高中物理选修磁场知识点及习题

合集下载

高中物理选修磁场知识点及习题

高中物理选修磁场知识点及习题

一、 磁场 知识要点 1.磁场的产生 ⑴磁极周围有磁场。

⑵电流周围有磁场〔奥斯特〕。

安培提出分子电流假说〔又叫磁性起源假说〕,认为磁极的磁场和电流的磁场都是由电荷的运动产生的。

〔不等于说全部磁场都是由运动电荷产生的。

〕⑶变化的电场在周围空间产生磁场〔麦克斯韦〕。

2.磁场的根本性质磁场对放入其中的磁极和电流有磁场力的作用(对磁极肯定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。

这一点应该跟电场的根本性质相比拟。

3.磁感应强度 ILFB〔条件是匀强磁场中,或ΔL 很小,并且L ⊥B 〕。

磁感应强度是矢量。

单位是特斯拉,符号为T ,1T=1N/(A ∙m)=1kg/(A ∙s 2) 4.磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。

磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。

磁感线的疏密表示磁场的强弱。

⑵磁感线是封闭曲线〔和静电场的电场线不同〕。

⑶要熟记常见的几种磁场的磁感线:⑷安培定则〔右手螺旋定则〕:对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。

5.磁通量如果在磁感应强度为B 的匀强磁场中有一个与磁场方向垂直的平面,其面积为S ,则定义B 与S 的乘积为穿过这个面的磁通量,用Φ表示。

Φ是标量,但是有方向〔进该面或出该面〕。

单位为韦伯,符号为W b 。

1W b =1T ∙m 2=1V ∙s=1kg ∙m 2/(A ∙s 2)。

可以认为磁通量就是穿过某个面的磁感线条数。

在匀强磁场磁感线垂直于平面的情况下,B =Φ/S ,所以磁感应强度又叫磁通密度。

在匀强磁场中,当B 与S 的夹角为α时,有Φ=BS sin α。

地球磁场 通电直导线周围磁场 通电环行导线周围磁场二、安培力〔磁场对电流的作用力〕知识要点1.安培力方向的判定 ⑴用左手定则。

⑵用“同性相斥,异性相吸〞〔只适用于磁铁之间或磁体位于螺线管外部时〕。

(完整word版)高中物理磁场知识点总结+例题,推荐文档

(完整word版)高中物理磁场知识点总结+例题,推荐文档

磁场一、基本概念1.磁场的产生⑴磁极周围有磁场。

⑵电流周围有磁场(奥斯特)。

安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。

⑶变化的电场在周围空间产生磁场(麦克斯韦)。

2.磁场的基本性质磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流可能有力的作用,当电流和磁感线平行时不受磁场力作用)。

3.磁感应强度ILF B (条件是L ⊥B ;在匀强磁场中或ΔL 很小。

) 磁感应强度是矢量。

单位是特斯拉,符号为T ,1T=1N/(A ∙m)=1kg/(A ∙s 2)4.磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。

磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针N 极受磁场力的方向。

磁感线的疏密表示磁场的强弱。

⑵磁感线是封闭曲线(和静电场的电场线不同)。

⑶要熟记常见的几种磁场的磁感线:地磁场的特点:两极的磁感线垂直于地面;赤道上方的磁感线平行于地面;除两极外,磁感线的水平分量总是指向北方;南半球的磁感线的竖直分量向上,北半球的磁感线的竖直分量向下。

⑷电流的磁场方向由安培定则(右手螺旋定则)确定:对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。

二、安培力 (磁场对电流的作用力)1.安培力方向的判定⑴用左手定则。

⑵用“同向电流相吸,反向电流相斥”(适用于两电流互相平行时)。

⑶可以把条形磁铁等效为长直通电螺线管(不要把长直通电螺线管等效为条形磁铁)。

例1.条形磁铁放在粗糙水平面上,其中点的正上方有一导线,在导线中通有图示方向的电流后,磁铁对水平面的压力将会______(增条形磁铁蹄形磁铁通电环行导线周围磁场通电长直螺线管内部磁场 通电直导线周围磁场大、减小还是不变?)。

