材料成型技术基础知识点总结
材料成型技术基础

材料成型技术基础材料成型技术是一种将材料加工成所需形状和尺寸的制造方法。
它包括热成型、挤压、压缩成型、注塑成型、吹塑成型和复合成型等多种技术。
下面将对材料成型技术的基础知识进行介绍。
首先是热成型技术。
热成型是利用高温将材料加热到一定温度后,通过压力使其成型的一种方法。
常见的热成型方法有热压成型、热拉伸成型和热吹塑成型。
热成型技术可用于金属材料、塑料、橡胶等。
其次是挤压技术。
挤压是指通过将高温的材料推入压模中,利用模具的形状来使材料成型的一种方法。
挤压技术广泛应用于铝合金、铜合金、塑料等材料的生产。
再次是压缩成型技术。
压缩成型是指将粉末或颗粒材料装入压模中,然后通过压力使其成型。
常用的压缩成型方法有冲压、压铸、注射等。
压缩成型技术适用于金属、陶瓷等材料的制造。
注塑成型技术是指通过将熔融的塑料注入模具中,经过冷却凝固后取出成型的方法。
注塑成型技术广泛应用于塑料制品的生产,如塑料盒、塑料管等。
吹塑成型技术是将加热的塑料吹入空气或气体的膨胀中,通过气流的作用使塑料成型。
吹塑成型技术常用于制造塑料瓶、塑料容器等。
最后是复合成型技术。
复合成型是指将多种材料通过压合、热熔等方法使其粘结在一起的一种方法。
常见的复合成型方法有层压、模压和注射等。
复合成型技术可用于制造复合材料、夹层玻璃等产品。
总之,材料成型技术是一种将材料加工成所需形状和尺寸的制造方法。
不同的成型技术适用于不同的材料和产品,对于提高生产效率和产品质量具有重要意义。
了解和掌握这些基础知识对于进行材料成型工作是至关重要的。
工程材料及其成型基础大纲

工程材料及其成型基础大纲一、概述1.工程材料及其成型的定义和概念2.工程材料的分类及应用领域3.工程材料的性能要求和测试方法二、金属材料1.金属材料的分类和特点2.金属的晶体结构和缺陷3.金属的力学性能及其测试方法4.金属材料的热处理和强化机制5.常见金属材料的应用和加工工艺三、非金属材料1.非金属材料的分类和特点2.非金属材料的结构和性能3.非金属材料的应用领域和特殊性能4.非金属材料的加工和成型工艺四、高分子材料1.高分子材料的分类和特点2.高分子材料的结构和性能3.高分子材料的加工和改性方法4.常见高分子材料的应用领域和加工工艺五、复合材料1.复合材料的概念和分类2.复合材料的结构和性能3.复合材料的增强机制和界面特性4.复合材料的制备和成型工艺5.常见复合材料的应用领域和加工方法六、成型工艺1.金属材料的成型方法和工艺流程2.非金属材料的成型方法和工艺流程3.高分子材料的成型方法和工艺流程4.复合材料的成型方法和工艺流程七、表面处理与涂装1.表面处理的目的和方法2.金属材料的表面处理工艺3.非金属材料的表面处理工艺4.涂装技术及其应用八、工程材料的环境损伤与防护1.工程材料在使用过程中的损伤类型和机理2.工程材料的防护措施和方法3.工程材料的可持续发展和环境保护九、新材料与材料设计1.新型工程材料的研究和应用现状2.材料设计的原则和方法3.材料设计与工程实践以上为工程材料及其成型基础大纲的主要内容,通过对材料基本概念、分类、性能和加工工艺的介绍,使学生能够掌握工程材料的选择、设计和加工方法,进而提高工程实践能力。
材料成形技术基础 知识点总结

材料成形技术基础知识点总结滑移系:晶体中一个滑移面及该面上的一个华滑移方向的组合。
纤维组织:金属经冷加工变形后,晶粒形状发生改变,其变化趋势大致与金属的宏观变形一致,若变形程度很大,则晶粒呈现一片纤维状的条纹。
拉深:当凸模下降与坯料接触,坯料首先弯曲,于凸模圆角接触的材料发生胀形形变,凸模继续下降,法兰部分坯料在切向压应力,径向拉应力的作用下沿凹模圆角向直壁流动,形成筒部,进行拉深变形。
自发形核:在单一的液相中,通过自身的结构起伏形成新相核心的过程。
