线性代数_ 向量组的线性相关性与矩阵的秩_

合集下载

线性代数疑难问题解答

线性代数疑难问题解答

线性代数疑难问题解答第一章 行列式1. 排列21)1( -n n 的逆序数是2)1(-n n ,那么如何来确定它的奇偶性?解答:我们可以看一下这个排列的奇偶性随着n 的变化情况,然后找出规律。

,1=n 2)1(-n n =0,偶排列; ,2=n 12)1(=-n n ,奇排列; ,3=n 32)1(=-n n ,奇排列; ,4=n 62)1(=-n n ,偶排列; ,5=n 102)1(=-n n ,偶排列; ,6=n 152)1(=-n n ,奇排列 可以看出,奇偶性的变化以4为周期,因此我们可以总结如下:当k n 4=或14+=k n 时, 2)1(-n n 是偶数,所以排列是偶排列,当24+=k n 或34+=k n 时, 2)1(-n n 是奇数,所以排列是奇排列.2.行列式定义最基本的有哪些?答:行列式定义最基本的有以下两种: 第一种方式:用递推的方式给出,即 当11)(⨯=a A 时,规定a =A ;当n n ij a ⨯=)(A 时,规定∑∑==+=-=nj ij ij ij ij nj ji A a M a 11)1(A其中ij M 为A 中去掉元素ij a 所在的行和列后得到的1-n 阶行列式,称为A 中元素ij a 的余子式,ij j i ij M A +-=)1(称为ij a 的代数余子式。

第二种方法:对n 阶行列式A 用所有!n 项的代数和给出,即∑-==n np p p t nnn n nna a a a a a a a a a a a A2121212222111211)1(其中n p p p ,,,21 为自然数n ,,2,1 的一个排列,t 为这个排列的逆序数 第一种方式的思想是递推,其实质也是“降阶” ,在实际计算行列式中有着重要的应用。

第二种方式的思想是对二阶、三阶行列式形式的推广,更利于理解行列式的性质。

3.行列式的主要问题是什么?答:行列式的主要问题就是计算行列式的值,其基本方法是运用行列式性质,化简所给行列式而计算之。

线性代数第三章向量组的线性相关性与矩阵的秩

线性代数第三章向量组的线性相关性与矩阵的秩

第三章向量组的线性相关性与矩阵的秩何建军§3 • 1 概念与性质3.1.1向量的概念和运算1、n维向量:n个数构成的一个有序数组(a i,a2,…,a n),称为一个n维向量,记为〉=佝,a2 ,…,a n ),并称为n维行向量,a i称为〉的第i个分量,〉的转置T T(a1,a2, a n)称为n维向量。

2、相等:若a =@182,…,a n),p =(D,b2,…,b n),当且仅当a i =b i(i =1,2,…,n)时,:,:。

3、加法:」-a b!,a2 b2^ ,a n b n4、数乘:k ka1,ka2,…,ka n ,(k 为常数)5、內积:匕0 】=aQ +a?b2 + …+a“b n3.1.2向量组的线性相关性1、线性组合:给定向量组A : 对于任何一组实数匕出,…,k m,向量k V1 k^ 2肚m称为向量组A的一个线性组合,匕*?,…,k m称为这个线性组合的组合系数2、线性表示:给定向量组A : 〉1「2,i「m和向量:,如果存在一组数n n « n'1, '2, ,‘ m ,使得■- = ‘1〉1 ‘2〉2 •…-'rn'm则向量-能有向量组A线性表示,向量-是向量组A的线性组合。

3、线性相关:给定向量组A : ‘1厂2,厂m,如果存在一组不全为零的数k1 , k2 , , k m,使得kr 1 k2〉2 k m〉m=o则称向量组A是线性相关的。

4、线性无关:向量组A :r,〉2,…,〉m,不线性相关,称向量组A线性无关,即不存在不全为零的数k1,k2, , k m使得1• k2「2•■ k m m=0成立,即只有当k1二Q二=k m=0时,才有k^ 1 k2「2 ' k^' m=0成立。