水平面对磁铁的摩擦力大小为______。

解:本题有多种分析方法。

⑴画出通电导线中电流的磁场中通过两极的那条磁感线(如图中下方的虚线所示),可看出两极受的磁场力的合力竖直向上。

高二物理选修3-1第三章磁场知识点总结复习

高二物理选修3-1第三章磁场知识点总结复习

第三章磁场教案3.1 磁现象和磁场第一节、磁现象和磁场1.磁现象磁性:能吸引铁质物体的性质叫磁性.磁体:具有磁性的物体叫磁体.磁极:磁体中磁性最强的区域叫磁极。

2.电流的磁效应磁极间的相互作用规律:同名磁极相互排斥,异名磁极相互吸引.(与电荷类比)电流的磁效应:电流通过导体时导体周围存在磁场的现象(奥斯特实验)。

3.磁场磁场的概念:磁体周围存在的一种特殊物质(看不见摸不着,是物质存在的一种特殊形式)。

磁场的基本性质:对处于其中的磁极和电流有力的作用.磁场是媒介物:磁极间、电流间、磁极与电流间的相互作用是通过磁场发生的.磁场对电流的作用,电流与电流的作用,类比于库仑力和电场,形成磁场的概念,磁场虽然看不见、摸不着,但是和电场一样都是客观存在的一种物质,我们可以通过磁场对磁体或电流的作用而认识磁场.4.磁性的地球地球是一个巨大的磁体,地球周围存在磁场———地磁场.地球的地理两极与地磁两极不重合(地磁的N极在地理的南极附近,地磁的S极在地理的北极附近),其间存在磁偏角.地磁体周围的磁场分布情况和条形磁铁周围的磁场分布情况相似。

宇宙中的许多天体都有磁场。

月球也有磁场。

例1、以下说法中,正确的是()A、磁极与磁极间的相互作用是通过磁场产生的B、电流与电流的相互作用是通过电场产生的C、磁极与电流间的相互作用是通过电场与磁场而共同产生的D、磁场和电场是同一种物质例2、如图表示一个通电螺线管的纵截面,ABCDE在此纵截面内5个位置上的小磁针是该螺线管通电前的指向,当螺线管通入如图所示的电流时,5个小磁针将怎样转动?例3、有一矩形线圈,线圈平面与磁场方向成 角,如图所示。

设磁感应强度为B,线圈面积为S,则穿过线圈的磁通量为多大?例4、如图所示,两块软铁放在螺线管轴线上,当螺线管通电后,两软铁将(填“吸引"、“排斥”或“无作用力”),A端将感应出极。

3。

2 磁感应强度第二节 、 磁感应强度1.磁感应强度的方向:小磁针静止时N 极所指的方向规定为该点的磁感应强度方向 思考:能不能用很小一段通电导体来检验磁场的强弱呢?2.磁感应强度的大小匀强磁场:如果磁场的某一区域里,磁感应强度的大小和方向处处相同,这个区域的磁场叫匀强磁场。

