割补法在立体几何中的应用
中学数学解题思想方法:割补法

E D
F
C
A
B
图3-1
由前面的知识我们不难发现既可以用“补形法”,如图
3-2所示,也可以用“分割法”如图3-3所示来求解.
E
E
D
G
D
F
C
A
B
图3-2
H
G
F
C
A
B
图3-3
解:由几何体的三视图还原成直观图如图3-1,可知
DA 平面 ABC , AD//CE//BF , AC AB ,AD CE 5 ,BF 2
Q AA 底面ABC
AA 底面DBE
AA BF
A'
C'
F
D
E
又Q AA DE D BF 平面DECA
B'
A
C
B
V
= B DEC A
1 3 SDECA
BF
1 3
1 2
( AD
CE)
DE
BF
12
图1-4
所以所求几何体的体积为 V V BDECA ABCDBE 24
评析:本题解法一采取的解题方法为补形法,解法二所采取 的解题方法为分割法.两种方法都比较自然,由于题目所给条 件,本题采用解法一较为简捷.
例2 如图2-1, AA 底面ABC,AA//BB//CC//DD, 四边形 ABCD为正方形, AB AA CC 2,
BB 1,DD 3 ,求几何体 ABCD-ABCD 的体积.
BC
AD
48
所以原几何体的体积为24 .
立体几何中的割补法解题技巧

⽴体⼏何中的割补法解题技巧
⽴体⼏何中的割补法解题技巧
※⾼考提⽰
⽴体⼏何中常⽤割补法解题.特别是⾼考中的⽴体⼏何题很多可⽤割补法解,有时解起来还⽐较容易.
[规律⼩结]
割补法是割分形法即割法与补加形法即补法的总称。
补法是把不熟悉的或复杂的⼏何体延伸或补加成熟悉的或简单的⼏何体,把不完整的图形补成完整的图形。
割法是把复杂的或不熟悉的⼏何体,割分为简单的或熟悉的⼏何体。
这样对此解起题来就有好处。
割补法中的割与补是⼀个问题中的相反两个⽅⾯,是对⽴统⼀的⼀对⽭盾。
解决⼀个问题,是割是补?这要看问题的性质,宜补就补,宜割就割,不可割补就不割补,就是宜割补,也要讲究如何割补,不要盲⽬⾏动,否则就会导致⿇烦,使问题复杂化,使得其反,甚⾄问题还不能解决。
⽴体⼏何中需得三棱柱补成平⾏六⾯体,将三棱维补成三棱柱,将三棱柱割分为三棱维等等这些我们很熟悉,其实,割补法不仅仅使⽤于⽴体⼏何,将上述概念中的⼏何体或图形改为代数式,那么在数学的其它⽅⾯使割补法也就很多了,⽐如运算中的添项减项,重新组合另⾏考虑,考虑问题的对⽴⾯等等均可视为割补法,因此,割补法不只是⼀种⽅法,可把它上升为⼀种思想——⼀种数学思想。
关于我们:。
备战2024高考数学二轮复习讲义第3讲-割补思想在立体几何中的应用

第3讲割补思想在立体几何中的应用割补法是数学中最重要的思想方法之一,主要分为割形与补行,是将复杂的,不规则的不易认识的几何体或几何图形,分割或补充成简单的、规则的、易于认识的几何体或图形,从而达到解决问题的目的。
割补法重在割与补,巧妙对几何体过几何图形实割与补,变整体的为局部,化不规则为规则,化陌生为熟悉,化抽象为直观。
割补法在立体几何中体现的主要的题型就是几何体的切等问题。
【应用一】割的思想在多面体的体积及几何体的内切球中的运用割的思想主要体现两种题型:一是求复杂几何体的体积、表面积等问题,此类问题通过割把复杂的几何体割成几个简单的几何体。
二是求几何体内切球的半径、体积等问题。
此类问题主要是通过球心与几何体的各点割成锥,然后运用等积法求半径。
【例1.1】已知一个三棱锥的所有棱长均为2,则该三棱锥的内切球的体积为________.【例1.2】【2020年新课标3卷理科】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【思维提升】以三棱锥P -ABC 为例,求其内切球的半径.方法:等体积法,三棱锥P -ABC 体积等于内切球球心与四个面构成的四个三棱锥的体积之和;第一步:先求出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,球心为O ,建立等式:V P -ABC =V O -ABC +V O -PAB +V O -PAC +V O -PBC ⇒V P -ABC =13△ABC ·r +13S△PAB·r +13S △PAC ·r +13S △PBC ·r =13(S △ABC +S △PAB +S △PAC +S △PBC )·r ;第三步:解出r =3V P -ABC S O -ABC +S O -PAB +S O -PAC +S O -PBC =3VS 表.