向量组与矩阵的秩
第三章 向量组的线性相关性与矩阵的秩

第三章 向量组的线性相关性与矩阵的秩向量是研究代数问题的重要工具。
在解析几何里,曾经讨论过二维与三维向量。
但是,在很多实际问题中,往往需要研究更多维的向量。
例如,描述卫星的飞行状态需要知道卫星的位置()z y x ,,、时间t 以及三个速度分量z y x v v v ,,,这七个量组成的有序数组()z yxv vv t z y x ,,,,,,称为七维向量。
更一般地,本章将引入n 维向量的概念,定义向量的线性运算,并在此基础上讨论向量组的线性相关性,研究向量组与矩阵的秩、向量组的正交化等问题。
这将为以后利用向量的线性关系来分析线性方程组解的存在性,化二次型为标准形等奠定理论上的基础。
§1 n 维向量作为二维向量、三维向量的推广,现给出n 维向量的定义定义1 n 个数n a a a ,,,21 组成的有序数组(n a a a ,,,21 ),称为n 维向量。
数i a 称为向量的第i 个分量(或第i 个分量)。
向量通常用希腊字母γβα,, ,等来表示。
向量常写为一行α=(n a a a ,,,21 )有时为了运算方便,又可以写为一列=α⎪⎪⎪⎪⎪⎭⎫⎝⎛na a a 21前者称为行向量,后者称为列向量。
行向量、列向量都表示同一个n 维向量。
设),,,(),,,,(2121n n b b b a a a ==βα都是n 维向量,当且仅当它们各个对应的分 量相等,即),,2,1(n i b a i i ==时,称向量α与向量β相等,记作,βα=。
分量全为零的向量称为零向量,记为0,即 0=)0,,0,0(若),,,(21n a a a =α,则称),,,(21n a a a --- 为α的负向量,记为α-。
下面讨论n 维向量的运算。
定义2 设),,,(),,,,(2121n n b b b a a a ==βα都是n 维向量,那么向量),,,(2211n n b a b a b a +++ 叫做向量α与β的和向量,记做βα+,即),,,(2211n n b a b a b a +++=+ βα 向量α与β的差向量可以定义为α+)(β-,即),,,()(2211n n b a b a b a ---=-+=- βαβα定义3 设),,,(21n a a a =α是n 维向量,λ是一个数,那么向量),,,(21n a a a λλλ 叫做数λ与向量α的数量乘积(简称数乘),记为λα,即),,,(21a a a λλλλα =向量的和、差及数乘运算统称为向量的线性运算。
线性代数第三章向量组的线性相关性与矩阵的秩

第三章向量组的线性相关性与矩阵的秩何建军§3 • 1 概念与性质3.1.1向量的概念和运算1、n维向量:n个数构成的一个有序数组(a i,a2,…,a n),称为一个n维向量,记为〉=佝,a2 ,…,a n ),并称为n维行向量,a i称为〉的第i个分量,〉的转置T T(a1,a2, a n)称为n维向量。
2、相等:若a =@182,…,a n),p =(D,b2,…,b n),当且仅当a i =b i(i =1,2,…,n)时,:,:。
3、加法:」-a b!,a2 b2^ ,a n b n4、数乘:k ka1,ka2,…,ka n ,(k 为常数)5、內积:匕0 】=aQ +a?b2 + …+a“b n3.1.2向量组的线性相关性1、线性组合:给定向量组A : 对于任何一组实数匕出,…,k m,向量k V1 k^ 2肚m称为向量组A的一个线性组合,匕*?,…,k m称为这个线性组合的组合系数2、线性表示:给定向量组A : 〉1「2,i「m和向量:,如果存在一组数n n « n'1, '2, ,‘ m ,使得■- = ‘1〉1 ‘2〉2 •…-'rn'm则向量-能有向量组A线性表示,向量-是向量组A的线性组合。
3、线性相关:给定向量组A : ‘1厂2,厂m,如果存在一组不全为零的数k1 , k2 , , k m,使得kr 1 k2〉2 k m〉m=o则称向量组A是线性相关的。