(如果存在一组数k-k2,,k m 使得k V 1 k^ ■k m「m=0,则必有k1= k2 = = k m=0,称向量组A 线性无关)注:含有零向量的向量组一定线性相关。

矩阵的秩与向量组的秩一致

矩阵的秩与向量组的秩一致

矩阵的“秩”,是线性代数第一部分的核心概念。

“矩阵的秩与向量组的秩一致。

矩阵的秩就是其行(或列)向量组的秩。

”怎样证明?就当做习题练一练。

设矩阵A的秩为r ,则A必有一个r 阶子式不为0,而所有 r + 1阶子式全为 0逻辑1——r 阶子式不为0,则 r个r 维向量线性无关。

分析这是格莱姆法则推论,带来的直接判别方法。

(画外音:r个未知量 r个方程的齐次线性方程组仅有0 解的充分必要条件是其系数行列式不为0)逻辑思维链——这r 个r 维向量与A 的行(或列)向量组有何关系?逻辑2——(“线性无关,延长无关。

”定理)——已知一个n 维向量组线性无关,如果在相同的位置,给组内每个向量都增加一个分量,则所得的n + 1维向量组也线性无关。

分析不妨认为给线性无关的n 维向量组a1,a 2,…,a k 的每个向量都加上第n + 1个分量,形成一个n + 1 维向量组b1,b 2,…,b k若有一组不全为零的数c1,c2,…,c k ,使得c1b1+ c2b 2+ ---+ c k b k = 0,如何证明“这组常数只能全为0”?每个向量有n + 1 分量,向量“线性组合为0”实际上是n + 1个等式。

前n 个等式即c1 a1+ c2a2+ ---+ c k a k = 0由已知线性无关即得,这组常数只能全为0,而最后那个(第n + 1个)等式自然成立。

逻辑3 ——将线性无关的 r个r 维向量,逐次延长为矩阵A 的r 个行向量(或列向量),它们线性无关。

(潜台词:简而言之,不为0的r阶子式所在的r个行向量(或列向量)线性无关。

)逻辑思维链(关键问题)——这r 个行向量是行向量组的最大无关组吗?唯一信息——A的所有r + 1阶子式全为0分析不妨设不为0 的r 阶子式就由这r 个行的左起前r 个分量排成。

(画外音:画个示意图最好。

)任取A的一行,其左起前 r个分量形成的r 维向量,必定可以被r 阶子式的r 个行线性表示。

第四节向量组的秩和矩阵的秩

第四节向量组的秩和矩阵的秩
2 1 0 α1 −3 1 α 0 −4 1α2 −2α1 0 −4 0α3 0 0 0α4 −α3 +α2 +α1
由最后的阶梯形矩阵,得r (A)=3。 因此向量组 α1,α2 ,α3,α4 的秩也是3。
由阶梯形矩阵的最后一行,得 α4 −α3 +α2 +α1 = 0 由此可知
α4 = −α1 −α2 +α3
r( A+ B) ≤ r( A) + r(B)
证 设矩阵 A, B的列向量组分别为 α1,α2 ,⋯,αn和 1, β2 ,⋯, βn, β 则 要证
A+ B = (α1 + β1,α2 + β2 ,⋯,αn + βn ) r( A+ B) ≤ r( A) + r(B)
例2 设向量组 a = (1,0,0), a = (0,1,0), a = (0,0,1). 1 2 3 不难看出,部分组a1, a 2是线性无关的,且 a1, a 2 , a3中的任一 向量都可以由此部分组线性表示:
a1 = a1 + 0ia 2 , a 2 = 0ia1 + a 2 , a3 = a1 + a 2
向量用此极大无关组线性表示。
解 把向量 α1,α2 ,α3,α4看作一个矩阵的行向量组,得矩阵
1 −1 2 −2 A= 3 0 0 3
2 1 0 α1 4 −2 0α2 6 −1 1α3 0 0 1α4
对A仅施以初等行变换,并在矩阵右侧标注所作的变换, 把A化为阶梯形矩阵:
所以部分组a1, a 2是向量组a1, a 2 , a3的一个极大无关组。 例3 设向量组 a1, a 2 ,⋯, a s线性无关,其极大无关组就是自身。 如果一个向量组仅含零向量,则该向量组不存在极大无关组。

