工程材料和热处理
工程材料及热处理pdf

工程材料及热处理一、引言工程材料是现代工业和科技领域中不可或缺的一部分,广泛应用于建筑、机械、电子、航空航天、交通运输等领域。
热处理是工程材料加工过程中的重要环节,通过改变材料的内部结构,提高其力学性能、物理性能和化学性能。
本文将详细介绍工程材料的分类、性能与特点、热处理原理、常见热处理工艺、材料选用原则、材料检测与评估、热处理设备与工艺优化以及工程材料应用领域。
二、工程材料分类工程材料可分为金属材料和非金属材料两大类。
金属材料包括钢铁材料、有色金属材料和合金等;非金属材料包括塑料、橡胶、陶瓷、玻璃等。
这些材料在性能上各有特点,适用于不同的工程领域。
三、材料性能与特点1.金属材料:具有较高的强度、塑性和韧性,具有良好的导电性和导热性。
不同的金属材料在耐磨性、耐腐蚀性等方面也表现出不同的特点。
2.非金属材料:具有轻质、高强、耐腐蚀等特点,且具有良好的绝缘性能。
非金属材料在加工过程中具有较好的可塑性和可加工性。
四、热处理原理热处理是通过加热、保温和冷却等工艺手段,改变材料的内部结构,从而提高其力学性能和物理性能。
热处理过程中,材料的内部原子或离子重新排列,形成新的晶体结构,从而改变材料的性质。
五、常见热处理工艺1.退火:将材料加热到一定温度后保温一段时间,然后缓慢冷却至室温。
退火可以消除材料的内应力,改善其组织和性能。
2.淬火:将材料加热到一定温度后迅速冷却,使材料表面硬化而内部保持韧性。
淬火可以提高材料的硬度和耐磨性。
3.回火:将淬火后的材料加热到一定温度后保温一段时间,然后缓慢冷却至室温。
回火可以消除材料的内应力,改善其组织和性能。
4.表面处理:通过化学或电化学方法对材料表面进行处理,提高其耐磨性、耐腐蚀性和抗氧化性等性能。
六、材料选用原则1.根据工程要求选择合适的材料类型和牌号;2.考虑材料的性能参数,如强度、硬度、韧性等;3.考虑材料的耐腐蚀性、耐磨性等特殊要求;4.考虑材料的加工工艺和经济性等因素。
《工程材料与热处理》(适用中职生源)

《工程材料与热处理》课程标准课程名称:工程材料与热处理课程性质:专业基础课学分:3.5计划学时:60适用专业:机械设计与制造1.前言1.1课程性质工程材料与热处理机制专业学生必修的一门专业基础课。
是一门应用性和综合性很强的课程,使学生通过理论教学,获得常用机械工程材料、金属热加工和热处理的基本知识,为学习后续课程及形成综合职业能力打下必要的基础。
1.2设计思路本课程根据机械行业技术专业发展需要和完成职业岗位实际工作任务所需要的知识、能力、素质要求选择课程内容,从“任务与职业能力”分析出发,设定职业能力培养目标。
通过绪论\金属材料力学性能、纯金属与合金的晶体结构与结晶、铁碳合金相图、钢的热处理、常用钢材及选用、铸铁、非铁金属材料、非金属材料、铸造成型工艺、锻压成形工艺、焊接成形工艺、机械零件的毛坯成形综合选材等十三个任务的学习,让学生在了解金属材料特性,各毛培成形工艺过程的基础上,初步形成合理选择零件材料及毛坯加工成形方法的能力,培养学生解决实际问题的能力。
在课程实施过程中,充分利用课程特征,加大学生工程体验的教学设计,激发学生的主体意识和学习兴趣。
2.课程目标2.1总体目标学习并掌握常用材料特性和用途、掌握常用材料的热处理方法与作用和用途,使学生能合理选择材料和进行合理的热处理,从而培养适合专业发展需要的专门人才。
2.2具体目标2.2.1能力目标:1.具有根据零件的使用要求选择零件材料的能力;2.初步具有选择钢材热处理方法的能力;3.初步具有选择零件毛坯成形方法的能力。