人教版高中物理选修知识点——第三章《磁场》

人教版高中物理选修知识点——第三章《磁场》

人教版高中物理选修知识点——第三章《磁场》人教版高中物理选修3-1部分学问点内部资料第三章《磁场》一、磁现象和磁场1)磁体分为自然磁石和人造磁体。

磁体吸引铁质物体的性质叫做磁性。

磁体磁性最强的区域叫做磁极。

同名磁极互相排斥;异名磁极互相吸引。

2)电流的磁效应奥斯特发觉,电流能使磁针偏转,因此,电流就等效成磁体。

3)磁场①磁场与电场一样,都是看不见摸不着,客观存在的物质。

电流和磁体的周围都存在磁场。

①磁体与磁体之间、磁体与电流之间,以及电流与电流之间的互相作用,是通过磁场发生的。

①地球的磁场地球的地理两极与地磁两极并不重合,其间有一个夹角,这就是地磁偏角。

地理南极附近是地磁北极;地理北极附近是地磁南极。

二、磁感应强度B1)物理意义:磁感应强度B 为矢量,它是描述磁场强弱的物理量。

2)方向:小磁针静止时N 极所指的方向或者小磁针N 极的受力方向规定为该点的磁感应强度的方向。

3)大小:ILF B ,单位:特斯拉(T )条件:磁场B 的方向与电流I 的方向垂直。

其中:IL 为电流元,F 为电流元受到的磁场力。

三、几种常见的磁场1)磁感线为了形象地描述磁场,曲线上每一点的切线方向都是该点的磁感应强度B 的方向。

2)安培定则(右手螺旋定则)①第一种描述:对于直线电流,右手握住导线,1、拇指指向电流的方向;2、弯曲的四指指向磁感线的方向。

直线电流的磁感线都是以电流为轴的同心圆,越远离电流磁场越弱。

①其次种描述:对于环形电流,1、弯曲的四指指向环形电流的方向;2、拇指指向环内部的磁感线方向。

环形电流内部的磁场恰好与外部的磁场反向。

3)安培分子电流假说分子电流使每个物质微粒都成为极小的磁体,它的两侧相当于两个磁极。

安培分子电流假说揭示了磁的电本质。

一条铁棒未被磁化的时候,内部分子电流的取向是杂乱无章的;当分子电流的取向全都时,铁棒被磁化。

磁体受到高温或猛烈撞击时会失去磁性。

4)磁通量Φ①定义式:BS =φ,单位:韦伯(Wb )其中:S 为在磁场中的有效面积。

(2021年整理)高中物理选修3_1磁场知识点及习题9

(2021年整理)高中物理选修3_1磁场知识点及习题9

(完整版)高中物理选修3_1磁场知识点及习题9编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)高中物理选修3_1磁场知识点及习题9)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)高中物理选修3_1磁场知识点及习题9的全部内容。

(完整版)高中物理选修3_1磁场知识点及习题9编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 (完整版)高中物理选修3_1磁场知识点及习题9 这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)高中物理选修3_1磁场知识点及习题9〉这篇文档的全部内容。

一、 磁场 知识要点1。

磁场的产生⑴磁极周围有磁场。

⑵电流周围有磁场(奥斯特)。

安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。

(不等于说所有磁场都是由运动电荷产生的。

)⑶变化的电场在周围空间产生磁场(麦克斯韦)。

2。

磁场的基本性质磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。

这一点应该跟电场的基本性质相比较.3。

磁感应强度ILFB(条件是匀强磁场中,或ΔL 很小,并且L ⊥B ). 磁感应强度是矢量。

高中物理选修3磁现象和磁场知识点

高中物理选修3磁现象和磁场知识点

高中物理选修3磁现象和磁场知识点一、规律方法指导:1、条形磁铁有两个磁极,而中间的磁性最弱,几乎感受不到。

2、利用磁体间的互相作用规律——同名磁极互相排斥,异名磁极互相吸引,可以推断未知磁体的磁极。

3、利用磁体的指向性可以制成指南针,反过来,假如已知南北方向,可以通过悬挂法找到未知磁体的南极和北极。

4、磁场是真实存在于磁体四周的一种特别物质,而磁感线是人们为了直观、形象地描述磁场的方向和分布状况而引入的带方向的曲线,它并不是客观存在于磁场中的真实曲线。

因此在磁场中标磁感线时,应将其画成虚线。

5、磁感线分布的疏密可以表示磁场的强弱。

磁体两极处磁感线最密,表示其两极磁场最强。

6、磁感线是一些闭合的曲线。

即磁体四周的磁感线都是从磁体的北极出来,回到磁体的南极,在磁体的内部,都是从磁体的南极指向北极。

二、学问点分析:现有外观相同的两段钢棒,一根有磁性,而另一根没有磁性,如何区分它们?方法1:依据磁体的吸铁性来推断,找来一些小铁件,如图钉,能够吸起它们的有磁性。