秒杀公式(万能公式):r =3V S 表【例1.3】(2023·河北唐山·统考三模)(多选)《九章算术》是我国古代的数学名著,书中提到底面为长方形的屋状的楔体(图示的五面体)EF ABCD -.底面长方形ABCD 中3BC =,4AB =,上棱长2EF =,且EF 平面ABCD ,高(即EF 到平面ABCD 的距离)为1,O 是底面的中心,则()A .EO 平面BCF【变式1.1】(2023·辽宁·辽宁实验中学校考模拟预测)如图①,在平行四边形ABCD中,AB ===ABD △沿BD 折起,使得点A 到达点P 处(如图②),=PC P BCD -的内切球半径为______.【变式1.2】(2023·辽宁沈阳·东北育才学校校考模拟预测)已知一正四面体棱长为4,其内部放置有一正方体,且正方体可以在正四面体内部绕一点任意转动,则正方体在转动过程中占据的空间体积最大为__________.【变式1.3】(2022·江苏通州·高三期末)将正方形ABCD 沿对角线BD 折成直二面角A ′-BD -C ,设三棱锥A ′-BDC 的外接球和内切球的半径分别为r 1,r 2,球心分别为O 1,O 2.若正方形ABCD 的边长为1,则21r r =________;O 1O 2=__________.【应用二】补的思想在立体几何中几何体外接球中的应用解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.2.记住几个常用的结论:(1)正方体的棱长为a,球的半径为R.①对于正方体的外接球,2R;②对于正方体的内切球,2R=a;③对于球与正方体的各棱相切,2R.(2)在长方体的同一顶点的三条棱长分别为a,b,c,球的半径为R,则2R=.(3)正四面体的外接球与内切球的半径之比为3∶1.3.构造法在定几何体外接球球心中的应用(1)正四面体、三条侧棱两两垂直的正三棱锥、四个面都是直角三角形的三棱锥,可将三棱锥补形成长方体或正方体;(2)同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥,可将三棱锥补形成长方体或正方体;(3)若已知棱锥含有线面垂直关系,则可将棱锥补形成长方体或正方体;(4)若三棱锥的三个侧面两两垂直,则可将三棱锥补形成长方体或正方体【例2.1】(2022·广东潮州·高三期末)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A-BCD中,AB⊥平面BCD,CD⊥AD,AB=BD,已知动点E从C点出发,沿外表面经过棱AD上一点到点B,则该棱锥的外接球的表面积为_________.【思维提升】墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R =a 2+b 2+c 2.),秒杀公式:R 2=a 2+b 2+c 24.可求出球的半径从而解决问题.有以下四种类型:【例2.2】(2022·广东·铁一中学高三期末)已知四面体A BCD -中,5AB CD ==,10AC BD ==,13BC AD ==,则其外接球的体积为______.【思维提升】棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长,即2222R a b c =++(长方体的长、宽、高分别为a、b、c).秒杀公式:R2=x2+y2+z28(三棱锥的三组对棱长分别为x、y、z).可求出球的半径从而解决问题.【变式2.1】(2023·湖南邵阳·统考三模)三棱锥-P ABC 中,PA ⊥平面ABC ,4,223,PA AC AB AC AB ===⊥,则三棱锥-P ABC 外接球的表面积为__________.【变式2.2】已知三棱锥A BCD -,三组对棱两两相等,且1AB CD ==,3AD BC ==,若三棱锥A BCD -的外接球表面积为92π.则AC =________.