非自发形核:在不均匀的液体中,依靠外来杂质和容器壁面提供衬底而进行形核的过程。
焊接热循环:在焊接热源的作用下,焊件上的某一点温度随时间变化的过程。
焊接残余应力:由于焊接过程中的不均匀加热等因素而导致的焊接结构中存在残余应力。
温度场:加热和冷却过程中某一瞬间温度分布。
材料成型过程中的三种流:材料流,能量流,信息流。
液态金属在凝固和冷却到室温时发生:液态,凝固,固态三种收缩。
减小及消除焊接残余应力的措施有:热处理,温差拉伸,拉力载荷,爆炸冲击,振动法等。
液态金属结构:液态金属有许多近程有序的原子集团组成,原子集团内部原子规则排列,其结构与原固体相似;有大的能量起伏,激烈的热运动和大量的空穴;所有原子集团和空穴时聚时散,时小时大,始终处于瞬息万变的状态。
形核剂应具备哪些条件:失配度小,粗糙度大,分散性好,高温稳定性好。
加工硬化:金属经冷塑性变形后,随着变形程度的增加,金属的强度硬度增加,而塑性韧性降低,这种现象叫。
其成因与位错的交互作用有关,随着塑性变形的进行,位错密度不断增加,位错反应和相互交割加剧,结果产生固定割阶,位错缠结等障碍,以致形成胞装亚结构,使位错难以越过这些障碍而被限制在一定范围内运动,这样,要使金属继续变形就需要不断增加外力才能克服位错间强大的交互作用力。
滑移变形时通常把滑移因子u为0.5或接近0.5的取向称为软取向,把u为0或接近0 的取向称为硬取向。
材料成型技术基础

材料成型技术基础材料成型技术是指将原材料通过一定的加工方式,制造成为具有特定形状、尺寸和性能的产品的过程。
材料成型技术是现代工业制造的基础,它在各个领域都有着广泛的应用,如汽车、机械、电子、建筑等。
本文将对材料成型技术的基础知识进行介绍。
1. 基本概念材料成型技术包括各种加工方式,如锻造、铸造、挤压、拉伸、滚压、剪切、锯切等。
这些加工方式都是通过对原材料的物理和化学变化,使其得到所需的形状和性能,从而实现产品的制造。
2. 锻造锻造是一种通过对金属材料进行加热和压制,使其改变形状和性能的加工方式。
锻造可以分为自由锻造和模锻造两种。
自由锻造是指将金属材料加热至一定温度后,用锤头或压力机对其进行压制,从而使其改变形状和性能。
模锻造是指将金属材料放入特定的模具中进行加热和压制,从而使其得到所需的形状和性能。
3. 铸造铸造是一种通过将液态金属材料倒入特定的模具中,使其冷却固化后得到所需的形状和性能的加工方式。
铸造可以分为压力铸造和重力铸造两种。
压力铸造是指将液态金属材料通过高压喷射进入模具中,从而得到所需的形状和性能。
重力铸造是指将液态金属材料倒入模具中,通过重力作用使其冷却固化,从而得到所需的形状和性能。
4. 挤压挤压是一种通过将金属材料通过模具中的小孔挤出,从而得到所需的形状和性能的加工方式。
挤压可以分为冷挤压和热挤压两种。
冷挤压是指将金属材料在室温下通过模具中的小孔挤出,从而得到所需的形状和性能。
热挤压是指将金属材料加热至一定温度后,通过模具中的小孔挤出,从而得到所需的形状和性能。
5. 拉伸拉伸是一种通过将金属材料拉伸,使其改变形状和性能的加工方式。
拉伸可以分为冷拉伸和热拉伸两种。
冷拉伸是指将金属材料在室温下拉伸,从而得到所需的形状和性能。
热拉伸是指将金属材料加热至一定温度后,拉伸,从而得到所需的形状和性能。
6. 滚压滚压是一种通过将金属材料通过辊轮的滚动,使其改变形状和性能的加工方式。
滚压可以分为冷滚压和热滚压两种。
材料成型技术基础知识点总结

材料成型技术基础知识点总结第一章铸造铸造是一种制造零件的方法,它将液态金属填充到型腔中,待其凝固冷却后,获得所需形状和尺寸的毛坯或零件。
填充铸型的过程称为充型,而液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力被称为充型能力。
