课时分层作业25 指数函数的概念、图象与性质
指数函数的图像和性质+课件

则 f(x1)-f(x2)=a- 2x1 1 -a+ 2x2 1 =(2x1 1)(2x2 1).
因为 x1<x2,所以 2 x1 -2 x2 <0,又(1+2 x1 )(1+2 x2 )>0.
所以 f(x1)-f(x2)<0,即 f(x1)<f(x2).
所以不论 a 为何实数,f(x)在(-∞,+∞)上为增函数.
即2-2x--x 1+m=-2x2-x 1-m 恒成立.
2m=-2-2x--x 1-2x2-x 1=-1-1 2x-2x2-x 1=12-x-21x=-1,解得:m=
-1,∴存在 2
m=-12,使得
f(x)为奇函数.
【方法归纳】 (1)求解含参数的由指数函数复合而成的奇、偶函数中的参数问题, 可利用奇、偶函数的定义,根据 f(-x)=-f(x)或 f(-x)=f(x),结合 指数运算性质建立方程求参数; (2)若奇函数在原点处有定义,则可利用 f(0)=0,建立方程求参数.
还需要画出更多的具体指数函数的图象进行观察.用同样的方 法,在同一直角坐标系内画出函数 y (1)x 的图象,并与函数y
2 =2x的图象进行比较,它们有什么关系?能否利用函数y=2x的 图象,画出函数 y (1)x 的图象?
2
新知探究
因为 y (1)x 2x,点(x,y)与点(-x,y)关于y轴对称,所以函数y=2x
针对练习
1 x2-2
跟踪训练 1 (1)解不等式 3
≤3.
(2)已知(a2+2a+3)x>(a2+2a+3)1-x,求 x 的取值范围.
1
解析:(1)
3
=3 x2-2
2-x2
≤3,∵y=3x 是 R
上的增1,∴原不等式的解集是{x|x≥1 或 x≤-1}.
指数函数的概念说课课件

指数函数的概念说课课件
什么是指数函数?
指数函数是一种特殊的代数函数,可以用以下形式表示:
f(x) = a * b^x,其中a 和b 是常数,b 称为底数,x 是自变量。
指数函数的图像通常表现出随着自变量x 增加或减少而呈指数增长或衰减的趋势。
指数函数的性质
1. 底数大于1 时,函数递增;底数在0 和1 之间时,函数递减。
这是指数函数的基本特点。
2. 当x = 0 时,指数函数的值为1。
这是因为任何数的0 次方都等于1。
3. 不同底数的指数函数在相同自变量下的图像形状不同。
例如,当底数大于1 时,图像呈现上升的曲线;当底数在0 和 1 之间时,图像则呈现下降的曲线。
还有许多其他性质,可以通过实际例子和计算来展示。
指数函数的应用
1. 在经济学中,指数函数常用于描述货币的贬值和物价的上涨。
通常情况下,货币的购买力会随着时间的推移而下降。
2. 在生物学和环境科学中,指数函数可以用于描述种群的增长和衰退。
种群的数量通常会受到各种因素的影响,指数函数提供了一种模型来预测种群变化。
3. 在物理学中,指数函数可以用于描述放射性衰变和电路中的电荷放电。
这些过程都与时间的指数关系紧密相关。
指数函数在各个领域都有广泛的应用,并且为我们理解和解决实际问题提供了便利。
总结
指数函数是一种特殊的代数函数,具有许多独特的性质和广泛的应用。
通过深入学习和理解指数函数的概念,我们可以拓宽数学思维、应用数学知识解决实际问题,提高数学素养。
指数函数及其性质-(公开课)

函数的奇偶性
总结词
指数函数并非总是奇函数或偶函数,这取决于底数 $a$ 的值 。
详细描述
如果 $a > 0$ 且 $a neq 1$,那么 $f(x) = a^x$ 是非奇非偶函 数。这是因为对于所有 $x in mathbb{R}$,都有 $f(-x) = a^{-x} = frac{1}{a^x} neq a^x = f(x)$,同时也不满足 $f(-x) = -f(x)$。
风险评估
指数函数可以用于风险评估,例如计算投资组合的贝塔系数,衡量 投资组合相对于市场的波动性。
在科学研究中的应用
放射性衰变
01
放射性衰变是指放射性物质释放出射线并转化为另一种物质的
过程,指数函数可以用来描述放射性衰变的规律。
种群增长模型
02
在生态学中,指数函数可以用来描述种群数量的增长趋势,例
如细菌繁殖等。
谢谢
THANKS
变化。
网络流量预测
网络流量的变化趋势可以使用指数 函数进行建模和预测。
软件性能测试
在软件性能测试中,指数函数可以 用于描述软件响应时间随用户数量 增加的变化规律。
04 指数函数与其他数学知识的联系
CHAPTER
与对数函数的关系
对数函数是指数函数的反函数,即如 果y=a^x,那么x=log_a y。
03 指数函数的应用
CHAPTER
在金融领域的应用
复利计算
指数函数在金融领域中常 用于计算复利,描述本金 及其产生的利息之和随时 间变化的规律。
股票价格模型
股票价格通常使用指数函 数进行建模,以描述其随 时间增长的趋势。
保险与养老金计算
保险费和养老金的累积也 常使用指数函数进行计算。
初中数学知识归纳指数函数的性质和像

初中数学知识归纳指数函数的性质和像初中数学知识归纳之指数函数的性质和像一、指数函数的定义和基本性质指数函数是数学中一类特殊的函数,其定义为f(x) = a^x,其中a为正实数且不等于1。
指数函数的主要性质如下:1. 定义域:指数函数的定义域为全体实数。
2. 值域:当a>1时,指数函数的值域为(0, +∞),即正实数集;当0<a<1时,指数函数的值域为(0, 1),即开区间(0, 1)的正实数集。
3. 单调性:当a>1时,指数函数是递增函数;当0<a<1时,指数函数是递减函数。
4. 与坐标轴的关系:当a>1时,指数函数与x轴交于(0, 1)点且渐近于x轴;当0<a<1时,指数函数在x轴的右侧趋近于0。
5. 奇偶性:指数函数都是奇函数,即f(-x) = 1/f(x)。
6. 连续性:指数函数在其定义域内是连续的。
二、指数函数的性质1. 初值性:当x=0时,指数函数f(x) = a^x的值为1,即f(0) = 1。
2. 指数函数的值比较:当a>1时,若0<x<y,则有a^x<a^y;当0<a<1时,若0<x<y,则有a^x>a^y。
3. 指数函数的乘法性质:a^x * a^y = a^(x+y),即指数函数的底数相同时,幂的乘法等于底数不变,指数相加。
4. 指数函数的除法性质:a^x / a^y = a^(x-y),即指数函数的底数相同时,幂的除法等于底数不变,指数相减。
5. 指数函数的幂次性质:(a^x)^y = a^(xy),即指数函数的指数的乘方等于底数不变,指数相乘。
6. 指数函数的根指性质:(a^x)^(1/x) = a,即指数函数的幂次根指等于底数不变。
三、指数函数的图像指数函数的图像与底数a的大小有关:1. 当a>1时,指数函数的图像呈现递增的指数曲线,随着x的增加,函数值迅速增加。
指数函数的图象及性质 完整课件PPT

【拓展提升】 1.处理指数函数图象问题的两个要点 (1)牢记指数函数y=ax的图象恒过定点(0,1),分布在第一和 第二象限. (2)明确影响指数函数图象特征的关键是底数.