2.2.2知识目标:1.以铁碳合金的成分组织温度性能为主线,了解四者的相互关系和变化规律的基础知识,初步具有根据零件的使用要求选择零件材料的能力;2.了解钢材在实际加热和冷却时内部组织的变化及其对钢材性能的影响,了解各种热处理方法的目的、工艺和应用,初步具有选择钢材热处理方法的能力;3.了解毛坯的成形方法和基本工艺过程,初步具有选择零件毛坯成形方法的能力。
工程材料及金属热处理知识

工程材料及金属热处理知识工程材料是指用于机械、建筑、电气等领域的材料。
它们通常需要具有高强度、耐腐蚀、耐磨损等特性。
工程材料可以分为金属材料、非金属材料和复合材料。
金属材料是最常见的工程材料,包括铁、钢、铜、铝、镁等金属以及它们的合金。
金属材料具有良好的导电性、导热性、高强度和塑性。
常见的金属材料处理方法有退火、淬火、回火、冷作等。
其中,淬火是加热金属到一定温度后迅速冷却,目的是增加材料的硬度和强度;回火则是通过再次加热金属来减轻淬火后的内应力,使得金属具有更好的韧性。
非金属材料包括塑料、橡胶、陶瓷等。
它们通常具有较低的密度、化学稳定性、耐腐蚀和绝缘性。
热处理方法主要包括退火、烧结和化学处理。
复合材料是将不同材料组合在一起形成的新材料,如碳纤维增强塑料、玻璃纤维增强塑料等。
这种材料结合了各种材料的优点,因此在许多领域都有广泛的应用。
金属的热处理是一种改变金属结构和性质的方法。
经过热处理,金属可以获得更高的硬度、强度和耐蚀性。
以下是一些金属热处理方法的描述:退火:将金属加热到适当温度,保持一段时间后缓慢冷却。
该方法可使金属软化、去除内部应力,并提高延展性和冲击性能。
淬火:将金属加热到一定温度,然后迅速冷却。
这会使金属的组织产生变化,从而提高硬度和强度。
回火:通过在较低的温度下将金属加热一段时间,以达到减轻淬火后产生的内部应力的目的。
正火:将金属加热到适当的温度,然后在空气中自然冷却。
这样的过程可以增加材料的硬度和强度。
淬化:使用醇类或水溶液使淬火后的金属变脆,然后在热水中浸泡一段时间来恢复其硬度和强度。
热处理对于工程材料的重要性不言而喻。
能够正确选择和使用热处理方法将有助于确保材料能够耐用、稳定地运行,并具有所需的物理和化学性质。
工程材料与热处理作业题参考答案

1.置换固溶体中,被置换的溶剂原子哪里去了?答:溶质把溶剂原子置换后,溶剂原子重新加入晶体排列中,处于晶格的格点位置。
2.间隙固溶体和间隙化合物在晶体结构与性能上的区别何在?举例说明之。
答:间隙固溶体是溶质原子进入溶剂晶格的间隙中而形成的固溶体,间隙固溶体的晶体结构与溶剂组元的结构相同,形成间隙固溶体可以提高金属的强度和硬度,起到固溶强化的作用。
如:铁素体F是碳在α-Fe中的间隙固溶体,晶体结构与α-Fe相同,为体心立方,碳的溶入使铁素体F强度高于纯铁。
间隙化合物的晶体结构与组元的结构不同,间隙化合物是由H、B、C、N等原子半径较小的非金属元素(以X表示)与过渡族金属元素(以M表示)结合,且半径比rX /rM>0.59时形成的晶体结构很复杂的化合物,如Fe3C间隙化合物硬而脆,塑性差。
3.现有A、B两元素组成如图所示的二元匀晶相图,试分析以下几种说法是否正确?为什么?(1)形成二元匀晶相图的A与B两个相元的晶格类型可以不同,但是原子大小一定相等。
(2)K合金结晶过程中,由于固相成分随固相线变化,故已结晶出来的固溶体中含B量总是高于原液相中含B量.(3)固溶体合金按匀晶相图进行结晶时,由于不同温度下结晶出来的固溶体成分和剩余液相成分不相同,故在平衡态下固溶体的成分是不均匀的。
答:(1)错:Cu-Ni合金形成匀晶相图,但两者的原子大小相差不大。
(2)对:在同一温度下做温度线,分别与固相和液相线相交,过交点,做垂直线与成分线AB相交,可以看出与固相线交点处B含量高于另一点。
(3)错:虽然结晶出来成分不同,由于原子的扩散,平衡状态下固溶体的成分是均匀的。
4.共析部分的Mg-Cu相图如图所示:(1)填入各区域的组织组成物和相组成物。