矩阵的秩与向量组线性相关性的判定

矩阵的秩与向量组线性相关性的判定

矩阵的秩与向量组线性相关性的判定作者:单彩虹李慧珍夏静来源:《文理导航·教育研究与实践》2016年第06期【摘要】向量组的线性相关性是线性代数中的最重要也是最基本的内容,本文通过两个例子来看一下矩阵的秩在向量组线性相关性判定中的应用。

【关键词】向量;矩阵;线性代数矩阵、向量组的线性相关性是线性代数中的最重要也是最基本的内容,它们关系密切,无法割裂开来。

矩阵是研究线性代数各类问题的载体,矩阵的秩也是判定向量组线性相关性常用的方法。

下面我们就通过两个例子来看一下矩阵的秩在判定向量组线性相关性时的应用。

向量组线性相关性判定定理向量组a1,a2,…am线性相关的充分必要条件是它所构成的矩阵A=(a1,a2,…am)的秩小于向量个数m;向量组线性无关的充分必要条件是R(A)=m。

例1设b1=a1,b2=a1+a2,…,br=a1+a2+…+ar且向量组a1,a2,…,ar线性无关,证明向量组b1,b2,…,br线性无关。

证先把向量组b1,b2,…,br由向量组a1,a2,…,ar线性表示的关系式写成矩阵形式:记为B=AK,因为detK=1,所以K是可逆矩阵,由矩阵秩的性质可知R(b1,b2,…,br)=(a1,a2,…,ar)又因为a1,a2,…,ar线性无关,由向量组线性相关性判定定理可知R(a1,a2,…,ar)=r,从而有R(b1,b2,…,br)=r,再次运用定理知向量组b1,b2,…,br线性无关。

例2 设b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=a4+a1,证明向量组b1,b2,…,br线性相关。

证一根据题设可得b1-b2+b3-b4=(a1+a2)-(a2+a3)+(a3+a4)-(a4+a1)=0由定义,知向量组b1,b2,…,br线性相关。

证二两向量组表示的矩阵形式为:因为detK=0,所以R(K)由矩阵秩的性质知R(b1,b2,b3,b4)≤R(K)由判定定理,向量组b1,b2,…,br线性相关。

向量组的线性相关性与矩阵的秩

向量组的线性相关性与矩阵的秩

第三章 向量组的线性相关性与矩阵的秩向量是研究代数问题的重要工具。

在解析几何里,曾经讨论过二维与三维向量。

但是,在很多实际问题中,往往需要研究更多维的向量。

例如,描述卫星的飞行状态需要知道卫星的位置()z y x ,,、时间t 以及三个速度分量z y x v v v ,,,这七个量组成的有序数组()z y xv v vt z y x ,,,,,,称为七维向量。

更一般地,本章将引入n 维向量的概念,定义向量的线性运算,并在此基础上讨论向量组的线性相关性,研究向量组与矩阵的秩、向量组的正交化等问题。

这将为以后利用向量的线性关系来分析线性方程组解的存在性,化二次型为标准形等奠定理论上的基础。

§1 n 维向量作为二维向量、三维向量的推广,现给出n 维向量的定义定义1 n 个数n a a a ,,,21 组成的有序数组(n a a a ,,,21 ),称为n 维向量。