2.底数变化对指数函数图象形状的影响 指数函数y=ax的图象如图所示,由指数函数y=ax的图象与 直线x=1相交于点(1,a)可知: (1)在y轴右侧,图象从上到下相应的底数由大变小; (2)在y轴左侧,图象从下到上相应的底数由大变小. 如图中的底数的大小关系为 0<a4<a3<1<a2<a1.
22
答案:3 或 1
22
【类题试解】已知a>0,且a≠1,若函数f(x)=2ax-4在区间
[-1,2]上的最大值为10,则a=______.
【解析】(1)若a>1,则函数y=ax在区间[-1,2]上是递增的,
当x=2时,f(x)取得最大值f(2)=2a2-4=10,
即a2=7,又a>1,∴a= 7.
【解析】>1时,函数y=ax的图象过点(0,1),分布在第一、 二象限,且从左到右是上升的. 直线y=x+a过第一、二、三象 限,与y轴的交点为(0,a),在点(0,1)的上方. A,B,C,D四 项均不符合此要求.当0<a<1时,函数y=ax的图象过点 (0,1),分布在第一、二象限,且从左到右是下降的. 直线 y=x+a过第一、二、三象限, 与y轴的交点为(0,a),在点(0,1) 和点(0,0)项符合此要求.
=af(x)定义域、值域的求法 (1)定义域 函数y=af(x)的定义域与y=f(x)的定义域相同. (2)值域 ①换元,令t=f(x); ②求t=f(x)的定义域x∈D; ③求t=f(x)的值域t∈M; ④利用y=at的单调性求y=at,t∈M的值域.
初中数学知识归纳指数函数的性质与像

初中数学知识归纳指数函数的性质与像指数函数是初中数学中一个重要的概念和知识点,它在数学和现实生活中有着广泛的应用。
本文将对指数函数的性质和像进行归纳总结,帮助初中学生更好地理解和掌握这一知识。
一、指数函数的定义和表示方式指数函数是以底数为常数且指数为自变量的函数,一般表示为f(x)= a^x,其中a为底数,x为指数。
指数函数的定义域为全体实数,值域为正实数。
二、指数函数的图像特点1. 当底数a大于1时,指数函数呈现增长的趋势;当0<a<1时,指数函数呈现递减的趋势。
2. 当指数x为正整数时,指数函数的值随着x的增大而增大;当指数x为负整数时,指数函数的值随着x的减小而增大。
3. 当指数x为零时,指数函数的值始终为1。
4. 指数函数的图像经过点(0, 1),且对称于y轴。
三、指数函数的性质1. 指数函数的定义域为全体实数,值域为正实数。
2. 指数函数的性质与底数有关:a)当0<a<1时,指数函数为递减函数;b)当a=1时,指数函数恒为1;c)当a>1时,指数函数为递增函数。
3. 指数函数的性质与指数有关:a)当指数为正数时,函数为增长函数;b)当指数为负数时,函数为递减函数;c)当指数为零时,函数恒为1。
4. 指数函数具有指数运算的性质:a)指数函数的乘方规则:a^m * a^n = a^(m+n);b)指数函数的除法规则:a^m / a^n = a^(m-n);c)指数函数的幂指法则:(a^m)^n = a^(m*n)。
四、指数函数的像指数函数的像指的是函数的值域,即所有可能的函数输出值的集合。
由于指数函数的定义域为全体实数,值域为正实数,因此其像为全体正实数。
五、指数函数的应用指数函数在现实生活中有广泛的应用。
例如,金融领域中的复利计算、物质的衰变过程的描述、人口增长的预测等都可以使用指数函数进行建模和计算。
总结:指数函数是以底数为常数且指数为自变量的函数,其图像特点、性质和像都与底数和指数相关。
新课程人高中数学必修件指数函数的概念
幂函数的一般形式为$y=x^a$($a$为实数),其定义域和值域都取决于$a$的取值。幂函数在描述某些自 然现象和解决实际问题时具有重要的作用。
三角函数
三角函数以角度(通常用弧度)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数 。常见的三角函数包括正弦函数、余弦函数和正切函数等。三角函数在几何、三角学、物理学等领域都有广 泛的应用。
新课程人高中数学 必修件指数函数的 概念
汇报人:XX 20XX-02-03
contents
目录
• 指数函数基本概念及性质 • 指数函数运算规则与技巧 • 指数函数在实际问题中应用 • 指数函数与对数函数关系探讨 • 指数函数学习误区及解题策略 • 总结回顾与拓展延伸
01
指数函数基本概念及 性质
指数函数定义与表示方法
应用
在解决一些实际问题时,可以利用幂 的乘方法则进行化简和计算。
积的乘方与商的乘方运算
积的乘方
等于各因式乘方的积,即$(ab)^n = a^n times b^n$。
商的乘方
等于分子、分母分别乘方,即$(frac{a}{b})^n = frac{a^n}{b^n}$。
复杂指数式化简技巧
利用指数运算法则进行化简
指数函数的图像与 性质
$y=a^x$($a>0$,且$a neq 1$)叫做指数函数,其中$x$ 是自变量,函数的定义域是 $R$。
当$a>1$时,函数图像在第一 象限内单调递增,且随着$x$ 的增大,$y$值增长越来越快 ;当$0<a<1$时,函数图像在 第二象限内单调递减,且随着 $x$的增大,$y$值减小越来越 慢。
期的物理量。
放射性物质衰变规律探究
1 第1课时 指数函数的概念、图象及性质
提示:①如果 a=0,当 x>0 时,ax 恒等于 0,没有研究的必要;当 x≤0 时, ax 无意义.