在各区域中是否会有纯Mg相存在?为什么?答: Mg-Mg2Cu系的相组成物如下图:(α为Cu在Mg中的固溶体)Mg-Mg2Cu系的组织组成物如下图:(α为Cu在Mg中的固溶体,)在各区域中不会有纯Mg相存在,此时Mg以固溶体形式存在。
工程材料及热处理复习资料

一.名词解释题间隙固溶体:溶质原子分布于溶剂的晶格间隙中所形成的固溶体。
再结晶:金属发生重新形核和长大而不改变其晶格类型的结晶过程。
淬透性:钢淬火时获得马氏体的能力。
枝晶偏析:金属结晶后晶粒内部的成分不均匀现象。
时效强化:固溶处理后铝合金的强度和硬度随时间变化而发生显著提高的现象。
同素异构性:同一金属在不同温度下具有不同晶格类型的现象。
临界冷却速度:钢淬火时获得完全马氏体的最低冷却速度。
热硬性:指金属材料在高温下保持高硬度的能力。
二次硬化:淬火钢在回火时硬度提高的现象。
共晶转变:指具有一定成分的液态合金,在一定温度下,同时结晶出两种不同的固相的转变。
比重偏析:因初晶相与剩余液相比重不同而造成的成分偏析。
置换固溶体:溶质原子溶入溶质晶格并占据溶质晶格位置所形成的固溶体。
变质处理:在金属浇注前添加变质剂来改变晶粒的形状或大小的处理方法。
晶体的各向异性:晶体在不同方向具有不同性能的现象。
固溶强化:因溶质原子溶入而使固溶体的强度和硬度升高的现象。
形变强化:随着塑性变形程度的增加,金属的强度、硬度提高,而塑性、韧性下降的现象。
残余奥氏体:指淬火后尚未转变,被迫保留下来的奥氏体。
调质处理:指淬火及高温回火的热处理工艺。
淬硬性:钢淬火时的硬化能力。
过冷奥氏体:将钢奥氏体化后冷却至A1温度之下尚未分解的奥氏体。
本质晶粒度:指奥氏体晶粒的长大倾向。
C曲线:过冷奥氏体的等温冷却转变曲线。
CCT曲线:过冷奥氏体的连续冷却转变曲线。
马氏体:含碳过饱和的α固溶体。
热塑性塑料:加热时软化融融,冷却又变硬,并可反复进行的塑料。
热固性塑料:首次加热时软化并发生交连反应形成网状结构,再加热时不软化的塑料。
回火稳定性:钢在回火时抵抗硬度下降的能力。
可逆回火脆性:又称第二类回火脆性,发生的温度在400~650℃,当重新加热脆性消失后,应迅速冷却,不能在400~650℃区间长时间停留或缓冷,否则会再次发生催化现象。
过冷度:金属的理论结晶温度与实际结晶温度之差。
工程材料及热处理——材料的力学性能和工艺性能

第三节 材料的工艺性能
材料的成型 铸造、拉、拔、挤、压、锻 车、钳、铣、刨、磨
材 料 加 工
材料的切削
材料的改性
材料的联接
合金化、热处理
焊接、粘接
工程材料的工艺性能主要有铸造性能、锻压性能、 焊接性能、切削加工性能、热处理性能。
具体实验条件及应用范围参见表1-2
优点:操作简便,直接读数,压痕小,应用范围最广。 缺点:需在试样不同部位测定,取平均值。
3.维氏硬度 (HV)
维氏硬度计
顶角为136°的金刚石正四棱锥压头 压痕两条对角线的平均长度d
维氏硬度值不需要计算,一般是根据d查表得出。
优点:压痕浅,轮廓清晰,数值准确,硬度范围广,广泛 应用于测量金属镀层、薄片材料、化学热处理后的 表面硬度和显微硬度。 缺点:不适合成批生产的检验,测量效率低于洛氏硬度。
Titanic号钢板和近代船用钢板的冲击试验结果比较
Titanic
近代船用钢板
六、疲劳极限
1.疲劳现象
材料在交变载荷作用下,尽管零件所受的应力低于屈服点, 但经过较长时间的工作后,在一处或几处产生局部永久性累积损 伤,经一定循环次数后产生裂纹或突然发生完全断裂,这种现象 称为疲劳。
2.疲劳极限σ-1
四、硬度(Hardness)
材料的软硬程度,表征抵抗局部变形或破坏的能力。 压入法测量硬度常用的方法有: 压入法 弹性回跳法
肖氏 布氏、洛氏、维氏
划痕法
莫氏
1.布氏硬度 (HBS/HBW)
