一道典型极限的例题

一道典型极限的例题

求极限n 求极限可以用不等式进行两边夹

1()(,)(01011-=≤≤-≤-∴≤-∑∑∑∑∞=--=--==-e e e e n k n n i n e n

i n n k n k k n n o

k n n i i n 110

0111)(lim )(lim )(lim ---∞=-=∞→=∞→-=∞→--==-=-≥-∑∑∑∑e e e n i n n i n n i n k n i n k i n n k o i n n n o k n 又1

))()2()1((lim -≥???+++∞→∞→e e n n n n k n n n n 得,令由夹逼定理知,上述极限为1-e

e

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案 一、单项选择题 1.下面函数与y x =为同一函数的是() 2 .A y= .B y= ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域 () , -∞+∞,∴选D 2.已知?是f的反函数,则() 2 f x的反函 数是() () 1 . 2 A y x ? =() .2 B y x ? = () 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互 换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数 为奇函数的是() ()() .A y f x f x =+- ()() .B y x f x f x =-- ?? ?? () 32 .C y x f x = ()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且 ()()()()() 3232 y x x f x x f x y x -=-=-=- ∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x = .sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界, B arctan 2 x π <有界, C sin cos x x +≤ 故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即 n x M ≤),反之不成立,(如() {}11n--有界, 但不收敛, 选A 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小, 则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C 二、填空题(每小题4分,共24分) 7.设() 1 1 f x x = + ,则() f f x ?? ??的定义域 为

关于高等数学方法与典型例题归纳

关于高等数学方法与典 型例题归纳 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

2014年山东省普通高等教育专升本考试 2014年山东专升本暑期精讲班核心讲义 高职高专类 高等数学 经典方法及典型例题归纳 —经管类专业:会计学、工商管理、国际经济与贸易、电子商务 —理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其 自动化、交通运输、计算机科学与技术、土木工程 2013年5月17日星期五 曲天尧 编写 一、求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方;

(2) ???? ???=<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030+-+-=+-+→→ 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子........... 是解题的关 键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第一个重 要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 +,最后凑指数部分。 【解】22 212 12112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→

第一讲数列地极限典型例题

第一讲 数列的极限 一、内容提要 1.数列极限的定义 N n N a x n n >?N ∈?>??=∞ →,,0lim ε,有ε<-a x n . 注1 ε的双重性.一方面,正数ε具有绝对的任意性,这样才能有 {}n x 无限趋近于)(N n a x a n ><-?ε 另一方面,正数ε又具有相对的固定性,从而使不等式ε<-a x n .还表明数列{}n x 无限趋近于a 的渐近过程的不同程度,进而能估算{}n x 趋近于a 的近似程度. 注2 若n n x ∞ →lim 存在,则对于每一个正数ε,总存在一正整数N 与之对应,但这种N 不是 唯一的,若N 满足定义中的要求,则取Λ,2,1++N N ,作为定义中的新的一个N 也必须满足极限定义中的要求,故若存在一个N 则必存在无穷多个正整数可作为定义中的N . 注3 a x n →)(∞→n 的几何意义是:对a 的预先给定的任意-ε邻域),(εa U ,在{}n x 中至多除去有限项,其余的无穷多项将全部进入),(εa U . 注4 N n N a x n n >?N ∈?>??≠∞ →00,, 0lim ε,有00ε≥-a x n . 2. 子列的定义 在数列{}n x 中,保持原来次序自左往右任意选取无穷多个项所得的数列称为{}n x 的子列,记为{} k n x ,其中k n 表示k n x 在原数列中的项数,k 表示它在子列中的项数. 注1 对每一个k ,有k n k ≥. 注2 对任意两个正整数k h ,,如果k h ≥,则k h n n ≥.反之,若k h n n ≤,则k h ≤. 注3 K k K a x k n n >?N ∈?>??=∞→,, 0lim ε,有ε<-a x k n . 注4 ?=∞ →a x n n lim {}n x 的任一子列{} k n x 收敛于a . 3.数列有界 对数列{}n x ,若0>?M ,使得对N n >?,有M x n ≤,则称数列{}n x 为有界数列. 4.无穷大量 对数列{}n x ,如果0>?G ,N n N >?N ∈?,,有G x n >,则称{}n x 为无穷大量,记 作∞=∞ →n n x lim .