方法2:依据磁体的指向性来推断,分别把两根钢棒用细线水平吊起,若有南北指向的具有磁性。

方法3:依据磁极间的互相作用来推断,取来一根小磁针,若能和小磁针有排斥状况发生,则具有磁性;若小磁针放在钢棒四周不同位置始终表现为相吸,那么这根钢棒没有磁性。

方法4:若没有任何其他材料,也可以进行推断。

拿A棒的一端去接触B棒的中间,若互相间无作用力,那么B棒有磁性;若互相间有吸引,那么B棒无磁性,A棒有磁性。

如何正确理解磁体和磁极?每个磁体都有两个磁极,一个叫南极(S极),一个叫北极(N极),是磁体上磁性最强的部分,位于磁体的两端。

自然界中不存在只有单个磁极的磁体,磁体上的磁极总是成对消失的,而且一个磁体也不能有多于两个的磁极。

假如某人不慎将一个条形磁铁从空中落向地面分成两段,则每段将各有两个磁极,如图甲所示;假如再让这两段磁铁相互吸引合为一体,则靠近的两个磁极便不存在,整个磁体仍旧只有两个磁极,如图乙所示。

高二物理选修磁场知识点大全及对应习题

高二物理选修磁场知识点大全及对应习题

第一节我们周围的磁现象知识点回顾:1、地磁场(1)地球磁体的北(N)极位于地理南极附近,地球磁体的南(S)极位于地理北极附近。

(2)地球磁体的磁场分布与条形磁铁的磁场相似。

(3)地磁两极与地理两极并不完全重合,存在偏差。

2、磁性材料(1)按去磁的难易程度划分可分为硬磁性材料和软磁性材料。

(2)按材料所含化学成分划分可分为和。

(3)硬磁性材料剩磁明显,常用来制造等。

(4)软磁性材料剩磁不明显,常用来制造等。

知识点1:磁现象一切与磁有关的现象都可称为磁现象。

磁在我们的生活、生产和科技中有着广泛的应用,归纳大致分为:(1)利用磁体对铁、钴、镍等磁性物质的吸引力;(2)利用磁体对通电线圈的作用力;(3)利用磁化现象记录信息。

知识点2:地磁场(重点)地球由于本身具有磁性而在其周围形成的磁场叫地磁场。

关于地磁场的起源,目前还没有令人满意的答案。

一种观点认为,地磁场是由于地核中熔融金属的运动产生的,而且熔融金属运动方向的变化会引起地磁场方向的变化。

科学研究发现,从地球形成迄今的漫长年代里,地磁极曾多次发生极性倒转的现象。

地磁场具有这样的特点:(1)地磁北极在地理南极附近,地磁南极在地理北极附近;(2)地磁场与条形磁铁产生的磁场相似,但地磁场磁性很弱;(3)地磁场对宇宙射线的作用,保护生命(极光、宇宙射线的伤害);地磁场对生物活动的影响(迁徙动物的走南闯北如信鸽,但候鸟南飞确是受气候的影响的,不是磁场)拓展:地磁两极与地理两极并不重合,存在地磁偏角。

这种现象最早是由我国北宋的学者沈括在《梦溪笔谈》中提出的,比西方早400多年。

并不是所有的天体都有和地球一样的磁性,如火星就没有磁性知识点3:磁性材料磁性材料一般指铁磁性物质。

按去磁的难易程度,磁性材料可分为硬磁性材料和软磁性材料。

硬磁性材料具有很强的剩磁,不易去磁,一般用于制造永磁体,如扬声器、计算机硬盘、信用卡、饭卡等;软磁性材料没有明显的剩磁,退磁快,常用于制造电磁铁、电动机、发电机、磁头等。