布氏硬度计
数值一般不需计算,而用带有刻度盘的 放大镜测量出压痕的直径,直接由表查得硬 度值大小,一般只标大小而不标单位。
摆锤式冲击试验
AK mgH mgh mg( H h)
(建筑工程管理)工程材料及热处理

工程材料及热处理授课教师:李静研究内容科学性a. 从化学角度出发,研究材料的化学组成、键性、 结构与性能的关系b. 从物理角度,阐述材料的组成原子、分子及其运动状态与各物性之间的关系c. 材料的制备工艺技术性d. 材料的性能表征e. 材料的应用(3) 材料工程 Materials Engineering对于工程技术人员:如何选择特定应用环境下需要的材料,来满足使用要求,如何按实际要求设计新材料,须弄清以下三个关系使用性能Performance合成与制备过程 Synthesis and Processing 组成与结构Compositionsand Structures性质Properties(工程)(化学) (物理学)第二节合金及相结构一基本知识:1.合金:有2种或2种以上的金属元素或金属元素与非金属元素组成的具有金属性质的物质。
2.组元:组成合金的最简单、最基本、能够独立存在的物质。
3.相:成分相同,结构相同,并与其他部分以界面分开的均匀组成部分。
二、合金中的相结构固溶体:形成合金时,如果一种组元的晶格中可以包含其他组元,即新相的晶格结构与某一组元的晶格相同,这种新相称为固溶体。
晶格与固溶体相同的组元称为溶剂,其他组元称为溶质。
化合物:形成合金时,新相的晶格结构不同于任一组元的晶格,则新相是组元间形成的一种新的物质,这种新相称为化合物。
(一)固溶体1.分类:置换固溶体和间隙固溶体2.特征:造成晶格畸变,固溶体的强度及硬度升高,物理性能也会发生变化。
——固溶强化(二)化合物1.分类:正常价化合物,电子价化合物及间隙化合物2.各种化合物的比较第四节二元合金相图1.合金系:由给定的的组元可以配制成不同成分的合金,这些合金组成的合金系统称为合金系。
2.(相)平衡:在一定条件下,合金中参与结晶或相变过程中的各相之间的相对重量和相的浓度不再改变的状态。
3.相图:不同温度及成分下,合金中的合金相的构成及相之间的平衡关系的图形。
工程材料及热处理(完整版)

工程材料及热处理一、名词解释(20分)8个名词解释1.过冷度:金属实际结晶温度T和理论结晶温度、Tm之差称为过冷度△T,△T=Tm-T。
2.固溶体:溶质原子溶入金属溶剂中形成的合金相称为固溶体。
3.固溶强化:固溶体的强度、硬度随溶质原子浓度升高而明显增加,而塑、韧性稍有下降,这种现象称为固溶强化。
4.匀晶转变:从液相中结晶出单相的固溶体的结晶过程称匀晶转变。
5.共晶转变:从一个液相中同时结晶出两种不同的固相6.包晶转变:由一种液相和固相相互作用生成另一种固相的转变过程,称为包晶转变。
7.高温铁素体:碳溶于δ-Fe的间隙固溶体,体心立方晶格,用符号δ表示。
铁素体:碳溶于α-Fe的间隙固溶体,体心立方晶格,用符号α或F表示。
奥氏体:碳溶于γ-Fe的间隙固溶体,面心立方晶格,用符号γ或F表示。
8.热脆(红脆):含有硫化物共晶的钢材进行热压力加工,分布在晶界处的共晶体处于熔融状态,一经轧制或锻打,钢材就会沿晶界开裂。
这种现象称为钢的热脆。
冷脆:较高的含磷量,使钢显著提高强度、硬度的同时,剧烈地降低钢的塑、韧性并且还提高了钢的脆性转化温度,使得低温工作的零件冲击韧性很低,脆性很大,这种现象称为冷脆。
氢脆:氢在钢中含量尽管很少,但溶解于固态钢中时,剧烈地降低钢的塑韧性增大钢的脆性,这种现象称为氢脆。
9.再结晶:将变形金属继续加热到足够高的温度,就会在金属中发生新晶粒的形核和长大,最终无应变的新等轴晶粒全部取代了旧的变形晶粒,这个过程就称为再结晶。