数i a 称为向量的第i 个分量(或第i 个分量)。

向量通常用希腊字母γβα,, ,等来表示。

向量常写为一行α=(n a a a ,,,21 )有时为了运算方便,又可以写为一列=α⎪⎪⎪⎪⎪⎭⎫⎝⎛n a a a 21前者称为行向量,后者称为列向量。

行向量、列向量都表示同一个n 维向量。

设),,,(),,,,(2121n n b b b a a a ==βα都是n 维向量,当且仅当它们各个对应的分 量相等,即),,2,1(n i b a i i ==时,称向量α与向量β相等,记作,βα=。

分量全为零的向量称为零向量,记为,即 0=)0,,0,0( 若),,,(21n a a a =α,则称),,,(21n a a a --- 为α的负向量,记为α-。

下面讨论n 维向量的运算。

定义2 设),,,(),,,,(2121n n b b b a a a ==βα都是n 维向量,那么向量),,,(2211n n b a b a b a +++ 叫做向量α与β的和向量,记做βα+,即),,,(2211n n b a b a b a +++=+ βα向量α与β的差向量可以定义为α+)(β-,即),,,()(2211n n b a b a b a ---=-+=- βαβα定义3 设),,,(21n a a a =α是n 维向量,λ是一个数,那么向量),,,(21n a a a λλλ 叫做数λ与向量α的数量乘积(简称数乘),记为λα,即),,,(21a a a λλλλα =向量的和、差及数乘运算统称为向量的线性运算。

线性代数 线性相关性与秩

线性代数 线性相关性与秩

将(r +1)阶行列式Dj按最后一列展开,有:
a1 j A1 + a2 j A2 +
α1 A1 + α 2 A2 +
+ arj Ar + ar +1, j Dr = 0
j = 1,2, ,n
按向量形式写,上式为:
+ α r Ar + α r +1 Dr = 0 ∵ Dr ≠ 0, ⇒ α1 , α 2 , , α r +1线性相关, 从而α1 , α 2 , , α m 线性相关。
若存在一组不全为零的数 k1 , km , 使向量组 α1 , k1α1 + kmα m ≠ 0, 则 α1 , α m线性无关
α m的线性组合
× √
向量组 α1 ,
α m (m ≥ 2) 线性无关 ⇔ 该向量组中任意t (1 ≤ t ≤ m)个线性无关
向量组 α1 ,
α m (m ≥ 2) 中任取两个向量线性无关 ⇒ 该向量组线性无关
称为向量组的秩,记为 r (α1 , α 2 , , α m ). r(0)=0 注:(1)线性无关的向量组的秩=向量的个数。 (2)向量组线性无关⇔秩=向量个数。
若α1 , α 2 , , α m 可由β1 , β 2 , , β s 线性表示,则 定理3: r (α1 , α 2 , , α m ) ≤ r ( β1 , β 2 , , βs )
注: 1.线性无关向量组的极大无关组就是其本身;
2.向量组与其极大无关组等价; 3.同一个向量组的极大无关组不惟一,但它们之间是 等价的.
例:求向量组的极大无关组. α1 = (1,2,−1), α 2 = ( 2,−3,1), α 3 ⎛1 2 ⎛ α1 ⎞ ⎛ 1 2 − 1⎞ ⎜ ⎟ ⎜ ⎟ ⎜ A = ⎜α 2 ⎟ = ⎜ 2 − 3 1 ⎟ → ⎜ 0 − 7 ⎜0 − 7 ⎜ α ⎟ ⎜ 4 1 − 1⎟ ⎝ ⎠ ⎝ 3⎠ ⎝

第四章-向量组与矩阵的秩

第四章-向量组与矩阵的秩
…,
e n 线性无关. 证毕.
例4
维向量组必定线性相关. 含有零向量的 n 维向量组必定线性相关
证 若向量组 a1, a2, …, as 含有零向量,不妨设 a1= 0, 则有 1⋅a1+0⋅a2+ …+ 0⋅as = 0,
其系数不全为0,按定义此向量组线性相关。证毕。
定理2 定理2 当 s ≥2 时,向量组 a1, a2, …, as 线性相关的 充要条件是其中至少 充要条件是其中至少有一个向量能由其余向量线性 是其中至少有一个向量能由其余向量线性 表2+ …+xn an = b,