②如果 a<0,例如 y=(-4)x,对于当 x=12,14,…,该函数无意义. ③如果 a=1,则 y=1x 是一个常量,没有研究的价值. 为了避免上述各种情况,所以规定 a>0,且 a≠1.
上一页
19
2.如果指数函数 y=f(x)的图象经过点-2,14,那么 f(4)·f(2)等于________. 解析:设 y=f(x)=ax(a>0,且 a≠1), 所以 a-2=14, 所以 a=2, 所以 f(4)·f(2)=24×22=64.
答案:64
上一页
返回导航
下一页
第四章 指数函数与对数函数
返回导航
下一页
第四章 指数函数与对数函数
6
(2)指数函数的解析式有什么特征? 提示:①a>0,且 a≠1;②ax 的系数为 1;③自变量 x 的系数为 1.
上一页
返回导航
下一页
第四章 指数函数与对数函数
2.指数函数的图象和性质
a 的范围
a>1
7
0<a<1
图象
性质
定义域 值域
过定点 单调性 奇偶性
上一页
返回导航
下一页
第四章 指数函数与对数函数
4
1.指数函数的概念 一般地,函数 y=__a_x_ (a>0,且 a≠1)叫做指数函数,其中指数 x 是__自__变__量__, 定义域是__R__.
上一页
返回导航
下一页
第四章 指数函数与对数函数
5
■微思考 1 (1)为什么指数函数的底数 a>0,且 a≠1?
上一页
高一数学人必修件时指数函数的图象和性质
01
性质法
利用指数函数的单调性,比较指 数的大小,从而得到不等式的解 集。
02
03
04
图像法
画出指数函数的图像,根据图像 确定不等式的解集。
06
总结回顾与拓展延伸
总结回顾本次课程重点内容
指数函数的概念
形如$y = a^x$($a > 0$,$a neq 1$)的函数称为指数函数。
指数函数的图象
通过描点法或利用函数性质绘制指数 函数的图象,理解图象的形状和变化 趋势。
呈指数衰变的情况。
半衰期公式
T₁/₂ = ln2/λ,其中T₁/₂表示半 衰期,λ表示衰变常数。该公式 用于计算放射性元素的半衰期。
放射性元素衰变链
一种放射性元素衰变后会产生另 一种放射性元素,这种衰变过程 可以形成一个衰变链。在这个链 中,每个元素的衰变都遵循指数
衰变规律。
生物学中细菌繁殖问题
细菌繁殖公式
对数函数的定义域为 正实数,即$x > 0$ 。
指数函数与对数函数值域关系
指数函数的值域为$(0, +infty)$,即其函数值始终大 于0。
对数函数的值域为全体实数, 即$y in R$。
指数函数与对数函数的值域也 不同,但二者之间可以通过取 对数或取指数进行相互转换。
指数函数与对数函数图像关系
高一数学人必修件时指数 函数的图象和性质
汇报人:XX 20XX-01-21
目录
• 指数函数基本概念与性质 • 指数函数图像变换规律 • 指数函数与对数函数关系 • 指数函数在生活中的应用举例 • 求解指数方程和不等式方法技巧 • 总结回顾与拓展延伸
01
指数函数基本概念与性质
指数函数定义及表达式
高一数学指数函数的概念、图象与性质(解析版)
专题32 指数函数的概念、图象与性质1.指数函数的定义一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R. 温馨提示:指数函数解析式的3个特征: (1)底数a 为大于0且不等于1的常数. (2)自变量x 的位置在指数上,且x 的系数是1. (3)a x 的系数是1.2.指数函数的图象和性质a 的范围a >10<a <1图象性质定义域 R 值域(0,+∞)过定点 (0,1),即当x =0时,y =1单调性 在R 上是增函数在R 上是减函数奇偶性 非奇非偶函数对称性函数y =a x 与y =a -x 的图象关于y 轴对称(1)底数的大小决定了图象相对位置的高低:不论是a >1,还是0<a <1,在第一象限内底数越大,函数图象越靠近y 轴.当a >b >1时,①若x >0,则a x >b x >1;②若x <0,则1>b x >a x >0. 当1>a >b >0时,①若x >0,则1>a x >b x >0;②若x <0,则b x >a x >1. (2)指数函数的图象都经过点(0,1),且图象都在x 轴上方.(3)当a >1时,x →-∞,y →0;当0<a <1时,x →+∞,y →0.(其中“x →+∞”的意义是“x 趋近于正无穷大”)题型一 指数函数的概念1.下列各函数中,是指数函数的是( )A .y =(-3)xB .y =-3xC . y =3x -1 D .y =⎝⎛⎭⎫13x [解析]由指数函数的定义知a >0且a ≠1,故选D. 2.下列函数一定是指数函数的是( )A .y =2x +1 B .y =x 3 C .y =3·2xD .y =3-x[解析]由指数函数的定义可知D 正确. 3.下列函数中,指数函数的个数为( )①y =⎝⎛⎭⎫12x -1;②y =a x (a >0,且a ≠1);③y =1x;④y =⎝⎛⎭⎫122x -1. A .0个 B .1个 C .3个D .4个[解析]由指数函数的定义可判定,只有②正确.[答案] B 4.下列函数:①y =2·3x ;②y =3x +1;③y =3x ;④y =x 3. 其中,指数函数的个数是( ) A .0 B .1 C .2D .3[解析]形如“y =a x (a >0,且a ≠1)”的函数为指数函数,只有③符合,选B. 5.下列函数中,是指数函数的个数是( )①y =(-8)x;②y =2x 2-1;③y =a x ;④y =2·3x .A .1B .2C .3D .0[解析] (1)①中底数-8<0,所以不是指数函数;②中指数不是自变量x ,而是x 的函数,所以不是指数函数; ③中底数a ,只有规定a >0且a ≠1时,才是指数函数; ④中3x 前的系数是2,而不是1,所以不是指数函数,故选D. 6.