【变式2.3】已知三棱锥A -BCD 的四个顶点A ,B ,C ,D 都在球O 的表面上,AC ⊥平面BCD ,BC ⊥CD ,且AC =3,BC =2,CD =5,则球O 的表面积为()A .12πB .7πC .9πD .8π【变式2.4】(2019全国Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为().A.62πD.6π8πB.64πC.6巩固练习1、【2019年新课标2卷理科】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.2、(2022·湖北江岸·高三期末)如图,该几何体是由正方体截去八个一样的四面体得到的,若被截的正方体棱长为2,则该几何体的表面积为()A.1233++D.63+C.633+B.12433、(2023·山西临汾·统考一模)《九章算术·商功》提及一种称之为“羡除”的几何体,刘徽对此几何体作注:“羡除,隧道也其所穿地,上平下邪.似两鳖臑夹一堑堵,即羡除之形.”羡除即为:三个面为梯形或平行四边形(至多一个侧面是平行四边形),其余两个面为三角形的五面几何体.现有羡除ABCDEF如图所示,底面ABCD为正方形,4EF=,其余棱长为2,则羡除外接球体积与羡除体积之比为()A.22πB.42πC.82πD.2π3A .18B .275、正四面体的各条棱长都为.6、在三棱锥A -BCD 中,AB =CD =2,AD =BC =3,AC =BD =4,则三棱锥BCD A -外接球的表面积为________.7、在三棱锥A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的体积为____.8、(2023·湖南郴州·统考三模)已知三棱锥-P ABC 的棱长均为4,先在三棱锥-P ABC 内放入一个内切球1O ,然后再放入一个球2O ,使得球2O 与球1O 及三棱锥-P ABC 的三个侧面都相切,则球2O 的表面积为__________.第3讲割补思想在立体几何中的应用割补法是数学中最重要的思想方法之一,主要分为割形与补行,是将复杂的,不规则的不易认识的几何体或几何图形,分割或补充成简单的、规则的、易于认识的几何体或图形,从而达到解决问题的目的。
用割补法求几何体的体积

用割补法求几何体的体积――培养学生的空间想象能力内容提要:本文用图形割补的方法来求一些不规则的几何体体积,通过求几何体体积的过程,来培养和提高学生对空间图形的想象能力,进而得出培养和提高学生空间想象能力的途径。
关键字:割补法空间想象能力在高中立体几何的学习中,学生最大的困难在于缺乏良好的空间想象能力,由于目前我们只能在二维平面上通过空间图形的平面直观图来研究空间元素的位置关系和数量关系,这就造成学生难以摆脱在平面几何学习中培养起来的对平面图形的认知经验,具体表现在遇到立几问题时,不会识图,有些学生甚至看不出空间元素的前后位置关系,也不会合理作图。
特别是求几何体体积问题,对于不同的几何体或不规则的几何体,我们可联想熟悉的几何体去计算其体积,这就对学生的空间想象能力有很高的要求。
那么什么是空间想象能力呢?中学数学中的空间想象能力主要是指,学生对客观事物的空间形式进行观察、分析、抽象思考和创新的能力。
空间想象能力的提高必定AB要经过实际的训练,途径也有很多种。
本文就借助于求几何体的体积来提高学生的空间想象能力。
由于几何体的形状多种多样,所以体积的求法也各不相同。
针对一些不规则的几何体,直接运用体积公式可能比较困难,我们常对原几何体进行割补,转化为几个我们熟悉的几何体,其解法也会呈现一定的规律性:① 几何体的“分割”几何体的分割即将已给的几何体,按照结论的要求,分割成若干个易求体积的几何体,进而求之。
② 几何体的“补形”与分割一样,有时为了计算方便,可将已给的几何体补成易求体积的几何体,如长方体,正方体等等。
一、用割补法求锥体的体积例题一:已知三棱锥ABC P -,其中4=PA ,2==PC PB ,ο60=∠=∠=∠BPC APC APB 求:三棱锥ABC P -的体积。
【思路一】作BC 的中点D ,连接PD 、过P 作AD PH ⊥,垂足H易证PH 即为三棱锥ABC P -的高, 由棱锥体积公式 PH S V ABC ABC P ⋅=∆-31即得 三棱锥ABC P -的体积。
用割补法解决立体几何问题

用割补法解决立体几何问题高中已经学习的空间几何体有柱、锥、台、球,要求它们的表面积或体积,解题时可以根据相应公式进行求解,但是当几何体不是规范的柱、锥、台、球,就要进行分割或补充法了,那到底怎么操作呢,下面举例说明。