4、线性无关:向量组A :r,〉2,…,〉m,不线性相关,称向量组A线性无关,即不存在不全为零的数k1,k2, , k m使得1• k2「2•■ k m m=0成立,即只有当k1二Q二=k m=0时,才有k^ 1 k2「2 ' k^' m=0成立。
(如果存在一组数k-k2,,k m 使得k V 1 k^ ■k m「m=0,则必有k1= k2 = = k m=0,称向量组A 线性无关)注:含有零向量的向量组一定线性相关。
矩阵的秩与向量组的秩一致

矩阵的“秩”,是线性代数第一部分的核心概念。
“矩阵的秩与向量组的秩一致。
矩阵的秩就是其行(或列)向量组的秩。
”怎样证明?就当做习题练一练。
设矩阵A的秩为r ,则A必有一个r 阶子式不为0,而所有 r + 1阶子式全为 0逻辑1——r 阶子式不为0,则 r个r 维向量线性无关。
分析这是格莱姆法则推论,带来的直接判别方法。
(画外音:r个未知量 r个方程的齐次线性方程组仅有0 解的充分必要条件是其系数行列式不为0)逻辑思维链——这r 个r 维向量与A 的行(或列)向量组有何关系?逻辑2——(“线性无关,延长无关。
”定理)——已知一个n 维向量组线性无关,如果在相同的位置,给组内每个向量都增加一个分量,则所得的n + 1维向量组也线性无关。
分析不妨认为给线性无关的n 维向量组a1,a 2,…,a k 的每个向量都加上第n + 1个分量,形成一个n + 1 维向量组b1,b 2,…,b k若有一组不全为零的数c1,c2,…,c k ,使得c1b1+ c2b 2+ ---+ c k b k = 0,如何证明“这组常数只能全为0”?每个向量有n + 1 分量,向量“线性组合为0”实际上是n + 1个等式。
前n 个等式即c1 a1+ c2a2+ ---+ c k a k = 0由已知线性无关即得,这组常数只能全为0,而最后那个(第n + 1个)等式自然成立。
逻辑3 ——将线性无关的 r个r 维向量,逐次延长为矩阵A 的r 个行向量(或列向量),它们线性无关。
(潜台词:简而言之,不为0的r阶子式所在的r个行向量(或列向量)线性无关。
)逻辑思维链(关键问题)——这r 个行向量是行向量组的最大无关组吗?唯一信息——A的所有r + 1阶子式全为0分析不妨设不为0 的r 阶子式就由这r 个行的左起前r 个分量排成。
(画外音:画个示意图最好。
)任取A的一行,其左起前 r个分量形成的r 维向量,必定可以被r 阶子式的r 个行线性表示。
线性代数_ 向量组的线性相关性与矩阵的秩_

上一页
定理1
若矩阵 A 中至少有一个 k 阶子式不为零,而 所有的 k+1 阶子式全为零,则 r ( A ) = k .
证: 由于 A 的所有 k + 1 阶子式全为零,则 A 的任 一 k + 2 阶子式按某行( 列 )展开后必为零,进而全 部高于 k + 1 阶的子式全为零。 又由于 A 中至少有一个 k 阶子式不为零, 故 A 的最高阶非零子式为 k 阶,因此 r ( A ) = k .
定义2
设 A 为 m n 矩阵,在 A 中任取 k 行 k 列 ( 1 ≤ k ≤ min{m, n}), 由交叉处的 k2 个元素 ( 不改变它们的相对 位置 ) 所构成的方阵称为A的一个k 阶子阵,其行列式 称为 A 的一个 k 阶子式。
取矩阵 A 的前 k 行前 k 列所构成的子阵称为矩阵 A 的 k 阶顺序主子阵,其行列式称为 A 的 k 阶顺序主子 式。
反之, 如果 k1bi1 krbir 0,
则
k1Pai1
kr Pair
两边左乘P1
0 k1ai1
krair
0.
因此结论成立。
上一页
推论1
设矩阵A, B, P 满足 B = PA,其中P为 可逆阵。则 (1) r(A) = r(B); (2) A, B 的列向量组的极大无关组一 一对应,并 且其余向量由极大无关组线性表示相同
a j k1ai1 krair b j k1bi1 krbir .
推论2
矩阵 A 经初等行变换化为矩阵 B, 则 A, B具有定 理2及推论1的结论。
上一页
例1
1 1 2 1
求矩阵 A 3 1
0
2
的秩.
