记作 Fcr 。即当 F < Fcr : 压杆稳定 F ≥ Fcr : 压杆失稳 亦可将压杆的临界力 Fcr 理解为使压杆失稳的最小轴向压力
hb3 1 Iy 90 403 48 108 m 4 12 12
根据欧拉公式,此压杆的临界力
Fcr
π 2 EI y l
2
23.8 kN
11
[例2] 一端固定,一端自由的中心细长压杆。已知杆长 l = 1m , 材 料的弹性模量 E = 200 GPa。当分别采用图示三种截面时,试计算 其临界力。

材料力学10压杆稳定_2经验公式

材料力学10压杆稳定_2经验公式
其中,直线公式适用的柔度的界限值 s = (a-s) / b,为材料常数
这类杆称为中长杆(或中柔度杆),亦即直线公式适用于中长杆 (或中柔度杆)
说明: 当 ≤ s,称为粗短杆,则应按强度问题处理。
三、临界应力总图
压杆的临界应力 cr 可视作压杆柔度 的分段函数,即
π2E 2
cr
查表得 a = 461 MPa、b = 2.567 MPa
临界应力 临界力
cr a b 461 2.567 64.7 294.9 MPa Fcr cr A 162.7 kN
3)由于连杆在 x-y、x-z 两个平面内的柔度 z = 64.7、y = 57.4 比

π 2 EI min
0.7l 2
870 kN
2)两端固定但可沿轴向相对移动
长度因数 = 0.5, 立柱柔度
3600
zz
s


l
imin

0.5 3600 24
75 p
此时,立柱为中柔度杆,应用直线公式计算其临界力
由表 10-2 查得 a = 304 MPa,b = 1.12 MPa
临界应力 临界力
cr a b 304 1.12 75 220 MPa Fcr cr A 220 48.541 1068 kN
[例2] 图示连杆,已知材料为优质碳钢,弹性模量 E = 210×109 GPa, 屈服极限 s = 306 MPa。试确定该连杆的临界力Fcr ,并说明横截面的 设计是否合理。
解: 由于连杆在两 个方向上的约束情 况不同,故应分别 计算连杆在两个纵 向对称平面内的柔 度,柔度大的那个 平面即为失稳平面
1)计算柔度 在 x-y 平面(弯曲中性轴为 z 轴): 两端铰支

材料力学之压杆稳定

材料力学之压杆稳定

材料力学之压杆稳定引言材料力学是研究物体内部受力和变形的学科,压杆稳定是其中的一个重要内容。

压杆稳定是指在受到压力作用时,压杆能够保持稳定,不发生失稳或破坏的现象。

本文将介绍压杆稳定的基本原理、稳定条件以及一些常见的失稳形式。

压杆的受力分析在进行压杆稳定分析前,我们首先需要对压杆受力进行分析。

压杆通常是一根长条形材料,两端固定或铰接。

在受到外部压力作用时,压杆会受到内部的压力,这些压力会导致杆件产生变形和应力。

在分析压杆稳定性时,我们主要关注压杆的弯曲和侧向稳定性。

压杆的基本原理压杆的稳定性是由杆件的弯曲和侧向刚度共同决定的。

当压杆弯曲和侧向刚度足够大时,压杆能够保持稳定。

所以,为了提高压杆的稳定性,我们可以采取以下几种措施:1.增加杆件的截面面积,增加抗弯能力;2.增加杆件的高度或长度,增加抗弯刚度;3.增加杆件的横向剛性,增加抗侧向位移能力;4.添加支撑或加固结构,增加整体稳定性。