1.如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE与△BEC分别沿ED、EC向上折起,A、B重合于点P,则三棱锥P—DCE的外接球的体积为( )A B C D解析:根据题意折叠后的三棱锥P-DCE为正四面体,且棱长为1,以此正四面体来构造立方体,则此立方体的棱长为,故立方体的体对角线的长为,且立方体的外接球也为此正四面体的外接球,∴外接球的半径为,∴V球=.答案:C2.如图所示是一个几何体的直观图、正视图、俯视图、侧视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形,尺寸如图所示).(1)求四棱锥P-ABCD的体积;(2)证明:BD∥平面PEC;(3)若G为BC上的动点,求证:AE⊥PG.解:(1)由几何体的三视图可知,底面ABCD是边长为4的正方形,PA⊥平面ABCD,PA∥EB,且PA=4 2 ,BE=2 2 ,AB=AD=CD=CB=4,∴VP-ABCD=1 3 PA×SABCD=1 3 ×4 2 ×4×4=64 2 3 .(2)证明:连接AC交BD于O点,取PC中点F,连接OF,∵EB∥PA,且EB=1 2 PA,又OF∥PA,且OF=1 2 PA,∴EB∥OF,且EB=OF,∴四边形EBOF为平行四边形,∴EF∥BD.又EF⊂平面PEC,BD⊄平面PEC,所以BD∥平面PEC.(3)连接BP,∵EB AB =BA PA =1 2 ,∠EBA=∠BAP=90°,∴△EBA∽△BAP,∴∠PBA=∠BEA,∴∠PBA+∠BAE=∠BEA+∠BAE=90°,∴PB⊥AE.又∵BC⊥平面APEB,∴BC⊥AE,∴AE⊥平面PBG,∴AE⊥PG.另(4)若F为PD的中点,求证AF 平面PCD(5)求几何体BEC-APD的体积(割补法)。
割补法在解题中的应用

巧用割补,化难为易顾介远割补法就是把图形切开,把切下来的那部分移动到其他位置,使题目便于解答;割补法是立体几何解题中的常用技巧,巧妙地对几何体进行分割与拼补,能够简化解题过程。
例如:已知正四面体的棱长为2,求其内切球和外接球的表面积与体积。
分析:本题的解题关键是求出正四面体的内切球和外接球的半径,用何种方法,怎样思维就成了解决本题的关键。
由几何图形我们不难看出球和正四面体都是对称的几何体,所以正四面体的外接球、内切球的球心与正四面体的几何中心重合。
将球心与正四面体的四个顶点连线,就可将这个正四面体分割成四个正四棱锥,这四个正四棱锥的底面分别是正四面体的侧面和底面,高是该正四面体的内切球的半径,侧棱为正四面体的外接球的半径,因此它们的体积相等且这四个正四棱锥的体积的和为正四面体的体积,从而我们可以得出结论:正四面体的外接球的半径是它的内切球的半径的3倍,它们的和等于该正四面的高。
令正四面体的高为h ,则h 2=SA 2-(32AE)2 =(2)2-(233)2,所以h=332;故该正四面体的外接球的半径R=43h=23,其表面积为S=3π;其体积为V=23π。
该正四面体的内切球半径r=41h=63,其表面积为s=31π,其体积v=183π。
如果把思维放开,这个正四面体可以看作是一个棱长为1的正方体ABCD-A /B /C /D /,“切去”四个“角”所对应的三棱锥得到正四面体C /-A /BD ,则该四面体与正方体具有公共的外接球,此时外接球的直径等于该正方体的体对角线的长,即2R=3,所以R=23,再根据R :r=3:1的关系,该四面体的内切球半径r 就很容易求得了。
高中数学学习的本质是提高学习者的思维品质,快快进行“头脑体操”的锻炼吧,它给你带来快乐和成就感一定会超过鸟叔的《江南style 》!。
割补法在高中立体几何解题中的应用_方清

锥.故只 要 求 出 其 中 一 个 三 棱 锥 的 体 积 即 可.由
图 可 知 ,VA′-BED′ =VD′-A′BE = 13·SΔA′BE·A′D′=
1 3
·12·a2·a·a=112a3
.故VA′-EBFD′
=2VA′-BED′
=
1a3. 6
以上各例 说 明,在 解 决 某 些 几 何 问 题 时,若
利用部分与整体的关系来解题.
例6 已知三棱锥 P-ABC,其中 PA =4, PB = PC =2,
∠APB = ∠APC = ∠BPC =60°求:
三棱锥 P-ABC 的
体积.