指出下列哪些是指数函数.(1)y =4x ;(2)y =x 4;(3)y =-4x ;(4)y =(-4)x ;(5)y =πx ;(6)y =4x 2;(7)y =x x ;(8)y =(2a -1)x ⎝⎛⎭⎫a >12,且a ≠1. [解析] (2)是四次函数;(3)是-1与4x 的乘积;(4)中底数-4<0;(6)是二次函数;(7)中底数x 不是常数. 它们都不符合指数函数的定义,故不是指数函数.综上可知,(1)(5)(8)是指数函数. 7.已知函数f (x )=(2a -1)x 是指数函数,则实数a 的取值范围是________.[解析]由题意可知⎩⎪⎨⎪⎧2a -1>0,2a -1≠1,解得a >12,且a ≠1,所以实数a 的取值范围是⎝⎛⎭⎫12,1∪(1,+∞). 8.函数y =(a -2)2a x 是指数函数,则( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠1[解析]由指数函数的概念可知,⎩⎪⎨⎪⎧(a -2)2=1,a >0,a ≠1,得a =3.9.函数f (x )=(m 2-m +1)a x (a >0,且a ≠1)是指数函数,则m =________. [解析]∵函数f (x )=(m 2-m +1)a x 是指数函数,∴m 2-m +1=1,解得m =0或1. 10.若函数y =(a 2-4a +4)a x 是指数函数,则a 的值是( )A .4B .1或3C .3D .1[解析]由题意得⎩⎪⎨⎪⎧a >0,a ≠1,a 2-4a +4=1,解得a =3,故选C.11.若函数f (x )=(a 2-2a +2)(a +1)x 是指数函数,则a =________. [解析]由指数函数的定义得⎩⎪⎨⎪⎧a 2-2a +2=1,a +1>0,a +1≠1,解得a =1.12.指数函数f (x )=a x 的图象经过点(2,4),则f (-3)的值是________. [解析]由题意知4=a 2,所以a =2,因此f (x )=2x ,故f (-3)=2-3=18.13.已知函数f (x )=a x +b (a >0,且a ≠1),经过点(-1,5),(0,4),则f (-2)的值为________.[解析]由已知得⎩⎪⎨⎪⎧a -1+b =5,a 0+b =4,解得⎩⎪⎨⎪⎧a =12,b =3,所以f (x )=⎝⎛⎭⎫12x+3,所以f (-2)=⎝⎛⎭⎫12-2+3=4+3=7. 14.已知函数f (x )为指数函数,且f ⎝⎛⎭⎫-32=39,则f (-2)=________. [解析]设f (x )=a x (a >0且a ≠1),由f ⎝⎛⎭⎫-32=39得a -32=39,所以a =3,又f (-2)=a -2, 所以f (-2)=3-2=19.15.若函数f (x )是指数函数,且f (2)=9,则f (-2)=________,f (1)=________. [解析]设f (x )=a x (a >0,且a ≠1),∵f (2)=9,∴a 2=9,a =3,即f (x )=3x . ∴f (-2)=3-2=19,f (1)=3.16.若点(a,27)在函数y =(3)x 的图象上,则a 的值为( )A. 6 B .1 C .2 2D .0[解析]选A 点(a,27)在函数y =(3)x 的图象上,∴27=(3)a , 即33=3a 2,∴a2=3,解得a =6,∴a = 6.故选A.17.已知函数f (x )=⎝⎛⎭⎫12ax ,a 为常数,且函数的图象过点(-1,2),则a =________,若g (x )=4-x-2, 且g (x )=f (x ),则x =________.[解析]因为函数的图象过点(-1,2),所以⎝⎛⎭⎫12-a=2,所以a =1,所以f (x )=⎝⎛⎭⎫12x , g (x )=f (x )可变形为4-x -2-x -2=0,解得2-x =2,所以x =-1. 18.已知f (x )=2x +12x ,若f (a )=5,则f (2a )=________.[解析]因为f (x )=2x +12x ,f (a )=5,则f (a )=2a +12a =5.所以f (2a )=22a +122a =(2a )2+⎝⎛⎭⎫12a 2=⎝⎛⎭⎫2a +12a 2-2=23. 19.若f (x )满足对任意的实数a ,b 都有f (a +b )=f (a )·f (b )且f (1)=2,则f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2020)f (2019)=( )A .1010B .2020C .2019D .1009[解析]不妨设f (x )=2x ,则f (2)f (1)=f (4)f (3)=…=f (2020)f (2019)=2,所以原式=1010×2=2020.题型二 指数函数的图象及其应用1.y =⎝⎛⎭⎫34x的图象可能是( )[解析]0<34<1且过点(0,1),故选C.2.函数y =3-x 的图象是( )A B C D[解析]∵y =3-x=⎝⎛⎭⎫13x,∴B 选项正确.3.函数y =2-|x |的大致图象是( )[解析]y =2-|x |=⎩⎪⎨⎪⎧2-x ,x ≥0.2x ,x <0,画出图象,可知选C. 4.函数y =a -|x |(0<a <1)的图象是( )A B C D[解析]y =a-|x |=⎝⎛⎭⎫1a |x|,易知函数为偶函数,∵0<a <1,∴1a>1,故当x >0时,函数为增函数,当x <0时,函数为减函数,当x =0时,函数有最小值,最小值为1,且指数函数为凹函数,故选A. 5.