影响充型能力的因素包括金属液本身的流动能力(合金流动性)、浇注条件(浇注温度、充型压力)以及铸型条件(铸型蓄热能力、铸型温度、铸型中的气体、铸件结构)。
流动性是熔融金属的流动能力,是液态金属固有的属性。
影响合金流动性的因素包括合金种类(与合金的熔点、导热率、合金液的粘度等物理性能有关)、化学成份(纯金属和共晶成分的合金流动性最好)以及杂质和含气量(杂质增加粘度,流动性下降;含气量少,流动性好)。
金属的凝固方式包括逐层凝固方式、体积凝固方式或称“糊状凝固方式”以及中间凝固方式。
收缩是液态合金在凝固和冷却过程中,体积和尺寸减小的现象。
收缩能使铸件产生缩孔、缩松、裂纹、变形和内应力等缺陷。
合金的收缩可分为三个阶段:液态收缩、凝固收缩和固态收缩。
液态收缩和凝固收缩通常以体积收缩率表示,是铸件产生缩孔、缩松缺陷的基本原因。
合金的固态收缩通常用线收缩率来表示,是铸件产生内应力、裂纹和变形等缺陷的主要原因。
影响收缩的因素包括化学成分(碳素钢随含碳量增加,凝固收缩增加,而固态收缩略减)、浇注温度(浇注温度愈高,过热度愈大,合金的液态收缩增加)、铸件结构(铸型中的铸件冷却时,因形状和尺寸不同,各部分的冷却速度不同,结果对铸件收缩产生阻碍)以及铸型和型芯对铸件的收缩也产生机械阻力。
缩孔和缩松是铸件凝固结束后常常在某些部位出现孔洞,按照孔洞的大小和分布可分为缩孔和缩松。
缩孔的形成主要出现在金属在恒温或很窄温度范围内结晶,铸件壁呈逐层凝固方式的条件下。
缩松的形成主要出现在呈糊状凝固方式的合金中或断面较大的铸件壁中,是被树枝状晶体分隔开的液体区难以得到补缩所致。
合金的液态收缩和凝固收缩越大,浇注温度越高,铸件的壁越厚,缩孔的容积就越大。
材料成型工艺基础知识点总结

铸造是将液态金属浇注到具有与零件形状及尺寸相适应的铸型空腔中,待冷却凝固后,获得一定形状和性能的零件或毛坯的方法。
优点:成型方便,工艺适应性广;成本低廉,生产周期短。
缺点:劳动强度大,生产条件差,产物污染环境;生产工序较多;铸件质量不稳定,废品率高。
合金铸造性能:合金在铸造生产中获得优质铸件的能力。
1.合金的充型能力:液态合金充满型腔,获得尺寸正确、形状完整、轮廓清晰的铸件的能力,取决于合金的流动性、浇注条件、铸型条件;合金的流动性是指合金本身在液态下的流动能力。
决定于合金的化学成分、结晶特性、粘度、凝固温度范围、浇注温度、浇注压力、金属型导热能力。
合金流动性不好铸件易产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣、縮孔缺陷的间接原因。
2.合金的收缩:合金在浇注、凝固直至冷却至室温的过程中体积和尺寸縮减的现象,分为液态、凝固、固态三个阶段,取决于化学成分、浇注温度、铸件结构和铸型条件。
缩孔和缩松的防止方法:1.顺序凝固原则:使铸件按递增的温度梯度方向从一个部分到另一个部分依次凝固。
如在铸件可能出现縮孔的热节处安放冒口,使铸件从远离冒口的部位开始凝固,冒口本身最后凝固。
主要适用于纯金属和结晶温度范围窄、靠近共晶成分的合金以及凝固收缩大的合金补缩;2.加压补缩法:压力铸造、离心铸造等。
铸件的固态收缩受到阻碍及热作用,会产生铸造内应力。
1.热应力:由于铸件壁厚不均匀、各部分冷却速度不一致,致使铸件在同一时期内各部分的收缩不一致;先厚-薄+,后厚+薄-。
同时凝固原则:采取必要措施使铸件各部分冷却速度尽量一致,如将内浇道开在薄壁处减速凝固,在远离浇道的厚壁处出放置冷铁加快凝固,从而使铸件各部分冷却速度尽量一致。
主要适用于缩孔、缩松倾向较小的灰口铸铁等合金。
2.机械应力:铸件收缩时受到铸型、型芯等的机械阻碍而引起的应力,通过时效处理(自然~、人工~)来消除。