1 3 4 4
向量组与矩阵的秩

1 2 0 8 6
0 0 0 9 8
1 2 0 1 2
1 2 0 1 2
r3 1 r2
0
2
3
2
0 0 0 0
1
r3
r4
0
2
3
2
0
0 0 0 9
1 8
B
0 0 0 9 8
0 0 0 0 0
R{1,2 , ,n} n ,则向量组 1,2 , ,n 线性无关。
如果向量组的秩小于向量组所含向量的个数,即
R{1,2 , ,n} n ,则向量组 1,2 , ,n 线性相关。
性质2.5 (1)若向量组A可由向量组B线性表示,则r(A)<=r(B). (2) 等价向量组的秩相同.
如果 A 为 mχ n 矩阵,则 R(A)≤ min (m,n)。
特别当 R(A)=m 时,称矩阵 A 为行满秩;当 R(A)=n 时,称矩
阵 A 为列满秩;当 R(A)=m=n 时,称矩阵 A 为满秩矩阵。
例 求矩阵的秩
2 1 0 3 2
B
0
3
1 2
5
0 0 0 4 3
1 1,2,0,1,2 0,1,0,1,3 1,3,0,2,4 1,2,1,1
解法1:构造矩阵
1 0 1 1
1 0 1 1
1 0 1 1
A
2
1
3
2
r2
2r1
0
1
1
0
r4
r2
0
第四章-向量组与矩阵的秩

e n 线性无关. 证毕.
例4
维向量组必定线性相关. 含有零向量的 n 维向量组必定线性相关
证 若向量组 a1, a2, …, as 含有零向量,不妨设 a1= 0, 则有 1⋅a1+0⋅a2+ …+ 0⋅as = 0,
其系数不全为0,按定义此向量组线性相关。证毕。
定理2 定理2 当 s ≥2 时,向量组 a1, a2, …, as 线性相关的 充要条件是其中至少 充要条件是其中至少有一个向量能由其余向量线性 是其中至少有一个向量能由其余向量线性 表2+ …+xn an = b,
⇒
定理 1 对于方程组Ax=b, , 对于方程组 (1) Ax=b有解 有解 性表示; 性表示 向量b能由向量组 向量 能由向量组a1, a2, …,an 线 能由向量组
(2) Ax=b有唯一解 向量 能由向量组 1, a2, …,an 能由向量组a 有唯一解 向量b能由向量组 并且表示方法唯一. 并且表示方法唯一 线性表, 线性表,
关高( 亦无关; 相关矮( 亦相关. 矮(短)无关高(长)亦无关;高(长)相关矮(短)亦相关.
例6 证明:对于矩阵 满足B=PA, 如果 的列 如果A的列 证明:对于矩阵A, B, P满足 满足 向量组线性相关, 的列向量组也线性相关。 向量组线性相关,则B的列向量组也线性相关。 的列向量组也线性相关 证 由已知,方程Ax=0有非零解, 设u为其一个非零解,则有Au=0. 则Bu=PAu=0, 则u也是Bx=0的非零解, 从而u也是Bx=0的一个非零解, 因此B的列向量组线性相关。证毕。
推论5 推论5 向量组a 线性无关, 向量b不能由 不能由a 向量组 1,…ar 线性无关 , 向量 不能由 1,…ar 线性表示,则向量组a 线性无关。 线性表示,则向量组 1,…ar , b线性无关。 线性无关
向量组的秩与矩阵秩的关系

向量组1
a12
a22
a1n a2n
am1 am2 amn
A的列向量组为1,2 ,,n ; A的行向量组为 1T , 2T ,, mT.
➢ 称A的列向量组的秩为A的列秩;
➢ 称A的行向量组的秩为A的行秩.
向量组的秩与矩阵秩的关系
设矩阵A
1 0
1 1
1 2
,试确定矩阵的秩,行秩,列秩.
0 0 0
➢ 矩阵A的秩为 2;
➢ A的行向量组为:1T 1 1 1, 2T 0 1 2, 3T 0 0 0.
➢
1T
,
T 2
是
A 的行向量组的一个极大无关组,A 的行秩是2.
向量组的秩与矩阵秩的关系
1
1
1
A的列向量组为 1 0,2 1,3 2.