函数的极限及函数的连续性典型例题

函数的极限及函数的连续性典型例题 一、重点难点分析: ① 此定理非常重要,利用它证明函数是否存在极限。 ② 要掌握常见的几种函数式变形求极限。 ③ 函数 f(x)在 x=x 0 处连续的充要条件是在 x=x 0 处左右连续。 ④ 计算函数极限的方法,若在 x=x 0 处连续,则 ⑤ 若函数在 [a,b] 上连续,则它在 [a,b] 上有最大值,最小值。 二、典型例题 例 1 .求下列极限 解:由 可知 x 2+mx+2 含有 x+2 这个因式, ∴ x=-2 是方程 x 2+mx+2=0 的根, ∴ m=3 代入求得 n=-1。 求 m,n 。 ① ④ ④ ③ ③ ② 解析:① 例 2.已知

的连续性。 解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处 函数是连续的, 从而 f(x)在点 x=-1 处不连续。 ∴ f(x) 在 (- ∞,-1),(- 1,+∞) 上连续, x=-1 为函数的不连续点。 , (a,b 为常数 ) 。 试讨论a,b 为何值时,f(x)在 x=0 处连续。 例 3 .讨论函数 例 4 .已知函数 , ∴ f(x)在 x=1 处连续。 解析: ∴ a=1, b=0 。 例 5 .求下列函数极限 ① ② 解析:① ②

要使 存在,只需 ∴ 2k=1 ,故 时, 存在。 例7.求函数 在 x=-1 处左右极限,并说明在 x=-1 处是否有极限? ,∴ f(x)在 x=-1处极限不存在。 三、训练题: 2. 的值是 3. 已知 ,则 = ,2a+b=0,求 a 与 b 的值。 ,求 a 的值。 5.已知 参考答案:1. 3 2. 3. 4. a=2, b=-4 5. a=0 例 6 .设 ,问常数k 为何值时,有 存在? 解析:∵ 4.已知 解析:由 1.已知

上海高中数学数列的极限(完整资料)

【最新整理,下载后即可编辑】 7.6 数列的极限 课标解读: 1、理解数列极限的意义; 2、掌握数列极限的四则运算法则。 目标分解: 1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{}n a 的项n a 无限地趋近于某个常数a (即||a a n -无限地接近于0),那么就说数列{}n a 以a 为极限。 注:a 不一定是{}n a 中的项。 2、几个常用的极限:①C C n =∞→lim (C 为常数);②01lim =∞→n n ;③ ) 1|(|0lim <=∞ →q q n n ; 3、数列极限的四则运算法则:设数列{}n a 、{}n b , 当 a a n n =∞ →lim , b b n n =∞ →lim 时,b a b a n n n ±=±∞→)(lim ; b a b a n n n ?=?∞ →)(lim ; )0(lim ≠=∞→b b a b a n n n 4、两个重要极限: ① ?? ???<=>=∞→00100 1lim c c c n c n 不存在

②?? ???-=>=<=∞ →11||111||0 lim r r r r r n n 或不存在 问题解析: 一、求极限: 例1:求下列极限: (1) 3 21 4lim 22 +++∞→n n n n (2) 2 4323lim n n n n n -+∞→ (3) )(lim 2n n n n -+∞ → 例2:求下列极限: (1) )23741(lim 2222n n n n n n -++++∞→ ; (2) ])23()13(11181851521[lim +?-++?+?+?∞→n n n 例3:求下式的极限:

函数极限与导数高中数学基础知识与典型例题

知识网 数学归纳法、数列的极限与运算1.数学归纳法: (1)由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法. 归纳法包含不完全归纳法和完全归纳法. ①不完全归纳法:根据事物的部分(而不是全部)特殊事例得出一般结论的推理方法. ②完全归纳法: 根据事物的所有特殊事例得出一般结论的推理方法 数学归纳法常与不完全归纳法结合起来使用,用不完全归纳法发现规律, 用数学归纳法证明结论. (2)数学归纳法步骤: ①验证当n取第一个 n时结论 () P n成立; ②由假设当n k =( , k N k n + ∈≥)时,结论() P k成立,证明当1 n k =+时,结论(1) P k+成立; 根据①②对一切自然数 n n ≥时,() P n都成立. 2.数列的极限 (1)数列的极限定义:如果当项数n无限增大时,无穷数列{}n a的项n a无限地趋近于某个常数a(即 n a a -无限地接近于),那么就说数列 {} n a以a为极限,或者说a是数列{} n a的极限.记为 lim n n a a →∞ =或当n→∞时, n a a →. (2)数列极限的运算法则: 如果{}n a、{}n b的极限存在,且lim,lim n n n n a a b b →∞→∞ ==, 那么lim() n n n a b a b →∞ ±=±;lim(); n n n a b a b →∞ ?=?lim(0) n n n a a b b b →∞ =≠ 特别地,如果C是常数,那么lim()lim lim n n n n n C a C a Ca →∞→∞→∞ ?=?=. ⑶几个常用极限: ①lim n C C →∞ =(C 为常数)②lim0 n a n →∞ = k (,a k 均为常数且N* ∈ k) ③ (1) 1 lim0(1) (1或1) 不存在 n n q q q q q ④首项为 1 a,公比为q(1 q<)的无穷等比数列的各项和为lim 1 n n a S q →∞ = - . 注:⑴并不是每一个无穷数列都有极限. ⑵四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况. 数 学 归 纳 法 、数 列 的 极 限 与 运 算 例 1. 某个命题与正整数有关,若当) (* N k k n∈ =时该命题成立,那么可推得当 = n1 + k时该命题也成立,现已知当5 = n时该命题不成立,那么可推得() (A)当6 = n时,该命题不成立(B)当6 = n时,该命题成立 (C)当4 = n时,该命题成立(D)当4 = n时,该命题不成立 例2.用数学归纳法证明:“)1 ( 1 1 1 2 1 2≠ - - = + + + + + +a a a a a a n n ”在验证1 = n时,左端 计算所得的项为 ( ) (A)1 (B)a + 1 (C)2 1a a+ + (D)3 2 1a a a+ + + 例3.2 2 21 lim 2 n n n →∞ - + 等于( ) (A)2 (B)-2 (C)- 2 1 (D) 2 1 例4. 等差数列中,若 n n S Lim ∞ → 存在,则这样的数列( ) (A)有且仅有一个(B)有无数多个 (C)有一个或无穷多个(D)不存在 例5.lim(1) n n n n →∞ +-等于( ) (A) 1 3 (B)0 (C) 1 2 (D)不存在 例6.若2 012 (2)n n n x a a x a x a x +=++++, 12 n n A a a a =+++,则2 lim 83 n n n A A →∞ - = + ( ) (A) 3 1 -(B) 11 1(C) 4 1(D) 8 1 - 例7. 在二项式(13)n x +和(25)n x+的展开式中,各项系数之和记为,, n n a b n是正整 数,则 2 lim 34 n n n n n a b a b →∞ - - =. 例8. 已知无穷等比数列{}n a的首项N a∈ 1 ,公比为q,且 n n a a a S N q + + + = ∈ 2 1 , 1, 且3 lim= ∞ → n n S,则= + 2 1 a a_____ . 例9. 已知数列{ n a}前n项和1 1 (1) n n n S ba b =-+- + , 其中b是与n无关的常数,且0 <b<1,若lim n n S →∞ =存在,则lim n n S →∞ =________. 例10.若数列{ n a}的通项21 n a n =-,设数列{ n b}的通项 1 1 n n b a =+,又记 n T是数 列{ n b}的前n项的积. (Ⅰ)求 1 T, 2 T, 3 T的值;(Ⅱ)试比较 n T与 1+ n a的大小,并证明你的结论. 例 1.D 2.C 例 3.A 例 4.A例 5.C将分子局部有理化,原式 =11 lim lim 2 11 11 n n n n n n →∞→∞ == ++ ++ 例6.A例7. 1 2 例8. 3 8 例9.1 例10(见后面)