定理 1 对于方程组Ax=b, , 对于方程组 (1) Ax=b有解 有解 性表示; 性表示 向量b能由向量组 向量 能由向量组a1, a2, …,an 线 能由向量组
(2) Ax=b有唯一解 向量 能由向量组 1, a2, …,an 能由向量组a 有唯一解 向量b能由向量组 并且表示方法唯一. 并且表示方法唯一 线性表, 线性表,
关高( 亦无关; 相关矮( 亦相关. 矮(短)无关高(长)亦无关;高(长)相关矮(短)亦相关.
例6 证明:对于矩阵 满足B=PA, 如果 的列 如果A的列 证明:对于矩阵A, B, P满足 满足 向量组线性相关, 的列向量组也线性相关。 向量组线性相关,则B的列向量组也线性相关。 的列向量组也线性相关 证 由已知,方程Ax=0有非零解, 设u为其一个非零解,则有Au=0. 则Bu=PAu=0, 则u也是Bx=0的非零解, 从而u也是Bx=0的一个非零解, 因此B的列向量组线性相关。证毕。
推论5 推论5 向量组a 线性无关, 向量b不能由 不能由a 向量组 1,…ar 线性无关 , 向量 不能由 1,…ar 线性表示,则向量组a 线性无关。 线性表示,则向量组 1,…ar , b线性无关。 线性无关
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上一页
定理1
若矩阵 A 中至少有一个 k 阶子式不为零,而 所有的 k+1 阶子式全为零,则 r ( A ) = k .
证: 由于 A 的所有 k + 1 阶子式全为零,则 A 的任 一 k + 2 阶子式按某行( 列 )展开后必为零,进而全 部高于 k + 1 阶的子式全为零。 又由于 A 中至少有一个 k 阶子式不为零, 故 A 的最高阶非零子式为 k 阶,因此 r ( A ) = k .
定义2
设 A 为 m n 矩阵,在 A 中任取 k 行 k 列 ( 1 ≤ k ≤ min{m, n}), 由交叉处的 k2 个元素 ( 不改变它们的相对 位置 ) 所构成的方阵称为A的一个k 阶子阵,其行列式 称为 A 的一个 k 阶子式。
取矩阵 A 的前 k 行前 k 列所构成的子阵称为矩阵 A 的 k 阶顺序主子阵,其行列式称为 A 的 k 阶顺序主子 式。
反之, 如果 k1bi1 krbir 0,