函数y =-2-x 的图象一定过第________象限.[解析]y =-2-x =-⎝⎛⎭⎫12x 与y =⎝⎛⎭⎫12x 关于x 轴对称,一定过第三、四象限. 6.函数f (x )=a x-b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0[解析]从曲线的变化趋势,可以得到函数f (x )为减函数,从而有0<a <1;从曲线位置看, 是由函数y =a x (0<a <1)的图象向左平移|-b |个单位长度得到,所以-b >0,即b <0. 7.已知0<m <n <1,则指数函数①y =m x ,②y =n x 的图象为( )[解析]由于0<m <n <1,所以y =m x 与y =n x 都是减函数,故排除A 、B ,作直线x =1与两个曲线相交, 交点在下面的是函数y =m x 的图象,故选C.8.若a >1,-1<b <0,则函数y =a x +b 的图象一定在( )A .第一、二、三象限B .第一、三、四象限C .第二、三、四象限D .第一、二、四象限[解析]A,∵a >1,且-1<b <0,故其图象如图所示.]9.若函数y =a x +b -1(a >0,且a ≠1)的图象经过第二、三、四象限,则一定有( )A .0<a <1,且b >0B .a >1,且b >0C .0<a <1,且b <0D .a >1,且b <0[解析]函数y =a x +b -1(a >0,且a ≠1)的图象是由函数y =a x 的图象经过向上或向下平移而得到的,因其图象不经过第一象限,所以a ∈(0,1).若经过第二、三、四象限,则需将函数y =a x (0<a <1)的图象向下平移至少大于1个单位长度,即b -1<-1⇒b <0.故选C.10.若函数y =a x +m -1(a >0)的图象经过第一、第三和第四象限,则( )A .a >1B .a >1,且m <0C .0<a <1,且m >0D .0<a <1[解析]选B,y =a x (a >0)的图象在第一、二象限内,欲使y =a x +m -1的图象经过第一、三、四象限,必须将y =a x 向下移动.当0<a <1时,图象向下移动,只能经过第一、二、四象限或第二、三、四象限,故只有当a >1时,图象向下移动才可能经过第一、三、四象限.当a >1时,图象向下移动不超过一个单位时,图象经过第一、二、三象限,向下移动一个单位时,图象恰好经过原点和第一、三象限,欲使图象经过第一、三、四象限,则必须向下平移超过一个单位,故m -1<-1,所以m <0,故选B. 11.函数f (x )=a x 与g (x )=-x +a 的图象大致是( )[解析]当a >1时,函数f (x )=a x 单调递增,当x =0时,g (0)=a >1,此时两函数的图象大致为选项A. 12.二次函数y =ax 2+bx 与指数函数y =⎝⎛⎭⎫b a x的图象可能是( )[解析]二次函数y =a ⎝⎛⎭⎫x +b 2a 2-b 24a ,其图象的顶点坐标为⎝⎛⎭⎫-b 2a ,-b 24a ,由指数函数的图象知0<ba<1, 所以-12<-b 2a <0,再观察四个选项,只有A 中的抛物线的顶点的横坐标在-12和0之间.13.已知函数f(x)=(x-a)(x-b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是()[解析]由函数f(x)=(x-a)(x-b)(其中a>b)的图象可知0<a<1,b<-1,所以函数g(x)=a x+b是减函数,排除选项C、D;又因为函数图象过点(0,1+b)(1+b<0),故选A.14.如图是指数函数①y=a x,②y=b x,③y=c x,④y=d x的图象,则a,b,c,d与1的大小关系为()A.a<b<1<c<d B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c[解析](1)解法一:由图象可知③④的底数必大于1,①②的底数必小于1.作直线x=1,在第一象限内直线x=1与各曲线的交点的纵坐标即各指数函数的底数,则1<d<c,b<a<1,从而可知a,b,c,d与1的大小关系为b<a<1<d<c.解法二:根据图象可以先分两类:③④的底数大于1,①②的底数小于1,再由③④比较c,d的大小,由①②比较a,b的大小.当指数函数的底数大于1时,图象上升,且底数越大时图象向上越靠近y轴;当底数大于0小于1时,图象下降,底数越小,图象向右越靠近x轴.15.方程|2x-1|=a有唯一实数解,则a的取值范围是________.[解析]作出y=|2x-1|的图象,如图,要使直线y=a与图象的交点只有一个,∴a≥1或a=0.16.函数y=a x-3+3(a>0,且a≠1)的图象过定点________.[解析]因为指数函数y=a x(a>0,且a≠1)的图象过定点(0,1),所以在函数y=a x-3+3中,令x-3=0,得x=3,此时y=1+3=4,即函数y=a x-3+3的图象过定点(3,4).17.函数y=2a x+3+2(a>0,且a≠1)的图象过定点________.[解析]令x+3=0得x=-3,此时y=2a0+2=2+2=4.即函数y=2a x+3+2(a>0,且a≠1)的图象过定点(-3,4).18.当a>0,且a≠1时,函数f(x)=a x+1-1的图象一定过点()A.(0,1) B.(0,-1)C .(-1,0)D .(1,0)[解析] 当x =-1时,显然f (x )=0,因此图象必过点(-1,0).19.已知函数y =2a x -1+1(a >0且a ≠1)恒过定点A (m ,n ),则m +n =( )A .1B .3C .4D .2[解析]选C,由题意知,当x =1时,y =3,故A (1,3),m +n =4. 20.