压杆的稳定条件压杆稳定的基本条件是在承受外部压力时,内部应力不超过材料的极限强度。

当内部应力超过材料的极限强度时,压杆将会发生失稳或破坏。

在实际工程中,我们一般采用压杆的临界压力比来判断压杆的稳定性。

临界压力比是指杆件在失稳前的临界弯曲载荷与临界弯曲载荷之比。

当临界压力比大于1时,压杆是稳定的;当临界压力比小于1时,压杆是不稳定的。

临界压力比的计算可以采用欧拉公式或者Vlasov公式等方法。

这些方法能够给出压杆在不同边界条件下的临界压力比。

在工程实践中,我们可以根据具体问题选择合适的方法来计算临界压力比。

压杆的失稳形式压杆失稳通常有两种形式:弯曲失稳和侧向失稳。

弯曲失稳压杆的弯曲失稳是指杆件在受到外部压力作用时,发生弯曲变形并导致失稳。

在弯曲失稳中,压杆的弯曲形态可以分为四种:1.局部弯曲失稳:杆件出现弯曲局部失稳,形成凸起或凹陷;2.局部弯扭失稳:杆件出现弯曲和扭曲共同失稳;3.全截面失稳:整个杆件截面均发生失稳;4.全体失稳:整个杆件完全失稳并失去稳定性。

材料力学 第十章 压杆稳定问题

材料力学 第十章 压杆稳定问题

由杆,B处内力偶
MB Fcraq1 , q1
由梁,B处转角
MB Fcr a
q2

MBl 3EI
q1 B
MB MBl Fcra 3EI
3EI Fcr al
q2 C
l
Page21
第十章 压杆稳定问题
作业
10-2b,4,5,8
Page22
第十章 压杆稳定问题
§10-3 两端非铰支细长压杆的临界载荷
稳定平衡
b. F k l
临界(随遇)平衡
c. F k l
不稳定平衡
Fcr kl 临界载荷
F
k l
F 驱动力矩 k l 恢复力矩
Page 5
第十章 压杆稳定问题
(3)受压弹性杆受微干扰
F Fcr 稳定平衡 压杆在微弯位置不能平衡,要恢复直线
F >Fcr 不稳定平衡 压杆微弯位置不能平衡,要继续弯曲,导致失稳
(

w)
令 k2 F
EI
d 2w dx2

k
2w

k
2
l
l
FM w
x
F B
F

B F
Page24
第十章 压杆稳定问题
d 2w dx2

k2w

k 2
F
w

通解:
A
x
B
w Asinkx Bcoskx
l
考虑位移边界条件:
x 0, w 0,
B
x 0, q dw 0
Page31
第十章 压杆稳定问题
二、类比法确定临界载荷
l

压杆·稳定性

压杆·稳定性

=
2 ,因为 h>b ,则 I y
=
hb3 12
< bh3 12
=
Iz ,由式(10.3)得
Pcr
=
π 2 EI (μl)2
=
π2
× (200 ×103
MPa) × ( 1 × 40 mm × (20 12
(2 ×1000 mm)2
mm)3 ) ≈13200
N
= 13.2
kN
10.2.2 临界应力
当压杆受临界压力作用而维持其不稳定直线平衡时,横截面上的压应力仍然可按轴向压
10.3.2 临界应力经验公式与临界应力总图
在工程实际中,常见压杆的柔度λ 往往小于 λp ,即 λ<λp ,这样的压杆横截面上的应力 已超过材料的比例极限,属于弹塑性稳定问题。这类压杆的临界应力可通过解析方法求得, 但通常采用经验公式进行计算。常见的经验公式有直线公式与抛物线公式等,这里仅介绍直 线公式。把临界应力 σcr 与柔度λ 表示为下列直线关系称为直线公式。
式中,λ 称为压杆的柔度或长细比,为无量纲量,它综合反映了压杆的长度、约束形式及截 面几何性质对临界应力的影响。于是,式(10.4)中的临界应力可以改写为
·219·
材料力学
σ cr
=
π2E λ2
式(10.6)是欧拉公式(10.3)的另一种表达形式,两者并无实质性差别。
(10.6)
10.3 欧拉公式的适用范围·临界应力总图·直线公式
2
≤σ
p

λ≥π E σp
(10.7)