铸件的变形与防止:设计铸件时尽量使壁厚均匀、形状简单、结构对称:对于重要零件进行去应力退火。
材料成型知识点归纳总结

1.焊接是通过局部加热或同时加压,并且利用或不用填充材料,使两个分离的焊件达到牢固结合的一种连接方法。
实质——金属原子间的结合。
2.应用:制造金属结构件;2、生产机械零件;3、焊补和堆焊。
3.特点:与铆接相比 1 . 节省金属;2 . 密封性好;3 . 施工简便,生产率高。
与铸造相比 1 . 工序简单,生产周期短;2 . 节省金属; 3 . 较易保证质量4.焊条电弧焊:焊条电弧焊(手工电弧焊)是用电弧作为热源,利用手工操作焊条进行焊接的熔焊方法,简称手弧焊,是应用最为广泛的焊接方法。
5.焊接电弧:焊接电弧是在电极与工件之间的气体介质中长时间稳定放电现象,即局部气体有大量电子流通过的导电现象。
电极可以是焊条、钨极和碳棒。
用直流电焊机时有正接法和反接法.6.引弧方式接触短路引弧高频高压引弧7.常见接头形式:对接搭接角接 T型接头8.保护焊缝质量的措施:1、对熔池进行有效的保护,限制空气进入焊接区(药皮、焊剂和气体等)。
2、渗加有用合金元素,调整焊缝的化学成分(锰铁、硅铁等)。
3、进行脱氧和脱磷。
9.牌号J×××J-结构钢焊条××-熔敷金属抗拉强度最低值×-药皮类型及焊接电源种类10.焊缝由熔池金属结晶而成。
冷却凝固后形成由铁素体和少量珠光体组成的柱状晶铸态组织。
11.热影响区的组织过热区正火区部分相变区熔合区12.影响焊缝质量的因素影响焊缝金属组织和性能的因素有焊接材料、焊接方法、焊接工艺参数、焊接操作方法、焊接接头形式、坡口和焊后热处理等。
13.改善焊接热影响区性能方法:1.用手工电弧焊或埋弧焊焊一般低碳钢结构时,热影响区较窄,焊后不处理即可保证使用。
2.重要的钢结构或用电渣焊焊接构件,要用焊后热处理方法消除热影响区。
3.碳素钢、低合金结构钢构件,用焊后正火消除。
4.焊后不能接受热处理的金属材料或构件,要正确选择焊接方法与焊接工艺。
14.常见的焊接缺陷裂纹夹渣未焊透未熔合焊瘤气孔咬边15.焊接应力的产生及变形的基本形式收缩变形弯曲变形波浪变形扭曲变形角变形16.焊接应力与变形产生的原因焊接过程中,对焊件进行了局部不均匀的加热是产生焊接应力与变形。
工程材料成型与技术基础

工程材料成型与技术基础工程材料成型是指通过一定的工艺方法,将原材料加工成所需形状和尺寸的工程零部件或构件的过程。
在工程领域中,材料成型是非常重要的一环,它直接影响着工程产品的质量和性能。
而材料成型的技术基础则是支撑整个成型过程的关键,它包括了材料的性质、成型工艺、设备工具等方面的知识。
本文将从材料成型的基本概念、成型工艺和技术基础等方面进行探讨。
首先,我们来了解一下材料成型的基本概念。
材料成型是将原材料经过一系列的加工工艺,使其成为符合设计要求的零部件或构件的过程。
在这个过程中,原材料的物理性质和化学性质都会发生一定的改变,以满足产品的使用要求。
常见的材料成型工艺包括铸造、锻造、压力加工、焊接、切削加工等。
这些工艺都是通过不同的方式对材料进行加工,以满足产品的形状、尺寸和性能要求。
其次,材料成型的工艺对产品的质量和性能有着直接的影响。
在材料成型过程中,工艺参数的选择和控制是非常重要的。
比如在铸造工艺中,铸造温度、压力、冷却速度等参数都会直接影响铸件的组织结构和性能。
在锻造工艺中,锻造温度、变形量、变形速度等参数也会对锻件的性能产生重要影响。
因此,工程师需要对不同的材料成型工艺有着深入的了解,以确保产品能够满足设计要求。
除了工艺参数的选择和控制,材料成型还需要依靠一系列的设备工具来完成。
比如在铸造工艺中,需要使用熔炼炉、铸型、浇注设备等;在锻造工艺中,需要使用锻造机床、模具等。
这些设备工具的选择和使用也是影响成型质量的重要因素。