函数y =a 2x +1+1(a >0,且a ≠1)的图象过定点________. [解析]令2x +1=0得x =-12,y =2,所以函数图象恒过点⎝⎛⎭⎫-12,2. 21.若函数y =2-|x |-m 的图象与x 轴有交点,则( )A .-1≤m <0B .0≤m ≤1C .0<m ≤1D .m ≥0[解析]易知y =2-|x |-m =⎝⎛⎭⎫12|x |-m .若函数y =2-|x |-m 的图象与x 轴有交点,则方程⎝⎛⎭⎫12|x |-m =0有解, 即m =⎝⎛⎭⎫12|x |有解.∵0<⎝⎛⎭⎫12|x |≤1,∴0<m ≤1. 22.已知f (x )=2x 的图象,指出下列函数的图象是由y =f (x )的图象通过怎样的变化得到:(1)y =2x +1;(2)y =2x -1;(3)y =2x +1;(4)y =2-x ;(5)y =2|x |. [解析] (1)y =2x +1的图象是由y =2x 的图象向左平移1个单位得到.(2)y =2x-1的图象是由y =2x 的图象向右平移1个单位得到.(3)y =2x +1的图象是由y =2x 的图象向上平移1个单位得到.(4)∵y =2-x 与y =2x 的图象关于y 轴对称,∴作y =2x 的图象关于y 轴的对称图形便可得到y =2-x的图象.(5)∵y =2|x |为偶函数,故其图象关于y 轴对称,故先作出当x ≥0时,y =2x 的图象,再作关于y 轴的对称图形,即可得到y =2|x |的图象.23.已知函数f (x )=a x +b (a >0,且a ≠1).(1)若f (x )的图象如图①所示,求a ,b 的值; (2)若f (x )的图象如图②所示,求a ,b 的取值范围;(3)在(1)中,若|f (x )|=m 有且仅有一个实数根,求m 的取值范围.[解析] (1)f (x )的图象过点(2,0),(0,-2),所以⎩⎪⎨⎪⎧a 2+b =0,a 0+b =-2,又因为a >0,且a ≠1,所以a =3,b =-3.(2)f (x )单调递减,所以0<a <1,又f (0)<0.即a 0+b <0,所以b <-1. 故a 的取值范围为(0,1),b 的取值范围为(-∞,-1).(3)画出|f (x )|=|(3)x -3|的图象如图所示,要使|f (x )|=m 有且仅有一个实数根, 则m =0或m ≥3.故m 的取值范围为[3,+∞)∪{0}.题型三 指数函数的定义域与值域1.求下列函数的定义域和值域:(1)y =1-3x ;(2)y =21x -4 ; (3)y =⎝⎛⎭⎫23-|x | ; (4)y =⎝⎛⎭⎫12x 2-2x -3;(5)y =4x +2x +1+2. [解析] (1)要使函数式有意义,则1-3x ≥0,即3x ≤1=30,因为函数y =3x 在R 上是增函数,所以x ≤0, 故函数y =1-3x 的定义域为(-∞,0].因为x ≤0,所以0<3x ≤1,所以0≤1-3x <1, 所以1-3x ∈[0,1),即函数y =1-3x 的值域为[0,1). (2)要使函数式有意义,则x -4≠0,解得x ≠4. 所以函数y =21x -4的定义域为{x |x ≠4}.因为1x -4≠0,所以21x -4 ≠1,即函数y =21x -4 的值域为{y |y >0,且y ≠1}.(3)要使函数式有意义,则-|x |≥0,解得x =0.所以函数y =⎝⎛⎭⎫23-|x |的定义域为{x |x =0}.因为x =0,所以⎝⎛⎭⎫23-|x | =⎝⎛⎭⎫230=1,即函数y =⎝⎛⎭⎫23-|x |的值域为{y |y =1}. (4)定义域为R.∵x 2-2x -3=(x -1)2-4≥-4,∴⎝⎛⎭⎫12x 2-2x -3≤⎝⎛⎭⎫12-4=16. 又∵⎝⎛⎭⎫12x 2-2x -3>0,∴函数y =⎝⎛⎭⎫12x 2-2x -3的值域为(0,16]. (5)因为对于任意的x ∈R ,函数y =4x +2x +1+2都有意义,所以函数y =4x +2x +1+2的定义域为R. 因为2x >0,所以4x +2x +1+2=(2x )2+2×2x +2=(2x +1)2+1>1+1=2, 即函数y =4x +2x +1+2的值域为(2,+∞). 2.(1)求函数y =⎝⎛⎭⎫132x -的定义域与值域;(2)求函数y =⎝⎛⎭⎫14x -1-4·⎝⎛⎭⎫12x +2,x ∈[0,2]的最大值和最小值及相应的x 的值. [解析] (1)由x -2≥0,得x ≥2,所以定义域为{x |x ≥2}.当x ≥2时,x -2≥0, 又因为0<13<1,所以y =⎝⎛⎭⎫13x -2的值域为{y |0<y ≤1}.(2)∵y =⎝⎛⎭⎫14x -1-4·⎝⎛⎭⎫12x +2,∴y =4·⎝⎛⎭⎫14x -4·⎝⎛⎭⎫12x +2.令m =⎝⎛⎭⎫12x ,则⎝⎛⎭⎫14x =m 2. 由0≤x ≤2,知14≤m ≤1.∴f (m )=4m 2-4m +2=4⎝⎛⎭⎫m -122+1. ∴当m =12,即当x =1时,f (m )有最小值1;当m =1,即x =0时,f (m )有最大值2.故函数的最大值是2,此时x =0,函数的最小值为1,此时x =1. 3.函数y =2x -1的定义域是( )A .(-∞,0)B .(-∞,0]C .[0,+∞)D .(0,+∞)[解析]由2x -1≥0,得2x ≥20,∴x ≥0.[答案] C 4.函数y =1-⎝⎛⎭⎫12x的定义域是________.[解析]由1-⎝⎛⎭⎫12x≥0得⎝⎛⎭⎫12x ≤1=⎝⎛⎭⎫120,∴x ≥0,∴函数y =1-⎝⎛⎭⎫12x的定义域为[0,+∞).5.若函数y =a x -1的定义域是(-∞,0],则a 的取值范围为( )A .a >0B .a <1C .0<a <1D .a ≠1[解析]由a x -1≥0,得a x ≥a 0.