于是条件式(10.7),可以写成
λP = π
E σp
(10.8)
λ ≥ λp
(10.9)

材料力学压杆稳定

材料力学压杆稳定

材料力学压杆稳定材料力学是研究物质内部力的作用和变形规律的一门学科。

在材料力学中,压杆稳定是一个重要的概念,它涉及到杆件在受压作用下的稳定性问题。

本文将围绕材料力学中的压杆稳定问题展开讨论,旨在帮助读者更好地理解和掌握这一概念。

首先,我们需要了解什么是压杆稳定。

在材料力学中,压杆稳定是指杆件在受到压力作用时不会发生失稳现象,保持原有形状和结构的能力。

对于一个长细杆件来说,当受到外部压力作用时,如果其稳定性不足,就会出现侧向挠曲或屈曲等失稳现象,这将导致结构的破坏。

因此,压杆稳定是材料力学中一个至关重要的问题。

接下来,我们将从材料的选择、截面形状和支撑条件等方面来探讨如何提高压杆的稳定性。

首先,材料的选择对于压杆稳定至关重要。

一般来说,高强度、高刚度的材料更有利于提高压杆的稳定性。

此外,材料的表面质量和加工工艺也会对压杆的稳定性产生影响,因此在实际工程中需要对材料的选择和加工过程进行严格控制。

其次,截面形状也是影响压杆稳定性的重要因素。

通常情况下,圆形截面是最有利于抵抗压力的,因为圆形截面能够均匀分布受力,减小局部应力集中的可能性。

相比之下,矩形或其他非圆形截面的压杆在受到压力作用时往往稳定性较差,容易发生失稳现象。

最后,支撑条件也是影响压杆稳定性的关键因素之一。

压杆的支撑条件直接影响其在受力时的变形和稳定性。

合理的支撑设计能够有效地提高压杆的稳定性,减小失稳的可能性。

综上所述,材料力学中的压杆稳定是一个复杂而重要的问题,需要综合考虑材料的选择、截面形状和支撑条件等因素。

只有在这些方面都做到合理设计和严格控制,才能保证压杆在受力时不会发生失稳现象,从而确保结构的安全可靠。

希望本文能够帮助读者更好地理解和掌握材料力学中压杆稳定的相关知识,为工程实践提供一定的参考价值。

同时,也希望读者能够在实际工程中注重压杆稳定性的设计和控制,确保结构的安全可靠。

《材料力学》课程思政建设在压杆稳定问题中的应用

《材料力学》课程思政建设在压杆稳定问题中的应用

材料力学是工程领域的一门重要课程,其在思政建设中有着重要的应用价值。

在材料力学课程中,压杆稳定问题是一个重要的课题,它涉及到材料的稳定性和强度,对工程结构的设计和安全有着重要的影响。

本文将结合材料力学课程和思政建设,探讨压杆稳定问题在思政建设中的应用,以及对学生思想品德的影响。

一、压杆稳定问题在材料力学课程中的重要性1.压杆稳定问题的概念压杆稳定问题是材料力学课程中的一个重要概念,它主要研究杆件在受压条件下的稳定性和强度问题。

在工程实践中,很多结构都需要承受压力,而压杆稳定问题的研究可以帮助工程师设计出更加稳定和安全的结构。

2.影响因素压杆稳定问题的研究涉及到材料的性质、杆件的几何形状、受力条件等多个因素,对材料力学课程的学习者提出了较高的要求,需要他们具备较好的数学基础和物理学知识。