k1Pai1
kr Pair
两边左乘P1
0 k1ai1
krair
0.
因此结论成立。
上一页
推论1
设矩阵A, B, P 满足 B = PA,其中P为 可逆阵。则 (1) r(A) = r(B); (2) A, B 的列向量组的极大无关组一 一对应,并 且其余向量由极大无关组线性表示相同
a j k1ai1 krair b j k1bi1 krbir .
推论2
矩阵 A 经初等行变换化为矩阵 B, 则 A, B具有定 理2及推论1的结论。
上一页
例1
1 1 2 1
求矩阵 A 3 1
0
2
的秩.
1 3 4 4
解: 对矩阵A进行初等行变换
1 1 A 3 1
2 0
1
2
r23r1 r3r1
上一页
定义3
矩阵 A 的非奇异子阵(可逆子阵、非零子式) 的最高阶数称为矩阵 A 的秩,记为 r ( A ). 零矩阵的秩为0。
由上定义可知: (1) 若 A 为 m n 矩阵 , 则 r ( A ) ≤min{ m, n} ; (2) 若 A 为 n 阶方阵 , 则 r ( A ) ≤ n : ① r (A) = n :即 | A | 0 ( 非奇异阵),称 A 为满秩阵 , ② r (A) < n :即 | A | = 0 ( 奇异方阵),称 A 为降秩阵 . (3) 增广矩阵的秩不小于原矩阵的秩,即 r( A )≤ r([A,B]).
0 4 2 如: A 1 0 0 , r (A) = 行秩 = 列秩 = 2.
0 2 1
定理2
设矩阵A, B, P 满足 B = PA,其中P为 可逆阵。则A 中
任意 r 个列向量 ai1 ,, air 和 B 中的 r 个列向量bi1 ,,bir ,
满足相同的线性表达式 ,从而具有相同的线性相关性。
若 r < n,由定义,矩阵 A 必有一个 r 阶可逆子阵,不
妨设其 r 阶顺序主子阵Ar可逆。
A
Ar
*
**,
由引理1, Ar列向量组线性无关。 由“短无关长亦无关”可知,向量组 a1 , … , ar 线性 无关,因此 s ≥ r。
上一页
由于 A 的列向量组秩为 s, 因此包含 s 个线性无关的向 量。不妨设 a1 , … , as 线性无关,且设矩阵 B = (a1, … , as ), 则矩阵 A = [B, C]。 由引理1可知,r(B) = s。 再由 s = r(B) ≤ r([B, C]) = r(A) = r, 从而 r = s,即 r(A) = A的列秩。 又因为:A的行秩 = AT的列秩 = r(AT) = r(A),此性质可证。
5 0
¼ r2 r2+r2
1 0
0 1
1
2 3 2
1
4 5
证明: 设A = (a1, …, an), B = (b1, …, bn), 则B = PA 可以表示为:
(b1, …, bn ) = P(a1, …, an), 从而 bi = Pai , i=1, 2, …, n.
对矩阵A给定的r个列向量,如果存在r个实数使得
k1ai1 krair 0,
则 k1Pai1 kr Pair 0 k1bi1 krbir 0.
注:采用定义3或定理1求矩阵的秩时需计算 A 的各阶 子式,计算量可能较大,因此往往需要借助矩阵秩的性 质来求秩.
上一页
2、矩阵秩的性质
性质1
矩阵的秩等于其转置的秩,即 r(A) = r(AT).
利用行列式的性质1可证明此性质(留给同学证明)。
引理1
对于m×n 型矩阵 A , r(A) = n A 的列向量组 线性无关。
1 0
1 4
2 6
1
5
1 3 4 4
0 4 6 5
1 1 2 1
r3r2
0
4
6
5
= B,
0 0 0 0
矩阵 B 称为行阶梯形矩阵. 易知 B 的行秩为2,从而
r (A) = r (B) = B的行秩= 2.
上一页
若对矩阵 B 继续进行初等行变换
1 1 2 1
B = 0
0
4 0
6 0
上一页
如:
选取第1行与第2列交叉处元素的为 A 的一个1阶子阵 (4);
选取第1、2行与第1、2列的元素为 A 的一个2阶子阵 :
0 1
4 0
;
而A有唯一的一个3阶子阵:A.
注:m n 矩阵 A 的 k 阶子阵(子式)共有 CnkCmk 个 (1 ≤ k ≤ min (m, n ) ),这些子式中有的为零,有的不 为零。
或:r(A)=A的列数 A 的列向量组线性无关。
证明略。
核心性质
性质2
(三秩相等定理) r(A) = A 的行秩 = A 的列秩.
上一页
证明:设 A = (a1, …, an), r (A) = r, A 的列秩为 s, 先证 r = s。
若 r = n, 由引理1,A 的列秩也为 n,此时 r = s = n.
第4.2节、矩阵的秩
关于矩阵有三个重要的数值特征: • 行列式:方阵,实数,一个 • 秩:任何矩阵,非负整数,一个 • 特征值:方阵,实数,多个
1、矩阵的秩
定义1
矩阵行向量组的秩称为矩阵的行秩. 矩阵列向量组的 秩称为矩阵的列秩。
上一页
0 4 2
如: A 1 0
0
0 2 1
其行秩与列秩都为2.
相关文档
最新文档