∵函数的定义域为(-∞,0],∴0<a <1.6.若函数f (x )=a x -a 的定义域是[1,+∞),则a 的取值范围是( ) A .[0,1)∪(1,+∞) B .(1,+∞) C .(0,1)D .(2,+∞)[解析]∵a x -a ≥0,∴a x ≥a ,∴当a >1时,x ≥1.故函数定义域为[1,+∞)时,a >1. 7.y =2x ,x ∈[1,+∞)的值域是( )A .[1,+∞)B .[2,+∞)C .[0,+∞)D .(0,+∞)[解析]y =2x 在R 上是增函数,且21=2,故选B. 8.函数y =16-4x 的值域是( )A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)[解析]要使函数有意义,须满足16-4x ≥0.又因为4x >0,所以0≤16-4x <16, 即函数y =16-4x 的值域为[0,4).9.函数y =⎝⎛⎭⎫12x(x ≥8)的值域是( )A .R B.⎝⎛⎦⎤0,1256 C.⎝⎛⎦⎤-∞,1256 D.⎣⎡⎭⎫1256,+∞[解析]因为y =⎝⎛⎭⎫12x 在[8,+∞)上单调递减,所以0<⎝⎛⎭⎫12x≤⎝⎛⎭⎫128=1256. 10.函数y =1-2x ,x ∈[0,1]的值域是( )A .[0,1]B .[-1,0] C.⎣⎡⎦⎤0,12 D.⎣⎡⎦⎤-12,0 [解析]∵0≤x ≤1,∴1≤2x ≤2,∴-1≤1-2x ≤0,选B.11.已知函数y =⎝⎛⎭⎫13x 在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.[解析]∵y =⎝⎛⎭⎫13x 在R 上为减函数,∴m =⎝⎛⎭⎫13-1=3,n =⎝⎛⎭⎫13-2=9,故m +n =12. 12.函数y =⎝⎛⎭⎫1222x x -+的值域是________. [解析]设t =-x 2+2x =-(x 2-2x )=-(x -1)2+1≤1,∴t ≤1.∵⎝⎛⎭⎫12t ≥⎝⎛⎭⎫121=12,∴函数值域为⎣⎡⎭⎫12,+∞. 13.函数y =⎝⎛⎭⎫12x 2-1的值域是________.[解析]∵x 2-1≥-1,∴y =⎝⎛⎭⎫12x 2-1≤⎝⎛⎭⎫12-1=2,又y >0,∴函数值域为(0,2].14.若函数f (x )=⎩⎪⎨⎪⎧2x ,x <0,-2-x ,x >0,则函数f (x )的值域是________. [解析]由x <0,得0<2x <1;由x >0,∴-x <0,0<2-x <1,∴-1<-2-x <0,∴函数f (x )的值域为(-1,0)∪(0,1).15.已知函数f (x )=a x -1(x ≥0)的图象经过点⎝⎛⎭⎫2,12,其中a >0且a ≠1. (1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域.[解析](1)∵f (x )的图象过点⎝⎛⎭⎫2,12,∴a 2-1=12,则a =12. (2)由(1)知,f (x )=⎝⎛⎭⎫12x -1,x ≥0.由x ≥0,得x -1≥-1,于是0<⎝⎛⎭⎫12x -1≤⎝⎛⎭⎫12-1=2, 所以函数y =f (x )(x ≥0)的值域为(0,2].16.若定义运算a ⊙b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b ,则函数f (x )=3x ⊙3-x 的值域是________. [解析]当x >0时,3x >3-x, f (x )=3-x ,f (x )∈(0,1);当x =0时,f (x )=3x =3-x =1; 当x <0时,3x <3-x ,f (x )=3x ,f (x )∈(0,1).综上, f (x )的值域是(0,1].17.函数f (x )=3x 3x +1的值域是________.[解析]数y =f (x )=3x 3x +1,即有3x =-y y -1,由于3x >0,则-y y -1>0,解得0<y <1,值域为(0,1). 18.若函数f (x )=a x -1(a >0,且a ≠1)的定义域和值域都是[0,2],求实数a 的值.[解析]当0<a <1时,函数f (x )=a x -1(a >0,且a ≠1)为减函数,所以⎩⎪⎨⎪⎧ a 0-1=2,a 2-1=0无解. 当a >1时,函数f (x )=a x -1(a >0,且a ≠1)为增函数,所以⎩⎪⎨⎪⎧a 0-1=0,a 2-1=2,解得a = 3. 综上,a 的值为 3.19.已知f (x )=9x -2×3x +4,x ∈[-1,2].(1)设t =3x ,x ∈[-1,2],求t 的最大值与最小值;(2)求f (x )的最大值与最小值.[解析](1)设t =3x ,∵x ∈[-1,2],函数t =3x 在[-1,2]上是增函数,故有13≤t ≤9, 故t 的最大值为9,t 的最小值为13. (2)由f (x )=9x -2×3x +4=t 2-2t +4=(t -1)2+3,可得此二次函数的对称轴为t =1,且13≤t ≤9, 故当t =1时,函数f (x )有最小值为3,当t =9时,函数f (x )有最大值为67.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时分层作业(二十五) 指数函数的概念、
图象与性质
(建议用时:60分钟)
[合格基础练]
一、选择题
1.若函数y =(a 2-4a +4)a x 是指数函数,则a 的值是( ) A .4 B .1或3 C .3
D .1
C
[由题意得⎩⎨⎧
a >0,
a ≠1,
a 2-4a +4=1,
解得a =3,故选C.]