因此,工程师需要对不同的设备工具有着深入的了解,以确保成型过程能够顺利进行。
最后,材料成型的技术基础是支撑整个成型过程的关键。
它包括了材料的性质、成型工艺、设备工具等方面的知识。
对于材料的性质,工程师需要了解材料的力学性能、物理性能、化学性能等,以便选择合适的成型工艺和工艺参数。
对于成型工艺,工程师需要了解不同的成型工艺的原理、特点、优缺点等,以便选择合适的成型工艺。
对于设备工具,工程师需要了解不同设备工具的结构、工作原理、使用方法等,以便正确选择和使用设备工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章铸造1. 铸造:将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状 和尺寸的毛坯或零件的方法。
2. 充型:溶化合金填充铸型的过程。
3. 充型能力:液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力。
4. 充型能力的影响因素:金属液本身的流动能力(合金流动性) 浇注条件:浇注温度、充型压力铸型条件:铸型蓄热能力、铸型温度、铸型中的气体、铸件结构 流动性是熔融金属的流动能力,是液态金属固有的属性。
5. 影响合金流动性的因素:(1 )合金种类:与合金的熔点、导热率、合金液的粘度等物理性能有关。
(2 )化学成份:纯金属和共晶成分的合金流动性最好;(3)杂质与含气量:杂质增加粘度,流动性下降;含气量少,流动性好。
6. 金属的凝固方式:1237收缩 收缩能使铸件产生缩孔、缩松、裂纹、变形和内应力等缺陷。
8. 合金的收缩可分为三个阶段:液态收缩、凝固收缩和固态收缩。
液态收缩和凝固收缩,通常以体积收缩率表示。
液态收缩和凝固收缩是铸件产生缩孔、 缩松缺陷的基本原因。
合金的固态收缩,通常用线收缩率来表示。
固态收缩是铸件产生内应力、裂纹和变形 等缺陷的主要原因。
9. 影响收缩的因素(1) 化学成分:碳素钢随含碳量增加,凝固收缩增加,而固态收缩略减。
(2) 浇注温度:浇注温度愈高,过热度愈大,合金的液态收缩增加。
(3) 铸件结构:铸型中的铸件冷却时,因形状和尺寸不同,各部分的冷却速度不同,结 果对铸件收缩产生阻碍。
(4) 铸型和型芯对铸件的收缩也产生机械阻力10. 缩孔及缩松:铸件凝固结束后常常在某些部位出现孔洞,按照孔洞的大小和分布可分为 缩孔和缩松。
大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。
缩孔的形成:主要出现在金属在恒温或很窄温度范围内结晶,铸件壁呈逐层凝固方式的 条件下。
缩松的形成:主要出现在呈糊状凝固方式的合金中或断面较大的铸件壁中,是被树枝状 晶体分隔开的液体区难以得到补缩所致。
合金的液态收缩和凝固收缩越大,浇注温度越高,铸件的壁越厚,缩孔的容积就越大。
缩松大多分布在铸件中心轴线处、热节处、冒口根部、内浇口附近或缩孔下方。
11•缩孔、缩松的防止方法:课件版本:冒口、冷铁和补贴的综合运用是消除缩孔、缩松的有效措施。
(1) 使缩松转化为缩孔的方法 :① 尽量选择凝固区域较窄的合金,使合金倾向于逐层凝固;② 对凝固区域较宽的合金,可采用增大凝固的温度梯度办法。
逐层凝固方式 体积凝固方式或称“糊状凝固方式”。
中间凝固方式 :液态合金在凝固和冷却过程中,体积和尺寸减小的现象称为合金的收缩。
(2)防止缩孔的方法要使铸件在凝固过程中建立良好的补缩条件,可采用定向凝固原则”冷铁:为了实现定向凝固,在安放冒口的同时,在铸件上某些厚大部位增设的金属材料书版本:(1)按照定向凝固原则进行凝固(2)合理地确定内浇道位置及浇注工艺(3 )合理地应用冒口,冷铁和补贴等工艺措施12.定向凝固原则:通过各种工艺措施,使铸件上从远离冒口的部位到冒口部位之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部分向冒口方向的定向凝固。