求极限的常用方法典型例题

求极限的常用方法典型例题 掌握求简单极限的常用方法。求极限的常用方法有 (1) 利用极限的四则运算法则; (2) 利用两个重要极限; (3) 利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量); (4) 利用连续函数的定义。 例 求下列极限: (1)x x x 33sin 9lim 0-+→ (2)1)1sin(lim 21--→x x x (3)x x x 1 0)21(lim -→ (4)2 22)sin (1cos lim x x x x x +-+∞→ (5))1 1e (lim 0-+→x x x x 解(1)对分子进行有理化,然后消去零因子,再利用四则运算法则和第一重要极限计算,即 x x x 33sin 9lim 0-+→ =) 33sin 9()33sin 9)(33sin 9(lim 0++++-+→x x x x x =3 3sin 91lim 3sin lim 00++?→→x x x x x =2 1613=? (2)利用第一重要极限和函数的连续性计算,即 )1)(1()1sin(lim 1 )1sin(lim 121-+-=--→→x x x x x x x 11lim 1)1sin(lim 11+?--=→→x x x x x 2 11111=+?= (3)利用第二重要极限计算,即 x x x 1 0)21(lim -→=2210])21[(lim --→-x x x 2e -=。 (4)利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量)计算,即

222222222)sin 1(lim ]1cos 1[lim )sin 1(1cos 1lim )sin (1cos lim x x x x x x x x x x x x x x x x +-+=+-+=+-+∞→∞→∞→∞→= 1 注:其中当∞→x 时,x x x x sin 1sin =,)1(cos 11cos 2222-=-x x x x 都是无穷小量乘以有界变量,即它们还是无穷小量。 (5) 利用函数的连续性计算,即 )11e (lim 0-+→x x x x =11 01e 00-=-+?

高考数学二轮复习 数列、极限、数学归纳法(1)

2008高考数学二轮复习数列、极限、数学归纳法(1) 教学目标: 1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项. 2.理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前n项和的公式. 并能运用这些知识来解决一些实际问题. 教学重点: 理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项. 教学难点: 理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前n项和的公式. 并能运用这些知识来解决一些实际问题. 教学方法设计:“五步”教学法 教学用具:三角板多媒体 板书设计 一、知识框架 二、典型例题 三、总结 四、检测 教学过程 一、出示教学目标。

理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n 项. 理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前n 项和的公式. 并能运用这些知识来解决一些实际问题. 二、组织基础知识结构,构建知识网络。 三、典型例题引路。 【例1】 已知由正数组成的等比数列{}n a ,若前n 2项之和等于它前n 2项中的偶数项之和的11倍,第3项与第4项之和为第2项与第4项之积的11倍,求数列{}n a 的通项公式. 解:∵q =1时122na S n =,1na S =偶数项 又01>a 显然11112na na ≠,q ≠1 ∴2212121)1(1)1(q q q a S q q a S n n n --==--=偶数项 依题意2 21211)1(111)1(q q q a q q a n n --?=--;解之101 = q 又421422143),1(q a a a q q a a a =+=+,

数列极限练习题

3322 11 1321.lim _____212.lim _____3(5)33.lim _____(5)3 4 4.lim ______1234....(21)2 5.lim _____1 (2)6.lim ______124...(2)7.lim(n n n n n n n n n n n n n n n n n n n n n n →∞→∞++→∞→∞ →∞+-→∞→∞+=++=+-+=-+=-+-++--=--=-+-+-数列极限练习题 21213)______211118.lim ....(1)______3927319.lim 0,____,_____110.(1)lim(12),_____ (2)4,__11.lim(2)5,lim n n n n n n n n n n n n n n an b a b n x x a a b -→∞→∞ →∞ →∞ →∞ --=+??-+++-=??????+--=== ?+?? -+=则若存在则实数范围已知无穷等比数列的各项和是则首项的取值范围是已知{}1 (3)1,lim()1 13(1) 12.,1342(1)lim (2)lim n n n n n n n n n n n n n a b a b n n n a S a n n a S →∞ -→∞ →∞ -=-??≤≤?+?=???≥??求的值 若为数列的前项和求