感谢观赏
小学教育专业群教学资源库
向量组的秩与矩阵秩的关系
Lorem Ipsum is simply dummy text of the printing and typesetting industry
01
向量组的秩与矩阵秩的关系
向量组的秩与矩阵秩的关系
含有限个向量的有序向量组与矩阵一一对应
Amn 1 2 n
向量组的秩与对应的矩阵的秩具有什么联系?
0
0
0
由于 1,2线性无关,3 22 1 ,故 1,2是A的列向量
组的一个极大无关组,因而A的列秩为2.
在本例中,我们发现矩阵的秩等于其行秩和列秩! 这一结论是否具有普遍意义呢?
向量组的秩与矩阵秩的关系
回顾
1 0
0 1
0 0
c11 c21
c1,nr c2,nr
A B 0 0 1 cr1 cr,nr
向量组的秩与矩阵的秩的关系_线性代数_[共4页]
![向量组的秩与矩阵的秩的关系_线性代数_[共4页]](https://img.taocdn.com/s3/m/1ce617dcf78a6529647d53f1.png)
86线性代数规定只含零向量的向量组的秩为0. 由定义3.3.2可知,例1中()123 ,,2r =ααα.一般来说,要求向量组的秩,首先需要求出极大无关组,若按照定义3.3.1去求极大无关组比较麻烦,尤其是定义3.3.1中的第二个条件的判断很困难,在3.3.2节我们还将介绍另外的方法求向量组的极大无关组以及秩.由向量组秩的定义可得:(1)向量组12,,,s "ααα线性相关()12,,,s r s ⇔<ααα";向量组12,,,s "ααα线性无关(1,r ⇔α)2,,s s =αα"(线性无关的向量组的极大无关组就是该向量组本身). (2)任何一个部分组的秩≤向量组的秩≤向量组中向量的个数. (3)若向量组12,,,s "ααα可由向量组12,,,t βββ"线性表示,则()()1212,,,,,,s t r r αααβββ""≤.证 设12,,,r i i i ααα"是向量组12,,,s "ααα的极大无关组,12,,,m j j j βββ"是向量组12,,,t βββ"的极大无关组. 因为向量组12,,,s "ααα可由向量组12,,,t βββ"线性表示,而向量组与极大无关组是等价的,所以12,,,r i i i ααα"可由12,,,m j j j βββ"线性表示. 又因为12,,,r i i i ααα"线性无关,根据推论3.2.7,得r m ≤,即()()1212,,,,,,s t r r αααβββ""≤.证毕.(4)等价的向量组具有相同的秩.证 设向量组12,,,s "ααα与向量组12,,,t βββ"等价,它们的秩分别为r 和m . 一方面,向量组12,,,s "ααα能由向量组12,,,t βββ"线性表示,则有r m ≤;另一方面,向量组12,,,t βββ"能由向量组12,,,s "ααα线性表示,则m r ≤. 综合这两方面的结论,可得r m =,即等价的向量组的秩相等.证毕.需要注意的是,若两个向量组的秩相等,它们不一定等价.如向量组()()121,2,1,2,4,2=−=−αα,1α是向量组12,αα的极大无关组,秩为1;而向量组()()120,2,1,0,4,2==ββ,1β是向量组12,ββ的极大无关组,秩为1. 两个向量组的秩相等,但是这两个向量组不等价.例2 试证:若一个向量组的秩为r ,则在向量组内,任意r 个线性无关的向量都构成它的一个极大无关组.证 设12,,,r i i i ααα"为向量组12,,,s "ααα中r 个线性无关的向量. 任取{}12,,,j s ∈αααα",如果 {}12,,,rj i i i ∈αααα",则12,,,,r ji i i αααα"线性相关;如果{}12,,,rj i i i ∉αααα",因为向量组12,,,,r j i i i αααα"的秩不超过向量组12,,,s "ααα的秩,所以()12,,,,1r j i i i r r r <+αααα"≤,于是向量组12,,,,r j i i i αααα"线性相关. 从而12,,,r i i i ααα"是向量组12,,,s "ααα的一个极大无关组.3.3.2 向量组的秩与矩阵的秩的关系由于矩阵和向量组之间存在着一定的关系,所以向量组的秩与矩阵的秩之间也有一定的关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回
上一页 下一页
定理2 设向量组
线性无关,而向量组
线性相关,则 能由向量组
线性表出,且表示式是唯一的。
证 由于
线性相关,就有不全为
零的数k1 , k2 ,…, kt , k,使
由
线性无关有k≠0。(否则,
线
性相关)因此
即 可由
线性表出。
返回
上一页 下一页
设 为任意两个表达式。 由
和
线性无关
得到
证 对列向量来证明定理。
这里 A1 是列向量
构成的 r× s矩阵.