高中物理选修3-1——磁场知识点总结

高中物理选修3-1——磁场知识点总结

高中物理选修3-1——磁场知识点总结一、磁场及其磁感线1、磁场(1)磁场是存在于磁极或电流周围空间里的一种特殊的物质,磁场和电场一样,都是“场形态物质”。

(2)磁场的方向:物理学规定,在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是那一点磁场的方向。

(3)磁场的基本性质:磁场对处在它里面的磁极或电流有磁场力的作用。

磁极和磁极之间、磁场和电流之间、电流和电流之间的相互作用都是通过磁场来传递的。

2、磁感线(1)磁感线:是形象地描述磁场而引入的有方向的曲线。

在曲线上,每一点切线方向都在该点的磁场方向上,曲线的疏密反映磁场的强弱。

(2)磁感线的特点:a.磁感线是闭合的曲线,磁体的磁感线在磁体外部由N极到S极,内部由S极到N极。

b.任意两条磁感线不能相交。

3、几种常见磁场的磁感线的分布(1)条形磁铁和碲形磁铁的磁感线条形磁铁和蹄形磁铁是两种最常见的磁体,如图所示的是这两种磁体在平面内的磁感线形状,其实它们的磁感线分布在整个空间内,而且磁感线是闭合的,它们的内部都有磁感线分布。

(2)通电直导线磁场的磁感线通电直导线磁场的磁感线的形状与分布如图所示,通电直导线磁场的磁感线是一组组以导线上各点为圆心的同心圆。

需要指出的是,通电直导线产生的磁场是不均匀的,越靠近导线,磁场越强,磁感线越密。

电流的方向与磁感线方向的关系可以用安培定则来判断,如图所示。

用右手握住直导线,伸直的大拇指与电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。

(3)环形电流磁场的磁感线环形电流磁场的磁感线是一些围绕环形导线的闭合曲线,在环形的中心轴上,由对称性可知,磁感线是与环形导线的平面垂直的一条直线。

如图甲所示,环形电流方向与磁感线方向的关系也可以用右手定则来判断,如图乙所示,让右手弯曲的四指和环形电流的方向一致,伸直的大拇指所指的方向就是圆环轴线上磁感线的方向;如图丙所示,让右手握住部分环形导线,伸直的大拇指与电流方向一致,则四指所指的方向就是围绕环形导线的磁感线的方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 磁场 知识要点 1.磁场的产生 ⑴磁极周围有磁场。

⑵电流周围有磁场(奥斯特)。

安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。

(不等于说所有磁场都是由运动电荷产生的。

)⑶变化的电场在周围空间产生磁场(麦克斯韦)。

2.磁场的基本性质磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。

这一点应该跟电场的基本性质相比较。

3.磁感应强度 ILFB(条件是匀强磁场中,或ΔL 很小,并且L ⊥B )。

磁感应强度是矢量。

单位是特斯拉,符号为T ,1T=1N/(A?m)=1kg/(A?s 2) 4.磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。

磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。

磁感线的疏密表示磁场的强弱。

⑵磁感线是封闭曲线(和静电场的电场线不同)。

⑶要熟记常见的几种磁场的磁感线:⑷安培定则(右手螺旋定则):对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。

5.磁通量如果在磁感应强度为B的匀强磁场中有一个与磁场方向垂直的平面,其面积为S,则定义B与S的乘积为穿过这个面的磁通量,用Φ表示。

Φ是标量,但是有方向(进该面或出该面)。

单位为韦伯,符号为W b。

1W b=1T?m2=1V?s=1kg?m2/(A?s2)。

可以认为磁通量就是穿过某个面的磁感线条数。

在匀强磁场磁感线垂直于平面的情况下,B=Φ/S,所以磁感应强度又叫磁通密度。

在匀强磁场中,当B与S的夹角为α时,有Φ=BS sinα。

地球磁场通电直导线周围磁场通电环行导线周围磁场二、安培力(磁场对电流的作用力)知识要点1.安培力方向的判定 ⑴用左手定则。

⑵用“同性相斥,异性相吸”(只适用于磁铁之间或磁体位于螺线管外部时)。

⑶用“同向电流相吸,反向电流相斥”(反映了磁现象的电本质)。

可以把条形磁铁等效为长直螺线管(不要把长直螺线管等效为条形磁铁)。

只要两导线不是互相垂直的,都可以用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方向;当两导线互相垂直时,用左手定则判定。