{}{}12123101511113.,9,27,,lim 31 14.,1,,, 32lim 15.,321111lim 4lim 1....(1),323927316.{},{}0n n n n n n n n n n n n n n n n n n a a a a a a n S S S a a n S S S a R a a a a b →∞ →∞ ++--→∞→∞+===-=∈-??=-+-++-??+??数列为等比数列前项和为求数列为等比数列前项和为求已知且 求范围 数列都是公差不为的等差数列12211212 22 1121 ,lim 2, ...lim 17.{},1,(...)18.{}(0),,,lim ,lim ...19.{},,lim n n n n n n n n n n n n n n n n n n n n n n n a b a a a nb a a a k a a k a q q a a S S n S S a a a a q n S a S →∞→∞++→∞→∞++→∞=+++==++>=++=求数列为无穷等比数列求实数的范围 数列是公比为的无穷等比数列前项和为求无穷等比数列公比为前项和为2423521 111,1...20.lim ...121.{},lim()12 n n n n n n q q a a a a a a a a a q q q a -→∞→∞-++++++++-= +求范围求等比数列公比为求取值范围

最新3第一讲__数列的极限典型例题汇总

3第一讲__数列的极限典型例题

第一讲 数列的极限 一、内容提要 1.数列极限的定义 ?Skip Record If...?,有?Skip Record If...?. 注1 ?Skip Record If...?的双重性.一方面,正数?Skip Record If...?具有绝对的任意性,这样才能有 ?Skip Record If...?无限趋近于?Skip Record If...? 另一方面,正数?Skip Record If...?又具有相对的固定性,从而使不等式?Skip Record If...?.还表明数列?Skip Record If...?无限趋近于?Skip Record If...?的渐近过程的不同程度,进而能估算?Skip Record If...?趋近于?Skip Record If...?的近似程度. 注2若?Skip Record If...?存在,则对于每一个正数?Skip Record If...?,总存在一正整数?Skip Record If...?与之对应,但这种?Skip Record If...?不是唯一的,若?Skip Record If...?满足定义中的要求,则取?Skip Record If...?,作为定义中的新的一个?Skip Record If...?也必须满足极限定义中的要求,故若存在一个?Skip Record If...?则必存在无穷多个正整数可作为定义中的?Skip Record If...?. 注3?Skip Record If...??Skip Record If...?的几何意义是:对?Skip Record If...?的预先给定的任意?Skip Record If...?邻域?Skip Record If...?,在?Skip Record If...?中至多除去有限项,其余的无穷多项将全部进入?Skip Record If...?. 注4?Skip Record If...?,有?Skip Record If...?. 2.子列的定义

函数的极限典型例题

第二讲 函数的极限 一 内容提要 1.函数在一点处的定义 , 0,0)(lim 0 >?>??=→δεA x f x x 使得δ<-?>??=+→δεA x f x x 使得δ<-?>??=-→δεA x f x x 使得δ<-ε,能找到某一个δ,能使δ<-<00x x 时,有ε<-A x f )(即可. 注3 讨论函数在某点的极限,重在局部,即在此点的某个空心邻域内研究)(x f 是否无限趋近于A . 注4 ?=→A x f x x )(lim 0 =+→)(lim 0 x f x x A x f x x =-→)(lim 0 . 注5 ? ?? ???≠→∈??=∞→→00,|}{}{)(lim 0x x x x x x A x f n n n n n x x 且,有A x f n n =∞→)(lim ,称为 归结原则――海涅(Heine )定理.它是沟通数列极限与函数极限之间的桥梁.说明在一定 条件下函数极限与数列极限可以相互转化.因此,利用定理必要性的逆否命题,可以方便地验证某些函数极限不存在;而利用定理的充分性,又可以借用数列极限的现成结果来论证函数极限问题.(会叙述,证明,特别充分性的证明.) 注6 0, 0)(lim 00 >?>??≠→δεA x f x x ,δ<-'<'?00:x x x ,有0)(ε≥-'A x f . 2 函数在无穷处的极限 设)(x f 在),[+∞a 上有定义,则 , ,0)(lim a X A x f x >?>??=∞→ε使得X x x >?:,有ε<-A x f )(. ,,0)(lim a X A x f x >?>??=+∞ →ε使得X x x >?:,有ε<-A x f )(. , ,0)(lim a X A x f x >?>??=-∞ →ε使得X x x -