10.马氏体:马氏体转变是指钢从奥氏体状态快速冷却,来不及发生扩散分解而产生的无扩散型的相变,转变产物称为马氏体。
含碳量低于0.2%,板条状马氏体;含碳量高于1.0%,针片状马氏体;含碳量介于0.2%-1.0%之间,马氏体为板条状和针片状的混合组织。
11.退火:钢加热到适当的温度,经过一定时间保温后缓慢冷却,以达到改善组织提高加工性能的一种热处理工艺。
12.正火:将钢加热到3c A或ccmA以上30-50℃,保温一定时间,然后在空气中冷却以获得珠光体类组织的一种热处理工艺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属材料在加工和使用过程中影响力学性能的因素
含量C的增加:
一般规律: 强度、硬度增加
脆性增大,韧性、塑性下降
含碳量的影响强度、硬度;塑性
合金元素的影响提高改善力学性能
温度的影响强度、硬度;塑性
热处理工艺的影响
绝大多数钢,低温: 强度、硬度增加; 韧性、塑性下降
第四节 钢的热处理
钢的热处理就是在固态下,通过加热、保温和不同 的冷却方式,改变钢的内部组织结构,从而获得所需性 能的工艺方法。
为什么要进行热处理 什么是热处理 如何进行热处理
热处理工艺曲线示意图
目的
1、消除毛坯中的缺陷,改善工艺性能, 为切削加工或热处理做组织和性能上的 准备。—叫预先热处理。
A0
5%为脆性材料
灰铸铁、玻璃、 陶器、石料等
四、弹性能和韧性能
弹性能
在弹性变形范围内,应变能将以势 能的形式储存在材料内部,撤去外力后 又全部释放
韧性能
材料在断裂前所能吸收的能量 称为韧性能。
最大弹性能 最大韧性能
五、硬度
材料表面在一个小体积范围内抵抗弹性变形、塑 性变形或破坏的能力。
材料硬度越高,强度和耐磨性越好;塑性越低。 常用硬度指标:
二、弹性模量E
• 在弹性阶段,应力 与应变 成正比
=E
• 比例常数 E = / • 反映材料抵抗变形的能力,是衡量刚度的指标。 • 注意:不同钢种的弹性模量相差甚微。
三、延展性 衡量材料塑性性能的指标
0
碳钢、黄铜、 铝合金等
断后伸长率
l1 l0 100%
l0
5%为塑性材料
断面收缩率
A0 A1 10% 0
2、提高金属材料的力学性能,充分发 挥材料的潜力,节约材料,延长零件 使用寿命。—叫最终热处理。
热处理的方法(按工艺方法不同分)
普通热处理 热处理
退火 正火 淬火 回火
表面热处理
表面淬火
化学热处理
渗碳 渗氮 碳氮共渗
一、普通热处理
1.退火(焖火) 将钢件加热到一定温度,保温一定时间,随炉缓慢
冷却
高级优质钢(ωs≤0.03%;ωp≤0.035%)
结构钢(建筑、机械制造用)
3)钢的用途 行业使用)
(按
工具钢(工具、刀具、模具等用)
特殊性能钢(防腐蚀、高温、导磁
等场合用)
一、黑色金属 由于铸造特性,一般用于制造形状
铸钢 复杂,难以切削加工、尺寸大的重要 零件,如:大型齿轮、缸体、变速箱
机架等。
橡胶 以生胶为主要成分,添加各种配合剂和增强 材料
较大的弹性、良好的绝缘性、耐磨损、耐化 学腐性
四、复合材料 基本材料 + 增强材料
由两种或两种以上性质不同的金属材料或非金属材料, 按设计要求进行定向处理或复合得到的一种新型材料。 自然界:天然复合材料如竹子、木材、骨骼等 特点 高比强度、高比模量 抗疲劳性能好 减摩、耐磨、自润滑性能好 化学稳定性好 具有其他特殊性能,如隔热性,特殊的电、光、磁性。
将淬火后的零件重新加热到临界温度以下某 一温度,保温一定时间,后在空气中或油中冷却
目的: 1) 普通结构零件的最终热处理
2) 铸、锻、焊毛坯的预备热处理
3.淬火(整体淬火)
将钢件加热到临界温度以上的某一温度,经 过保温、在冷却介质(水、盐水或油)中迅速 冷却 目的:提高硬度,耐磨性
应用:工具,模具,量具,滚动轴承.