3.工程应用压杆稳定问题的研究对工程领域有着重要的应用价值,可以帮助工程师设计出更加稳定和安全的结构,保障工程的施工和使用安全。

二、思政建设中对压杆稳定问题的应用1.培养学生的责任感在思政建设中,可以借助压杆稳定问题引导学生树立正确的责任感。

压杆稳定问题的研究需要学生具备严谨的态度和细心的品质,只有这样才能够保证工程结构的安全。

通过引导学生深入学习压杆稳定问题,可以培养其责任感,让其意识到自己在未来工作中所要负责的职责和使命。

2.强化学生的安全意识压杆稳定问题的研究直接关系到工程结构的安全,可以借助此问题引导学生加强安全意识。

在思政建设中,可以通过讲解真实案例和历史事故,让学生深刻理解工程安全的重要性,强化其安全意识,使其将安全放在工作的首位。

3.提升学生的综合素质通过学习压杆稳定问题,可以培养学生的综合素质。

压杆稳定问题需要学生具备较好的数学基础和物理学知识,同时也需要他们具备较好的逻辑思维能力和分析问题的能力。

通过对压杆稳定问题的研究,可以提升学生的综合素质,增强其解决实际问题的能力。

三、材料力学课程思政建设的实施路径1.设计符合学生认知规律的教学内容在思政建设中,教学内容的设计非常重要。

材料力学-压杆的稳定性

材料力学-压杆的稳定性

压杆的稳定性
倒塌后成为一片废墟
压杆的稳定性
1925年苏联莫兹尔 桥在试车时因桥梁 桁架压杆失稳导致破 坏时的情景。
压杆的稳定性
这是1966年我国广东鹤地水库弧门由于大风导致 支臂柱失稳的实例。
1983年10月4日,高 54.2m、长17.25m、总 重565.4KN大型脚手架 局部失稳坍塌,5人死亡、
EI
d2
y

M
(x)


P cr
y
dx2 EI
EI
d2y k2y 0 dx2
压杆的稳定性
通解: y Asin kx B coskx
边界条件:
y
y 0, y 0
Pcr
y
Pcr
x0
xl
(i) B 0 (ii) 0 Asin kl
A 0, sin kl 0
11.1 压杆稳定的概念
一、概述
(a): 木杆的横截面为矩形(12cm), 高为 3cm,当荷载重量为6kN时杆还不致 破坏。
(b): 木杆的横截面与(a)相同,高为1.4m (细长压杆),当压力为0.1KN时杆 被压弯,导致破坏。
(a)和(b)竟相差60倍,为什么?
拉压杆的强度条件为: = —F—N [ ] A
7人受伤 。
压杆的稳定性
三 平衡的稳定性 随遇平衡 不稳定平衡
压杆的稳定性
稳定平衡
压杆平衡的稳定性
F<FF<cr Fcr
F>Fcr F>Fcr
F=FF=crFcr
稳定平衡状态
不稳定平衡状态
随遇平衡状态 (临界状态)
四 临界压力Pcr的概念
压杆的稳定性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 A+1 B 0 sinkl A coskl B 0
根据线性代数知识,上述方程中,常数A、B不全为零 的条件是他们的系数行列式等于零:
0
1
sinkl coskl
0
sinkl 0
第10章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
sinkl 0
FP k EI
第10章 压杆的稳定问题
临界应力与临界应力总图 长细比是综合反映压杆长度、约束条件、截面尺寸和截面 形状对压杆分叉载荷影响的量,用表示,由下式确定:

l
i
I A
其中,I为压杆横截面的惯性半径,由下式确定:
i
从上述二式可以看出,长细比反映了压杆长度、支承条件以 及压杆横截面几何尺寸对压杆承载能力的综合影响。
不同刚性支承条件下的压杆,由静力学平衡方法得到的平衡 微分方程和边界条件都可能各不相同,确定临界载荷的表达式亦 因此而异,但基本分析方法和分析过程却是相同的。对于细长杆, 这些公式可以写成通用形式:
FPcr
π 2 EI
l
2
这一表达式称为欧拉公式。其中l为不同压杆屈曲后挠曲线上正弦 半波的长度,称为有效长度(effective length); 为反映不同支承 影响的系数,称为长度系数(coefficient of 1ength),可由屈曲后 的正弦半波长度与两端铰支压杆初始屈曲时的正弦半波长度的比 值确定。
第10章 压杆的稳定问题
临界应力与临界应力总图
临界应力与长细比的概念
前面已经提到欧拉公式只有在弹性范围内才是适用的。这 就要求在分叉载荷即临界载荷作用下,压杆在直线平衡构形时, 其横截面上的正应力小于或等于材料的比例极限,即
FPcr cr p A
其中σcr称为临界应力(critical stress); σp为材料的比例极限。
Δ
第10章 压杆的稳定问题
压杆稳定的基本概念
FP F P FP FP FP F P
分叉点 (临界点)
FP
FP>FPcr
平衡路径
F´P
Δ
FPcr
FP<FPcr Δ O
第10章 压杆的稳定问题
压杆稳定的基本概念
FP
分叉点
平衡路径
平衡路径的分叉点: 平衡路径开始出现分叉 的那一点。 分叉载荷(临界载 荷):分叉点对应的载荷, 用FPcr 表示。
2
kl nπ, n 1, 2 ,,
由此得到临界载荷
FPcr
最小临界载荷
π 2 n 2 EI l2
FPcr
π 2 EI 2 l
第10章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
0 A+1 B 0 sinkl A coskl B 0
B0
返回
第10章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
FP
分叉点
平衡路径
平衡路径
Δ O
从平衡路径可以看出,当 w00时FPFPcr。这表明,当FP无 限接近分叉载荷FPcr时,在直线平 衡构形附近无穷小的邻域内,存在 微弯的平衡构形。根据这一平衡构 形,由平衡条件和小挠度微分方程, 以及端部约束条件,即可确定临界 载荷。
第10章 压杆的稳定问题
临界应力与临界应力总图
第10章 压杆的稳定问题
临界应力与临界应力总图
临界应力与长细比的概念 三类不同压杆的不同失效形式
三类压杆的临界应力公式
临界应力总图与P、s值的确定
第10章 压杆的稳定问题
临界应力与临界应力总图
两根直径均为 d 的压杆, 材料都是 Q235 钢,但二者长 度和约束条件各不相同。试; 分析: 哪一根压杆的临界 载荷比较大?
压杆稳定性实验
第10章 压杆的稳定问题
工程构件稳定性实验
第10章 压杆的稳定问题
工程构件 稳定性实验
第10章 压杆的稳定问题
脚手架中的压杆
第10章 压杆的稳定问题
“ Such failures can be catastrophic and lead to a large loss of life as well as major economic loss”.
w =Asinkx + Bcoskx
得到屈曲位移函数
nπ x wx Asin l
其中A为未定常数。这表明屈曲位移是不确定的量。这与开始 推导公式时假设压杆处于任意微弯状态是一致的。
第10章 压杆的稳定问题
不同刚性支承对压杆临界 载荷的影响
第10章 压杆的稳定问题
不同刚性支承对压杆临界载荷的影响
第10章 压杆的稳定问题
临界应力与临界应力总图
用长细比表示的细长杆临界应力公式
π 2 EI
2
cr
2 FPcr l π E 2 A A
第10章 压杆的稳定问题
临界应力与临界应力总图
三类不同压杆的不同失效形式
细长杆——长细比大于或等于某个极限值p时,压杆将发生 弹性屈曲。这时,压杆在直线平衡构形下横截面上的正应力不超 过材料的比例极限,这类压杆称为细长杆。 长中杆——长细比小于p,但大于或等于另一个极限值s 时,压杆也会发生屈曲。这时,压杆在直线平衡构形下横截面上 的正应力已经超过材料的比例极限,截面上某些部分已进入塑性 状态。这种屈曲称为非弹性屈曲。这类压杆称为中长杆。 粗短杆——长细比小于极限值s时,压杆不会发生屈曲,但 将会发生屈服。这类压杆称为粗短杆。