3第一讲__数列地极限典型例题

第一讲 数列的极限 一、容提要 1.数列极限的定义 N n N a x n n >?N ∈?>??=∞ →,,0lim ε,有ε<-a x n . 注1 ε的双重性.一方面,正数ε具有绝对的任意性,这样才能有 {}n x 无限趋近于)(N n a x a n ><-?ε 另一方面,正数ε又具有相对的固定性,从而使不等式ε<-a x n .还表明数列{}n x 无限趋近于a 的渐近过程的不同程度,进而能估算{}n x 趋近于a 的近似程度. 注2 若n n x ∞ →lim 存在,则对于每一个正数ε,总存在一正整数N 与之对应,但这种N 不是 唯一的,若N 满足定义中的要求,则取 ,2,1++N N ,作为定义中的新的一个N 也必须满足极限定义中的要求,故若存在一个N 则必存在无穷多个正整数可作为定义中的N . 注3 a x n →)(∞→n 的几何意义是:对a 的预先给定的任意-ε邻域),(εa U ,在{}n x 中至多除去有限项,其余的无穷多项将全部进入),(εa U . 注4 N n N a x n n >?N ∈?>??≠∞ →00,, 0lim ε,有00ε≥-a x n . 2. 子列的定义 在数列{}n x 中,保持原来次序自左往右任意选取无穷多个项所得的数列称为{}n x 的子列,记为{} k n x ,其中k n 表示k n x 在原数列中的项数,k 表示它在子列中的项数. 注1 对每一个k ,有k n k ≥. 注2 对任意两个正整数k h ,,如果k h ≥,则k h n n ≥.反之,若k h n n ≤,则k h ≤. 注3 K k K a x k n n >?N ∈?>??=∞→,, 0lim ε,有ε<-a x k n . 注4 ?=∞ →a x n n lim {}n x 的任一子列{} k n x 收敛于a . 3.数列有界 对数列{}n x ,若0>?M ,使得对N n >?,有M x n ≤,则称数列{}n x 为有界数列. 4.无穷大量 对数列{}n x ,如果0>?G ,N n N >?N ∈?, ,有G x n >,则称{}n x 为无穷大量,记

数学分析-数列极限

第二章 数列极限 §1 数列极限概念 教学目的与要求: 使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。 教学重点,难点: 数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。 教学内容: 一、课题引入 1°预备知识:数列的定义、记法、通项、项数等有关概念。 2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰, 日取其半,万古不竭。”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,321,……,n 21 ,…… 或简记作数列:? ?????n 21 分析:1°、? ?? ???n 21随n 增大而减小,且无限接近于常数0; 2 二、数列极限定义 1°将上述实例一般化可得:

对数列{}n a ,若存在某常数a ,当n 无限增大时,a n 能无限接近常数a ,则称 该数为收敛数列,a 为它的极限。 例如:? ?? ???n 1, a=0; ??? ? ??-+n n )1(3, a=3; {}2 n , a 不存在,数列不收敛; {}n )1(-, a 不存在,数列不收敛; 2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对? ?? ? ??-+n n )1(()3以3为极限,对ε= 10 1 3)1(3--+ =-n a a n n =10 11π n 只需取N=10,即可 3°“抽象化”得“数列极限”的定义 定义:设{}n a 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在 某一自然数N ,使得当n >N 时,都有 a a n -<ε 则称数列{}n a 收敛于a ,a 为它的极限。记作 a a n n =∞ →lim {(或a n →a,(n →∞)) 说明 (1)若数列{}n a 没有极限,则称该数列为发散数列。 (2)数列极限定义的“符号化”记法:a a n n =∞ →lim ? ε ?>0,?N ,当n (3)上述定义中ε的双重性:ε>0是任意..