注意:整体淬火后的零件会有较大的内应力, 故淬火后必须回火
4. 回火 与淬火配合使用
青铜:除以外,所有合金的总称
铝合金
不耐磨,切削性好,铸造性差;
不产生电火花,用于储存易燃、易爆物
品的容器
钛合金
密度小,高、低温性能好,良好的耐蚀性, 用于航空、造船、化工业
三、非金属材料
工程塑料 优点:密度小、质量轻,耐腐蚀性好,易加工 应用:可用注塑、挤压的方法制成各种形状复
杂, 尺寸精确Βιβλιοθήκη 零件灰铸铁成本低,铸造性好,良好的减震性; 抗压强度高、抗拉强度。低脆性大,不 宜承受冲击载荷。常用于床身、机架、 底座等零件
较高的延展性和耐磨性;强度高于灰 球墨铸铁 铸铁;减震性优于钢。多用于制造受
冲击载荷的零件
二、有色金属
铜合金 良好的导电性、导热性、耐蚀性、延展性
机加工性
黄铜:铜锌合金,可铸可锻,良好的
第二章 工程材料和热处理
• 第一节 • 第二节 • 第三节 • 第四节 • 第五节 • 第六节
概述 金属材料的力学性能 常用的工程材料 钢的热处理 表面精饰 材料的选择原则
第一节 概述
按用途不同,分:
结构材料: 工程上要求强度、韧性、塑性、硬度、耐磨性等
力学性能的材料。 功能材料:
具有电、光、声、热、磁等功能和效应的材料。
目的
1) 软化工件,降低硬度——以便切削加工 2) 2) 细化晶粒,改善组织——提高力学性
能 3) 3) 消除残余应力——防止变形开裂
铸件、锻件、焊接件等在制造过程中将聚 集残余应力—裂纹
低温退火
2. 正火
加热温度和保温时间与退火相似,不同:空冷
特点:正火冷却速快,得到比退火后的组 织更细些,从而力学性能高。
按材料结合键的特点和性质,分:
金属材料: 黑色金属材料 有色金属材料
无机非金属材料: 陶瓷
有机材料: 塑料、橡胶和合成纤维 高强度、塑性、耐腐蚀性、绝缘性,密度
小
第二节 金属材料的力学性能
一、应力极限
屈服
颈缩
强度极限
3 强化阶段
c 4 颈缩阶段
断裂
f
屈服极限
b
d
比例极限
a 2 屈服阶段
1 线弹性阶段
O e gh l
低碳钢的应力-应变曲线
低碳钢试样拉伸时的各阶段特征
弹性 屈服 强化 局部变形 断裂
c
f
b
d
a
在常温下经过塑 性变形,使材料强度 提高、塑性降低的现 象,称为冷作硬化。
O e gh l
永久塑性 变形
弹性变形
1 在弹性范围内卸载、再加载
2 过弹性范围内卸载、再加载
常用冷作硬化提高零 件的强度。冷拔、冷 挤压、冷镦、冷轧能 得到冷作硬化的效果。
第三节 常用的工程材料 金属材料
黑色金属
工业 用钢
铸铁
有色 金属
一、黑色金属
碳钢的分类
低碳钢 ( ωc≤0.25%)
1)含碳量
中碳钢(0.25% ≤ ωc ≤ 0.6%)
(按碳的质量分数)
高碳钢(0.6% < ωc ≤ 2.11%)
普通钢(ωs≤0.05% ;ωp≤0.045%)
2)钢的品质 (按 有害杂质S、P含量) 优质钢 (ωs≤0.04% ;ωp≤0.04%)