2.函数y =⎝ ⎛⎭⎪⎫
12x
(x ≥8)的值域是( )
A .R B.⎝ ⎛
⎦⎥⎤0,1256 C.⎝ ⎛
⎦
⎥⎤-∞,1256 D.⎣⎢⎡⎭
⎪⎫1256,+∞ B [因为y =⎝ ⎛⎭⎪⎫12x 在[8,+∞)上单调递减,所以0<⎝ ⎛⎭⎪⎫12x ≤⎝ ⎛⎭
⎪⎫
128
=1256.]
3.函数y =2x -1的定义域是( ) A .(-∞,0) B .(-∞,0] C .[0,+∞)
D .(0,+∞)
C [由2x -1≥0得2x ≥1,即x ≥0,∴函数的定义域为[0,+∞),选C.] 4.当a >0,且a ≠1时,函数f (x )=a x +1-1的图象一定过点( ) A .(0,1) B .(0,-1) C .(-1,0)
D .(1,0)
C [∵f (-1)=a -1+1-1=a 0-1=0,∴函数必过点(-1,0).] 5.函数f (x )=a x 与g (x )=-x +a 的图象大致是( )
A B C D
A [当a >1时,函数f (x )=a x 单调递增,当x =0时,g (0)=a >1,此时两函数的图象大致为选项A.]
二、填空题
6.函数f (x )=3x -1的定义域为________.
[1,+∞) [由x -1≥0得x ≥1,所以函数f (x )=3x -1的定义域为[1,+∞).]
7.已知函数f (x )=a x +b (a >0,且a ≠1)经过点(-1,5),(0,4),则f (-2)的值为________.
7 [由已知得⎩⎨⎧
a -1+
b =5,
a 0+
b =4,解得⎩⎪⎨⎪⎧
a =12
,b =3,
所以f (x )=⎝ ⎛⎭
⎪⎫
12x
+3,所以f (-2)
=⎝ ⎛⎭
⎪⎫
12-2
+3=4+3=7.] 8.若函数f (x )=⎩⎨⎧
2x ,x <0,
-2-
x ,x >0,则函数f (x )的值域是________. (-1,0)∪(0,1) [由x <0,得0<2x <1;由x >0, ∴-x <0,0<2-x <1, ∴-1<-2-x <0.
∴函数f (x )的值域为(-1,0)∪(0,1).] 三、解答题
9.已知函数f (x )=a x -
1(x ≥0)的图象经过点⎝ ⎛⎭⎪⎫2,12,其中a >0且a ≠1.
(1)求a 的值;
(2)求函数y =f (x )(x ≥0)的值域. [解] (1)因为函数图象经过点⎝ ⎛
⎭⎪⎫2,12,
所以a 2-1=12,则a =1
2.
(2)由(1)知函数为f (x )=⎝ ⎛⎭
⎪
⎫
12x -1
(x ≥0),由x ≥0,得x -1≥-1.于是0<⎝ ⎛⎭
⎪
⎫
12x -1
≤⎝ ⎛⎭
⎪⎫12-1
=2,
所以函数的值域为(0,2].
10.已知f (x )=9x -2×3x +4,x ∈[-1,2]. (1)设t =3x ,x ∈[-1,2],求t 的最大值与最小值; (2)求f (x )的最大值与最小值.
[解] (1)设t =3x ,∵x ∈[-1,2],函数t =3x 在[-1,2]上是增函数,故有13≤t ≤9,故t 的最大值为9,t 的最小值为1
3.
(2)由f (x )=9x -2×3x +4=t 2-2t +4=(t -1)2+3,可得此二次函数的对称轴为t =1,且1
3≤t ≤9,
故当t =1时,函数f (x )有最小值为3,当t =9时,函数f (x )有最大值为67.
[等级过关练]
1.函数y =a -|x |(0<a <1)的图象是( )
A B C D
A [y =a
-|x |
=⎝ ⎛⎭
⎪⎫
1a |x |
,易知函数为偶函数,∵0<a <1,∴1a >1,故当x >0时,函数为增函数,当x <0时,函数为减函数,当x =0时,函数有最小值,最小值为1,且指数函数为凹函数,故选A.]
2.若a >1,-1<b <0,则函数y =a x +b 的图象一定在( ) A .第一、二、三象限 B .第一、三、四象限 C .第二、三、四象限
D .第一、二、四象限
A [∵a >1,且-1<b <0,故其图象如图所示.
]
3.已知函数y =⎝ ⎛⎭⎪⎫
13x
在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的
值为________.
12 [∵y =⎝ ⎛⎭⎪⎫13x 在R 上为减函数,∴m =⎝ ⎛⎭⎪⎫13-
1=3,n =⎝ ⎛⎭
⎪⎫
13-
2=9,故m +n =
12.]
4.函数f (x )=3x
3x +1
的值域是________.
(0,1) [函数y =f (x )=3x
3x +1,即有3x =-y y -1,由于3x >0,则-y y -1>0,解得
0<y <1,值域为(0,1).]
5.已知函数f (x )=a x +b (a >0,a ≠1).
(1)若f (x )的图象如图①所示,求a ,b 的取值范围;
(2)若f (x )的图象如图②所示,|f (x )|=m 有且仅有一个实数解,求出m 的范围.
[解] (1)由f (x )为减函数可知a 的取值范围为(0,1), 又f (0)=1+b <0,所以b 的取值范围为(-∞,-1). (2)由图②可知,y =|f (x )|的图象如图所示.
由图象可知使|f (x )|=m 有且仅有一解的m 值为m =0或m ≥3.。