13•铸造应力分为热应力和收缩应力。
它是铸件产生变形和裂纹的基本原因。
热应力:铸件在凝固和冷却过程中,不同部位由于不均衡的收缩而引起的应力。
收缩应力:铸件在固态收缩时,因受铸型,型芯,浇冒口等外力的阻碍而产生的应力。
14•根据产生温度的不同,裂纹可分为热裂和冷裂两种。
1•热裂一般是在凝固末期,高温下的金属强度很低,如果金属的线收缩受到铸型或型芯的阻碍,机械应力超过该温度下金属的强度,便产生热裂。
特征:热裂纹尺寸较短、缝隙较宽、形状曲折、缝内呈严重的氧化色。
2•冷裂低温形成的裂纹为冷裂一一是铸件冷却到低温处于弹性状态时所产生的热应力和收缩应力总和,如果大于该温度下合金的强度,则产生冷裂。
特征:表面光滑,具有金属光泽或呈微氧化色,贯穿整个晶粒,常呈圆滑曲线或直线状。
15•铸件中气孔按产生的原因和气体来源不同,大致分为三类:侵入气孔,析出气孔,反应气孔。
16•熔模铸造(失蜡铸造):用易熔材料如蜡料制成模样,在模样上包覆若干层耐火涂料,制成形壳,解出模样后经高温焙烧即可饶注的铸造方法称熔模铸造。
熔模铸造的工艺过程1.制造蜡模7 2 .制造型壳7 3 .熔化蜡模(脱蜡)7 4 .型壳的焙烧7 5 .浇注7 6 .脱壳和清理17"金属型铸造:将液体金属在重力作用下浇入金属铸型而获得铸件的方法。
铸型用金属制成,可以反复使用几百次到几千次。
故称为“永久型铸型”。
18"压力铸造:熔融金属在高压下高速充型,并在压力下凝固的铸造方法称为压力铸造,简称压铸。
19•离心铸造:是将熔融金属浇入绕水平、倾斜或立轴旋转的铸型,在离心力作用下,凝固成形的铸件的轴线与旋转铸型轴线重合的铸造方法。
20^浇注位置的选择原则:①铸件的重要加工面应朝下或位于侧面②铸件的大平面应朝下③面积较大的薄壁部分置于铸型下部或垂直,倾斜位置④ 对于容易产生缩孔的铸件,应将厚大部分放在分型面附近的上部或侧面⑤ 应尽量减少型芯的数量,且便于安放、固定和排气21. 铸型分型面的选择原则:1. 便于起模,使造型工艺简化① 为便于起模,分型面应选在最大截面处② 避免不必要的活块和型芯③ 尽量使分型面平直④ 尽量减少分型面2. 尽量将铸件重要加工面或大部分加工面,加工基准面放在同一个砂箱中3. 使型腔和主要芯位于下箱,便于下芯,合型和检查型腔尺寸22. 起模斜度: 为了使模样(或型芯)易于从砂型(或芯盒)中取出,凡垂直于分型面的 立壁,制造模样时必须留出一定的倾斜度,此倾斜度称为起模斜度铸造工艺设计和结构工艺性看书 第2章锻造1. 锻压:在外力作用下金属材料通过塑性变形,获得具有一定形状、尺寸和力学性能的零件 或毛坯的加工方法。
它又称为塑性成形。
它是锻造和冲压成形的总称。
2. 金属塑性成形在工业生产中称为压力加工,分为:自由锻、模锻、板料冲压、挤压、拉 拔、轧制等。
3压力加工的特点:(1)(2)(3)(4) 缺点:不能加工脆性材料(如铸铁)和形状特别复杂(特别是内腔形状复杂)或体积特别 大的零件或毛坯。
4. 锻造:是在加压设备及工(模)具作用下,使坯料、铸锭产生局部或全部的塑性变形, 以获得一定几何尺寸、形状和质量的锻件的加工方法。
由于金属塑性和变形抗力方面的要求,锻造通常是在高温(再结晶温度以上)下成形的, 因此也称为金属热变形或热锻。
5. 冲压:是板料在冲压设备及模具作用下,通过塑性变形产生分离或成形而获得制件的加 工方法。
主要用于加工板料。
冲压通常是在再结晶温度以下完成变形的,因而也称为冷冲压。
6. 冲压基本工序:分离工序:冲裁(落了和冲孔)剪切,切边,切口,剖切等; 成形(变形)工序:弯曲,拉深,翻边,成形,旋压等。