分析1 作 BC
分析 如图4,将一个完全相同的几何体与 已知的几何体拼在一起组成一个高为5的圆柱,
那么所 求 几 何 体 的 体 积 就 是 这 个 圆 柱 体 积 的
例8 如图 10,已
知正方体 ABCD - A′B′C′D′ 的 棱 长 为a,
E、F 分 别 是 棱 AA′ 和
CC′ 的 中 点,求 四 棱 锥
A′-EBFD′ 的体积.
分析 本题要想直接求出四棱锥的高还是 比较困难的.但 是 四 棱 锥 的 底 面 是 菱 形,所 以 连
结对角线把四棱Leabharlann 分割成体积相等的两个三棱A.3π B.4π C.3 槡3π D.6π
分析1 设ΔACD 的重心 为 E,则球心在线段 BE 上,可 在直角 三 角 形 中 求 解,但 计 算 较麻烦.
分 析 2 将 正 四 面 体 ABCD 补成正方体,则 正 四 面 体、正 方 体 的 外 接
球为同一 个 球.因 为 正 四 面 体 的 棱 长 为槡2,所 以
(收 稿 日 期 :2013-08-16)
割补法在立体几何中的应用

WS自动填充功能快速填写重复内容自动填充功能是工作表软件(WS)中一个高效的工具,它可以帮助用户快速填写重复内容。
通过利用这一功能,用户可以大大提高数据录入的效率,节省时间和精力。
本文将介绍WS自动填充功能的使用方法和一些注意事项。
一、使用方法使用WS自动填充功能十分简便。
以下是具体操作步骤:1. 创建一个新的工作表或打开一个已有的工作表。
2. 在需要填写重复内容的单元格中输入第一个数值或文本。
3. 鼠标选中填写内容的单元格,使其被选中。
4. 在选中的单元格的右下角会出现一个小黑色方块,将鼠标放置在该方块上,鼠标指针会变成一个加号(+)。
5. 按住鼠标左键,拖动该小黑色方块至需要填充的单元格区域,可以是横向、纵向或是一个矩形区域。
6. 松开鼠标左键,重复内容会被自动填充至选中的单元格区域。
二、应用场景WS自动填充功能在很多场景下都非常实用。
以下是几个常见的应用场景:1. 数字序列的填充:有时候我们需要填写一列连续的数字,如1、2、3等。
使用WS自动填充功能,只需输入前几个数字,然后拖动填充方块即可快速生成整个序列。
2. 日期序列的填充:在某些情况下,我们需要填写一系列连续的日期,如每月的第一天或每周的某一天。
借助自动填充功能,我们只需输入一个日期,然后拖动填充方块即可轻松生成整个日期序列。
3. 文本的填充:有时候需要在表格中填写一些重复的文本,如产品名称或客户姓名。
使用自动填充功能,只需输入第一个文本,然后拖动填充方块即可快速将文本填充至其他单元格。
三、注意事项在使用WS自动填充功能时,需要注意以下几点:1. 填充方块大小的调整:在拖动填充方块之前,可以根据需要调整其大小。
只需将鼠标放置在填充方块的右下角,鼠标指针会变成双向箭头,然后按住鼠标左键拖动即可调整填充方块的大小。
2. 自动填充的规律:WS自动填充功能会根据已有的数据规律进行填充。
对于数字序列和日期序列,可以根据需要选择自增、自减或是使用特定的间隔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 2 页 割补法
问题一:
○
1求棱长为2的正四面体的体积。
B C C 1 D 1
○
2求棱长为2的正四面体的外接球表面积。
○
3求棱长为2的正四面体的内切球半径。
○
4 求棱长为2的正四面体的内部任一点到各个面的距离之和
○
5.在正方体D C B A ABCD ''''-中,求异面直线B D '、和C B '所成的角?
问题二:
四面体S--ABC 中,三组对棱分别相等,且依次为25,13,5
○
1.求该四面体的体积。
○
2.求该四面体的外接球表面积。
○
3.求该四面体的内切球半径。
B S A C
第 2 页 共 2 页
○
4.在长方体D C B A ABCD ''''-中,求异面直线B D '、和C B '所成的角?
○
5.拓展:有两个有相同内切球的多面体,其表面积之比为m:n ,它们的体积比为_____________
例:一圆柱被一平面所截,截口是一个椭圆.已知椭圆的长轴长为5,短轴长为4,被截后几何体的最短侧面母线长为1,则该几何体的体积等于 .。