典型例题 极限与连续的62个典型习题

极限与连续的62个典型习题 习题1 设m i a i ,,2,1,0 ,求 n n m n n n a a a 121)(lim . 解 记},,,m ax {21m a a a a ,则有 a a a a a n n n n m n n 1121)()( ,a a n lim .另一方面 n n n n n m n n m a ma a a a 11121)()()( . 因为 1)lim (lim 11 n n n n m m ,故 a m a n n 1lim .利用两边夹定理,知 a a a a n n m n n n 121)(lim ,其中 },,m ax {21m a a a a . 例如 9)9531(lim 1 n n n n n . 习题2 求 )2211(lim 222n n n n n n n n n . 解 n n n n n n n n n n n n 2222221121 1 212 n n n , 即 n n n n n n n n n n n n 22222211)2(2)1( )1(2)1(2 n n n n 214211lim 421lim )2(2)1(lim 2 n n n n n n n n n n n . 2122211lim )1(2)1(lim 22 n n n n n n n n n . 利用两边夹定理知 21)2211(lim 222 n n n n n n n n n .

习题3 求n n n n ))1(1321211(lim . 解 n n n n ))1(1321211(lim n n n n ))111()3121()211((lim 1)1()111(lim )111(lim n n n n n n 11)1 11()111(lim n n n n 11)1()1 11(lim ]))1(11([lim n n n n n 111 e e 习题4 求 ),(11lim 1N n m x x m n x . 解(变量替换法)令mn x t ,则当1 x 时,.1 t 于是, 原式n m t t t t t t t t t t n m t n m t )1)(1()1)(1(lim 11lim 121211 . 习题5 求x x x x )1(lim . 解(变量替换法)令 t x t x ,,, 原式t t t t t t t t t t )11(lim )1(lim 22 t t t t ])11()11[(lim 11 t t t t t )11()11(lim 101 e e e . 习题6 求 x x x x e sin 1 0)23(lim ( 1型)。 为了利用重要极限,对原式变形 x x x e e x x x o x x x o x x x o x x x x e x x e x x x e sin 12112sin 1sin 1])211[(lim )212(lim )23(lim 122sin 1212])211[(lim e e x e x x x x x e x x x o x x

考研数列极限计算汇总

数列极限及其计算(习题部分) 数列极限存在性的证明以及数列极限的计算,是考研数学的重难点,有时会命制成压轴题。 在考研范围内,数列极限计算常用的方法主要有单调有界准则、夹逼准则、初等变形、定积分定义、归结原理、级数收敛的必要条件、转化为幂级数求和等。本章部分题目涉及到后续章节的知识(如利用定积分定义求极限),自学本讲义的同学可暂时跳过。 题型一、递推数列的极限 (一)单调有界准则 例题1设,证明收敛并求极限值 注:利用单调有界准则证明递推数列的收敛性,是常考题型。在具体证明单调性和有界性时,常用到一些经典的不等式放缩,如均值不等式,柯西不等式等等;有时也可用数学归纳法证明。(在进行含有自然数的命题的证明时,我们常常可以考虑数学归纳法,这是一个很好用也很流氓的一个方法。) 类题1,证明收敛并求极限值 类题2设,证明收敛并求极限值 注:若题干改为,问此时是否收敛,该如何 证明?若将减弱为,又该如何证明? 类题3,证明收敛并求极限值 [注]:此题对于极限值的取舍才是关键点,这是很多辅导书都没有讲清楚的地方,希望大家好好思考。 类题4设数列,证明收敛并求极限 类题5设可导,且,对于数列,有。证明数列收敛, 且极限值满足方程 类题6,证明收敛并求极限值 类题7(2018年数学二压轴题)设,证明收敛并求极限 注:这题是我当年考研时的原题,当时考完以后,很多人就在吹这个题多么的不常规,是考研史上最难的数列极限题。也正常,弱者总喜欢找各种理由。 例题2 设,证明收敛 注:①.该题说明,某些不是递推型的数列,也可以用单调有界准则来证明 ②.是一个非常重要的极限,我们将这个极限值定义为欧拉常数, 即。该题表明,当的时候,和是等价无穷