2.安培力大小的计算:F =BLI sin α(α为B 、L 间的夹角)高中只要求会计算α=0(不受安培力)和α=90°两种情况。

例题分析例1:如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动解:先画出导线所在处的磁感线,上下两部分导线所受安培力的方向相反,使导线从左向右看顺时针转动;同时又受到竖直向上的磁场的作用而向右移动(不要说成先转90°后平移)。

分析的关键是画出相关的磁感线。

例2:条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会__(增大、减小还是不变)。

水平面对磁铁的摩擦力大小为__。

解:本题有多种分析方法。

⑴画出通电导线中电流的磁场中通过两极的那条磁感线(如图中粗虚线所示),可看出两极受的磁场力的合力竖直向上。

磁铁对水平面的压力减小,但不受摩擦力。

⑵画出条形磁铁的磁感线中通过通电导线的那一条(如图中细虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。

⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。

例3:如图在条形磁铁N 极附近悬挂一个线圈,当线圈中通有逆时针方向的电流时,线圈将向哪个方向偏转解:用“同向电流互相吸引,反向电流互相排斥”最简单:条形磁铁的等效螺线管的电流在正面是向下的,与线圈中的电流方向相反,互相排斥,而左边的线圈匝数多所以线圈向右偏转。

(本题如果用“同名磁极相斥,异名磁极相吸”将出现判断错误,因为那只适用于线圈位于磁铁外部的情况。

)例4:电视机显象管的偏转线圈示意图如右,即时电流方向如图所示。

该时刻由里向外射出的电子流将向哪个方向偏转解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈靠电子流的一侧为向外。

电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥”,可判定电子流向左偏转。

(本题用其它方法判断也行,但不如这个方法简洁)。

例5:如图所示,光滑导轨与水平面成α角,导轨宽L 。

匀强磁场磁感应强度为B 。

金属杆长也为L ,质量为m ,水平放在导轨上。

当回路总电流为I 1时,金属杆正好能静止。

求:⑴B至少多大这时B 的方向如何⑵若保持B 的大小不变而将B 的方向改为竖直向上,应把回路总电流I 2调到多大才能使金属杆保持静止解:画出金属杆的截面图。

由三角形定则可知,只有当安培力方向沿导轨平面向上时安培力才最小,B 也最小。

根据左手定则,这时B 应垂直于导轨平面向上,大小满足:BI 1L =mg sin α,B =mg sin α/I 1L 。

当B 的方向改为竖直向上时,这时安培力的方向变为水平向右,沿导轨方向合力为零,得BI 2L cos α=mg sin α,I 2=I 1/cos α。

(在解这类题时必须画出截面图,只有在截面图上才能正确表示各力的准确方向,从而弄清各矢量方向间的关系)。

例6:如图所示,质量为m 的铜棒搭在U 形导线框右端,棒长和框宽均为L ,磁感应强度为B 的匀强磁场方向竖直向下。

电键闭合后,在磁场力作用下铜棒被平抛出去,下落h 后落在水平面上,水平位移为s 。

求闭合电键后通过铜棒的电荷量Q 。

解:闭合电键后的极短时间内,铜棒受安培力向右的冲量F Δt =mv 0而被平抛出去,其中F =BIL ,而瞬时电流和时间的乘积等于电荷量Q =I ?Δt ,由平抛规律可算铜棒离开导线框时的初速度h g st s v 20==,最终可得hgBL ms Q 2=。

三、洛伦兹力知识要点1.洛伦兹力运动电荷在磁场中受到的磁场力叫洛伦兹力,它是安培力的微观表现。

计算公式的推导:如图所示,整个导线受到的磁场力(安培力)为F 安 =BIL ;其中I=nesv ;设导线中共有N 个自由电子N=nsL ;每个电子受的磁场力为F ,则F安=NF 。

由以上四式可得F=qvB 。

条件是v 与B 垂直。

当v 与B 成θ角时,F=qvB sinθ。

2.洛伦兹力方向的判定在用左手定则时,四指必须指电流方向(不是速度方向),即正电荷定向移动的方向;对负电荷,四指应指负电荷定向移动方向的反方向。

3.洛伦兹力大小的计算带电粒子在匀强磁场中仅受洛伦兹力而做匀速圆周运动时,洛伦兹力充当向心力,由此可以推导出该圆周运动的半径公式和周期公式: Bqm T Bq mv r π2,==4.带电粒子在匀强磁场中的偏转⑴穿过矩形磁场区。