7. 塑性:是指金属材料在外力作用下能稳定地改变自己的形状和尺寸而个质点间的联系不 被破坏的性能。
8. 变形抗力:塑性加工时,作用在工具表面单位面积上变形力的大小称为变形抗力。
塑性反映材料塑性变形的能力,变形抗力表示塑性变形的难易程度。
9. 可锻性:金属材料经受压力加工的难易程度。
它是用金属材料的塑性与变形抗力来衡量 的。
塑性愈大与变形抗力愈小,材料的可锻性愈好。
10. 可锻性的影响因素:(1 )化学成分 (2)内部组织(3)变形温度 (4)变形速度 (5)应力状态改善金属的组织、提高力学性能 材料的利用率高 较高的生产率 毛坯或零件的精度较高11.过热:加热温度过高,会使晶粒急剧长大,导致金属塑性减小,塑性成形性能下降,这种现象称为“过热”。
12.过烧:如果加热温度接近熔点,会使晶界氧化甚至熔化,导致金属的塑性变形能力完全消失,这种现象称为“过烧”,坯料如果过烧将报废。
13.自由锻:利用冲击力或压力,使金属在上、下砧铁之间,产生塑性变形而获得所需形状、尺寸以及内部质量锻件的一种加工方法。
14自由锻分类:手工锻造和机器锻造两种。
15.自由锻工序:基本工序、辅助工序和修整工序。
基本工序:镦粗、拔长和冲孔。
16模锻:模型锻造是在锻压机器动力作用下,使坯料在锻模模膛内被迫塑性流成形,从而获得与模膛形状相符的锻件,简称模锻。
与自由锻相比,模锻具有如下优点:生产效率较高。
模锻时,金属的变形在模膛内进行,故能较快获得所需形状。
能锻造形状复杂的锻件,并可使金属流线分布更为合理,提高零件的使用寿命。
模锻件的尺寸较精确,表面质量较好,加工余量较小。
节省金属材料,减少切削加工工作量。
在批量足够的条件下,能降低零件成本。
模锻操作简单,劳动强度低。
(1)(2)(3)(4)(5)模锻适合于小型锻件的大批大量生产,不适合单件小批量生产以及中、大型锻件的生产。
17.胎模锻:是在自由锻设备上采用不与上、下砧相接的活动模具成型的方法称为胎模锻。
它是介于自由锻与模锻之间的锻造工艺方法。
胎模锻与自由锻相比,可获得形状较复杂、尺寸较为精确的锻件,节省了金属,提高了生产率。
与模锻相比,可利用自由锻设备组织各类锻件生产,胎模制造较简便。
但胎模锻件的尺寸精度低于锤上模锻;另外,劳动生产率、模具寿命等方面均低于模锻。
胎模锻适用于中小批生产,它在没有模锻设备的工厂应用较为普遍。
18.胎模按照结构型式不同可分为:(1)摔模(2)拼分套模(3)切边模(4)弯曲模19.冲裁的分离过程三个阶段:1)弹性变形阶段2)塑性变形阶段3)断裂分离阶段锻造温度设计,看书P79第三章焊接1.焊接:通过加热或加压,或两者并用,并且用或不用填充材料,使焊件达到原子(分子)间结合的一种加工方法。
2.熔焊(熔化焊):利用电能、化学能等热源,将待焊处局部母材加热至熔化(不加压)冷却结晶后熔为一体形成焊缝的方法。
属于液相焊接。
3.压焊:焊接过程需对焊件加压(加热或不加热)以完成焊接的方法。
加压使焊件接头处发生塑变,两界面接近至原子间可作用到的距离,达到原子间接合,形成两焊件连成一体的接头。
加热为了焊件接头更易产生塑变。
特适于异种材料的连接材料连接。
4.钎焊:采用熔点低于被焊金属的钎料(填充金属)熔化之后,填充接头间隙,并与被焊金属相互扩散实现连接。
钎焊过程中被焊工件不熔化,且一般没有塑性变形。
5.焊接电弧:是由焊接电源供给的,是具有一定电压的两电极间或电极与焊件间,在气体介质产生强烈而持久的放电现象。
电弧实质是一种气体放电。
6. 电弧由阴极区、阳极区和弧柱区三部分组成:1) 阴极区:电子发射区,热量约占 36%,平均温度2400K ;2) 阳极区:受电子轰击区域,热量约占43%,平均温度2600K ;3) 弧柱区:阴、阳两极间区域,几乎等于电弧长度,热量 21%,弧柱中心温度可达 6000~8000K 。