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

高考数学专题三 数列与极限

专题三数列与极限 【考点聚焦】 考点1:数列的有关概念,简单的递推公式给出的数列; 考点2:等差、等比数列的概念,等差、等比数列的通项公式,前n项和公式,并运用它们解决一些问题; 考点3:数列极限的意义,极限的四则运算,公比的绝对值小于1的无穷等比数列的前n 项和的极限; 考点4:数学归纳法 【自我检测】 1、_________________叫做数列。 3、无穷等比数列公比|q|<1,则各项和S=______。 4、求数列前n项和的方法:(1)直接法;(2)倒序相加法;(3)错位相减法;(4) 分组转化法;(5)裂项相消法. 【重点?难点?热点】 问题1:等差、等比数列的综合问题 “巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果 例1:设等比数列{a n}的各项均为正数,项数是偶数,它的所有项的和等于偶数项和的4倍,且第二项与第四项的积是第3项与第4项和的9倍,问数列{lg a n}的前多少项和最大?(取lg2=03,lg3=04) 思路分析突破本题的关键在于明确等比数列各项的对数构成等差数列,而等差数列中前n项和有最大值,一定是该数列中前面是正数,后面是负数,当然各正数之和最大;另外,等差数列S n是n的二次函数,也可由函数解析式求最值

解法一 设公比为q ,项数为2m ,m ∈N *,依题意有 ??? ? ?+=?--?=--?)(9)()(1)1(1)1(312131122121q a q a q a q a q q q a q q a m m ,化简得?????==?????+==+10831 , ),1(9114121 a q q q a q q 解得 设数列{lg a n }前n 项和为S n ,则 S n =lg a 1+lg (a 1q 2)+…+lg (a 1q n -1)=lg (a 1n ·q 1+2+…+(n - 1)) =n lg a 1+ 21n (n -1)·lg q =n (2lg2+lg3)-21 n (n -1)lg3 =(-23lg )·n 2+(2lg2+2 7lg3)·n 可见,当n =3lg 3lg 272lg 2+时,S n 最大 而4 .024.073.043lg 3 lg 272lg 2??+?= +=5, 故{lg a n }的前5项和最大 解法二 接前,3 1,1081= =q a ,于是lg a n =lg [108(31)n -1]=lg108+(n -1)lg 31, ∴数列{lg a n }是以lg108为首项,以lg 3 1 为公差的等差数列, 令lg a n ≥0,得2lg2-(n -4)lg3≥0, ∴n ≤4 .04 .043.023lg 3lg 42lg 2?+?=+=5 5 由于n ∈N *,可见数列{lg a n }的前5项和最大 点评 本题主要考查等比数列的基本性质与对数运算法则,等差数列与等比数列之间的联系以及运算、分析能力 演变1 等差数列{a n }的前m 项和为30,前2m 项和为100,则它前3m 项的和为_______ 点拨与提示:本题可以回到数列的基本量,列出关于d 1和a 的方程组,然后求解;或运用等差数列的性质求解. 问题2:函数与数列的综合题 数列是一特殊的函数,其定义域为正整数集,且是自变量从小到大变化时函数值的序列。注意深刻理解函数性质对数列的影响,分析题目特征,探寻解题切入点. 例2:已知函数f (x )= 4 12 -x (x <-2) (1) 求f (x )的反函数f -- 1(x ); (2) 设a 1=1, 1 1+n a =-f --1 (a n )(n ∈N *),求a n ; (3)设S n =a 12+a 22+…+a n 2,b n =S n +1-S n 是否存在最小正整数m ,使得对任意n ∈N *,有

相关文档
最新文档