压杆稳定的基本概念
当压缩载荷大于一定的数值时,在任意微小的外界扰动下, 压杆都要由直线的平衡构形转变为弯曲的平衡构形,这一过程 称为屈曲(buckling)或失稳(lost stability)。对于细长压杆, 由于屈曲过程中出现平衡路径的分叉,所以又称为分叉屈曲 (bifurcation buckling)。 稳定的平衡构形与不稳定的平衡构形之间的分界点称为临 界点(critical point)。对于细长压杆,因为从临界点开始, 平衡路径出现分叉,故又称为分叉点。临界点所对应的载荷称 为临界载荷(critical load)或分叉载荷(bifurcation load), 用FP表示。
第10章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
微分方程的解 w =Asinkx + Bcoskx 边界条件 w ( 0 ) = 0 , w( l ) = 0
0 A+1 B 0 sinkl A coskl B 0
第10章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
FPcr
平衡路径
Δ O
第10章 压杆的稳定问题
压杆稳定的基本概念
判别弹性平衡稳定性的静力学准则
FP FP
平衡构形——压杆的两种平衡构形 (equilibrium configuration)
FP<FPcr : FP>FPcr : 直线平衡构形 弯曲平衡构形 (在扰动作用下)
第10章 压杆的稳定问题
压杆稳定的基本概念
判别弹性平衡稳定性的静力学准则 (statical criterion for elastic stability)
FP F P FP
FP<FPcr :在扰动作用下, 直线平衡构形转变为弯曲平 衡构形,扰动除去后, 能够恢复到直线平衡构形, 则称原来的直线平衡构形 是稳定的。
第10章 压杆的稳定问题
压杆稳定的基本概念
压杆的平衡构形、平衡路径及其分叉 判别弹性平衡稳定性的静力学准则
细长压杆临界点平衡的稳定性
第10章 压杆的稳定问题
压杆稳定的基本概念
压杆的平衡构形、平衡路径及其分叉
FP FP 压杆从直线平衡构形 到弯曲平衡构形的转变过 程,称为“屈曲”。由于 屈曲,压杆产生侧向位移, 称为屈曲位移。
d2w M ( x) - EI 2 dx
d2w 2 k w0 2 dx
k2 FP EI
第10章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
d2w 2 k w0 2 dx
FP k EI
2
微分方程的解 w =Asinkx + Bcoskx 边界条件 w ( 0 ) = 0 , w( l ) = 0
第10章 压杆的稳定问题
不同刚性支承对压杆临界载荷的影响
两端铰支 =1.0
一端自由, 一端固定 =2.0
一端铰支, 一端固定 =0.7
两端固定 =0.5
第10章 压杆的稳定问题
不同刚性支承对压杆临界载荷的影响
FPcr
π 2 EI
l
2
需要注意的是, 临界载荷公式只有在压杆的微弯 曲状态下仍然处于弹性状态时才是成立的。
第10章 压杆的稳定问题
临界应力与临界应力总图
需要特别指出的是,细长杆和 中长杆在轴向压缩载荷作用下,虽 然都会发生屈曲,但这是两类不同 的屈曲:第一,从平衡路径看,细 长杆的轴向压力超过临界力后,平 衡路径的分叉点即为临界点。这类 屈曲称为分叉屈曲。中长杆在轴向 压缩载荷作用下,其平衡路径无分 叉和分叉点,只有极值点,这类屈 曲称为极值点屈曲(limited point buckling)。
第10章 压杆的稳定问题
压杆稳定的基本概念 两端铰支压杆的临界载荷 欧拉公式 不同刚性支承对压杆临界载荷的影响 临界应力与临界应力总图 压杆稳定性设计的安全因数法 压杆稳定性设计的折减系数法 结论与讨论
第10章 压杆的稳定问题
压杆稳定的基本概念
第10章 压杆的稳定问题
第10章 压杆的稳定问题
压杆
第10章 压杆的稳定问题
压杆
第10章 压杆的稳定问题
相关文档
最新文档