返回
上一页 下一页
如果
线性相关,就有一个非零的s1矩阵X,使
因此,
也线性相关,即(1)式成立。
利用(1)式,用反证法容易证明(2)式也成立。
返回
上一页 下一页
引理1 n阶方阵A的行列式等于零的充分必要条 件是A的行(列)向量组线性相关。
称为 的负向量,记为 。
向量的减法定义为
返回
上一页 下一页
向量的加法与数乘性质
满足(1)—(8)的 运算称为线性运算。
返回
上一页 下一页
§2 线性相关与线性无关
矩阵与向量的关系:
通常把维数相同的一组向量简称为一个向量组,n
维行向量组
可以排列成一个s×n分块矩阵
其中 为由A的第i行形成的子块,
称为A的行向量组。
返回
上一页 下一页
当
为列向量时,它们线性相关就是
指有非零的s×1矩阵
,使
.
定义7 向量α称为向量组β1,β2,…,βt的一个
线性组合,或者说α可由向量组β1,β2,…,βt线
性表出(示),如果有P中(经常省略P中)常数k1,k 2,…,kt使
α=k1β1+k2β2+…+ktβt.
此时,也记
返回
上一页 下一页
(2)对称性: 如果向量组
等价,那么
也与
与它自己等价;
与 等价;
(3)传递性: 如果向量组
等价,而向量组
又与
与 等价, 那么
向量组
与
等价。
返回
上一页 下一页
§3 线性相关性的判别定理
称一个向量组中的一个部分向量组为原向量组的 部分组。
定理3 有一个部分组线性相关的向量组线性相关。
证 设向量组
有一个部分组线性相关。
能由向量组 的极大线性无关组可
由
的极大线性无关组线性表出。
因此
的秩不超过
的秩。
定理9 向量组的任意线性无关的部分组都可
扩充为一个极大线性无关组。
推论 秩为r的向量组中任意含r个向量的线
性无关的部分组都是极大线性无关组。
返回
上一页 下一页
例 求向量组α1=(1,-1,0,3) ,α2=(0,1,-1,2) , α3 =(1,0,-1,5),α4=(0,0,0,2)的一个极大线性无关组及秩.
推论 当m>n时, m个n维向量组线性相关。
练习 讨论下列矩阵的行向量组的线性相关性:
1 2 3
1 3 2
B 2
2
1 ;
C
0
2 1.
3 4 3
2 0 1
由于|B|=2≠0,因此B的行(列)向量组线性无
关;
由于|C|=0,所以C的行(列)向量组线性相关.
返回
上一页 下一页
定理8 如果向量组 线性表出且 s > t ,那么
l1=h1 , l2=h2 , …,lt=ht
因此表示式是唯一的。
定理 2′ 若α 可由向量组β1,β2,…,βt 线性表出,
且表示式是唯一的, 则β1,β2,…,βt 线性无关.
返回
上一页 下一页
定义8 如果向量组
中每个向量都
可以由
线性表出,就称向量组
可由
线性表出,如果两个向量组互相
可以线性表出,就称它们等价。
的线性相关性.
解 对任意的常数k1,k2, k3都有
k1α1+k2α2+ k3α3=( k1+k3,k1+2k2+3k3,k1+5k2+6k3 ).
所以
当且仅当
k1α1+k2α2+ k3α3=0
kk11
2k2
k3 3k3
0 0
(1) (2)
k1 5k2 6k3 0
(3)
返回
上一页 下一页
由(1)得
行列式|A|≠0. 由于
返回
上一页 下一页
1
A
2
M
1
2
L
n
11 12 L
n
21
M
22
M
L
n1 n2 L
在上式两端取行列式,得
1n
2
n
M
n
n
|A|2=|A′||A|=D
故|A|≠0
D≠0,
所以α1,α2,…,αn线性无关
D≠0.