一定要先画好辅助线(半径、速度及延长线)。

偏转角由sin θ=L /R 求出。

侧移由R 2=L 2-(R-y )2解出。

经历时间由Bqm t θ=得出。

注意,这里射出速度的反向延长线与初速度延长线的交点不再是宽度线段的中点,这点与带电粒子在匀强电场中的偏转结论不同!⑵穿过圆形磁场区。

画好辅助线(半径、速度、轨迹圆的圆心、连心线)。

偏角可由R O /R r =2tanθ求出。

经历时间由Bqm t θ=得出。

注意:由对称性,射出线的反向延长线必过磁场圆的圆心。

例题分析例1:磁流体发电机原理图如右。

等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。

该发电机哪个极板为正极两板间最大电压为多少解:由左手定则,正、负离子受的洛伦兹力分别向上、向下。

所以上极板为正。

正、负极板间会产生电场。

当刚进入的正负离子受的洛伦兹力与电场力等值反向时,达到最大电压:U=Bdv 。

当外电路断开时,这也就是电动势E 。

当外电路接通时,极板上的电荷量减小,板间场强减小,洛伦兹力将大于电场力,进入的正负离子又将发生偏转。

这时电动势仍是E=Bdv ,但路端电压将小于Bdv 。

在定性分析时特别需要注意的是:⑴正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反。

⑵外电路接通时,电路中有电流,洛伦兹力大于电场力,两板间电压将小于Bdv ,但电动势不变(和所有电源一样,电动势是电源本身的性质。

)⑶注意在带电粒子偏转聚集在极板上以后新产生的电场的分析。

在外电路断开时最终将达到平衡态。

例2:半导体靠自由电子(带负电)和空穴(相当于带正电)导电,分为p 型和n 型两种。

p 型半导体中空穴为多数载流子;n 型半导体中自由电子为多数载流子。

用以下实验可以判定一块半导体材料是p 型还是n 型:将材料放在匀强磁场中,通以图示方向的电流I ,用电压表比较上下两个表面的电势高低,若上极板电势高,就是p 型半导体;若下极板电势高,就是n 型半导体。

试分析原因。

解:分别判定空穴和自由电子所受的洛伦兹力的方向,由于四指指电流方向,都向右,所以洛伦兹力方向都向上,它们都将向上偏转。

p 型半导体中空穴多,上极板的电势高;n 型半导体中自由电子多,上极板电势低。

注意:当电流方向相同时,正、负离子在同一个磁场中的所受的洛伦兹力方向相同,所以偏转方向相同。

例3:如图直线MN 上方有磁感应强度为B 的匀强磁场。

正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远射出的时间差是多少解:正负电子的半径和周期是相同的。

只是偏转方向相反。

先确定圆心,画出半径,由对称性知:射入、射出点和圆心恰好组成正三角形。

所以两个射出点相距2r ,由图还看出经历时间相差2T /3。

答案为射出点相距Bemv s 2=,时间差为Bqmt 34π=∆。

关键是找圆心、找半径和用对称。

例4:一个质量为m 电荷量为q 的带电粒子从x 轴上的P (a ,0)点以速度v ,沿与x 正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y 轴射出第一象限。

求匀强磁场的磁感应强度B 和射出点的坐标。

解:由射入、射出点的半径可找到圆心O /,并得出半径为aqmv B Bq mv a r 23,32===得;射出点坐标为(0,a 3)。

MNx四、带电粒子在混合场中的运动知识要点1.速度选择器正交的匀强磁场和匀强电场组成速度选择器。

带电粒子必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。

否则将发生偏转。

这个速度的大小可以由洛伦兹力和电场力的平衡得出:qvB=Eq ,BE v =。

在本图中,速度方向必须向右。

⑴这个结论与离子带何种电荷、电荷多少都无关。

⑵若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。

相关文档
最新文档