返回
上一页 下一页
定理7 n+1个n维向量组
必线性相关。
解令
β=k1α1+k2α2+k3α3+k4α4
于是得线性方程组
因为
k1 k2 k3 k4 1
kk11
k2 k2
k3 k3
k4 k4
2 1
k1 k2 k3 k4 1
11 1 1
1 1 1 1
D
16 0
1 1 1 1
1 1 1 1
返回
上一页 下一页
由克莱姆法则求出
所以
5
1
n维列向量组
可以排成一个n×s矩阵
其中 为由B的第j列形成的子块,
称为B的列向量组。
返回
上一页 下一页
定义6 向量组
称为线性相关的,如果
有P中不全为零的数k1,k2,…,ks,使
反之,如果只有在k1=k2=…=ks=0时上式才成立,就
称
线性无关。
当
是行向量组时,它们线性相关就是指
有非零的1×s矩阵(k1,k2,…,ks)使
每一个向量组都可以经它自身线性表出。
如果向量组 线性表出,向量组 线性表出,那么向量组
线性表出。
可以经向量组 可以经向量组 可以经向量组
返回
上一页 下一页
如果
有
向量组
中每一个向量都可以经向量组
线性表出。因而,向量组
可以经向量组
线性表出。
返回
上一页 下一页
向量组的等价具有下述性质:
(1)自反性:向量组
的话),所得的部分组都线性相关。
例 在向量组
中, 为它的一个极大线性无关组。
首先,由 与 的分量不成比例, 线性无关。
再添入 以后,由
可知所得部分组线
性相关,不难验证
也为一个极大线性无关组。
返回
上一页 下一页
定义9' 一向量组的一个部分组称为一个极大 线性无关组,如果这个部分组本身是线性无关的, 并且这向量组中任意向量都可由这部分组线性表出。
k2
0 7
2k2 4
由第一个方程得k1=0,代入第二个方程得k2=7,
但k2不满足第三个方程,故方程组无解.
所以γ不能由α,β线性表出.
返回
上一页 下一页
定理1 向量组
(s≥2)线性相关的充
要条件是其中至少有一个向量能由其他向量线性表出。
证 充分性:设
中有一个向量能由其
他向量线性表出,不妨设
所以
证 对任意的常数k1 , k2 , … , ks,
返回
上一页 下一页
上两式只是各分量的排列顺序不同,因此
当且仅当
所以
和
有相同的线性相关性。
返回
上一页 下一页
定理5 在 r 维向量组
的各向量添上 n - r
个分量变成n维向量组
。
(1)如果
线性相关,
那么 (2)如果
也线性相关。 线性无关,
那么
也线性无关。
ai=bi,i=1,2,…,n
就称这两个向量相等,记为
。
定义4 向量
(a1+b1 ,a2+b2 ,…,an+bn)
称为 与 的和,记为
。称向量
(ka1,ka2,…,kan) 为 与k(k∈P)的数量乘积,简称数乘,记为
返回
上一页 下一页
定义5 分量全为零的向量 (0,0,…,0)
称为零向量,记为0。 与-1的数乘 (-1) =(-a1,-a2,…,-an)
设这个部分组为
,则有不全为零的数
k1 , k2 , … , kr,使
因此
也线性相关。
推论 含有零向量的向量组必线性相关。
返回
上一页 下一页
定理4 设p1 , p2 , …, pn为1,2,…,n的一个排列,
和
为两向量组,其中
即
是对
各分量的顺序进行重
排后得到的向量组,则这两个向量组有相同的线
性相关性。
上一页 下一页
例 设向量组
线性无关,
,
,试证向量组
线性无关。 证 对任意的常数x1 , x2 , x3 都有
设有k1,k2,k3,使
由
线性无关,故有
, 也
由于上述方程组的解只有 k1=k2=k3=0
所以
线性无关。
返回
上一页 下一页
α4=(1例,-1设,-1α,1)1,β=(=1,(11,,12,,11,)1,α).试2问=(1β,1能,-1否,-1由),αα31=,(α1,-21,,α1,-31, ), α4线性表出?若能,写出具体表达式.