矩阵的秩与向量组的秩一致

合集下载

第四节向量组的秩和矩阵的秩

第四节向量组的秩和矩阵的秩
2 1 0 α1 −3 1 α 0 −4 1α2 −2α1 0 −4 0α3 0 0 0α4 −α3 +α2 +α1
由最后的阶梯形矩阵,得r (A)=3。 因此向量组 α1,α2 ,α3,α4 的秩也是3。
由阶梯形矩阵的最后一行,得 α4 −α3 +α2 +α1 = 0 由此可知
α4 = −α1 −α2 +α3
r( A+ B) ≤ r( A) + r(B)
证 设矩阵 A, B的列向量组分别为 α1,α2 ,⋯,αn和 1, β2 ,⋯, βn, β 则 要证
A+ B = (α1 + β1,α2 + β2 ,⋯,αn + βn ) r( A+ B) ≤ r( A) + r(B)
例2 设向量组 a = (1,0,0), a = (0,1,0), a = (0,0,1). 1 2 3 不难看出,部分组a1, a 2是线性无关的,且 a1, a 2 , a3中的任一 向量都可以由此部分组线性表示:
a1 = a1 + 0ia 2 , a 2 = 0ia1 + a 2 , a3 = a1 + a 2
向量用此极大无关组线性表示。
解 把向量 α1,α2 ,α3,α4看作一个矩阵的行向量组,得矩阵
1 −1 2 −2 A= 3 0 0 3
2 1 0 α1 4 −2 0α2 6 −1 1α3 0 0 1α4
对A仅施以初等行变换,并在矩阵右侧标注所作的变换, 把A化为阶梯形矩阵:
所以部分组a1, a 2是向量组a1, a 2 , a3的一个极大无关组。 例3 设向量组 a1, a 2 ,⋯, a s线性无关,其极大无关组就是自身。 如果一个向量组仅含零向量,则该向量组不存在极大无关组。

线性代数 3-6 第3章6讲-极大线性无关组和秩(2)

线性代数 3-6 第3章6讲-极大线性无关组和秩(2)

0 0
1 0
1 0
1 4
0
B
4
(3) 将其余向量用该极大无关组线性表示.
0 0 0 0
0
化为梯形阵后每个阶梯选一个向量得一个极大无关组:1,2,5 ;
(3) 把矩阵B继续作初等行变换:
1 0 3 2 1 1 0 3 2 1 1 0 3 1 0
B 0 1 1 1
0
0
1
1
1
0 0
1
1
1
0
0 0 0 4 4 0 0 0 1 1 0 0 0 1 1
所以向量组1,

2
, n 与向量组e1,e2,
,en等价.
5
本讲内容
01 极大线性无关组和向量组的秩 02 向量组的秩和矩阵的秩的关系
二、向量组的秩和矩阵的秩的关系
定理3.7 设A是一个m n矩阵,则A 的秩等于A 的行秩,也等于A 的列秩.
记1,

2
, n
是A
的列向量组 (m
维),1,2,
,m是A
的行向量组 (n
维),

r( A)
r
(1,

2
,n )
r
(1,

2
,m ).
7
二、向量组的秩和矩阵的秩的关系
例3 求向量组的秩与极大无关组:
1 (1,1, 4)T ,2 (1, 0, 4)T ,3 (1, 2, 4)T ,4 (1,3, 4)T .
1 1 1 1 1 1 1 1

A 1,2,3,4 1 0 2 3 0 1 1 2
b11
b1s
AB (1, 2,, s )=(1,2,, Nhomakorabean

向量组与矩阵的秩

向量组与矩阵的秩

1 2 0 8 6
0 0 0 9 8
1 2 0 1 2
1 2 0 1 2
r3 1 r2

0
2
3
2
0 0 0 0
1

r3
r4

0
2
3
2
0
0 0 0 9
1 8



B
0 0 0 9 8
0 0 0 0 0
R{1,2 , ,n} n ,则向量组 1,2 , ,n 线性无关。
如果向量组的秩小于向量组所含向量的个数,即
R{1,2 , ,n} n ,则向量组 1,2 , ,n 线性相关。
性质2.5 (1)若向量组A可由向量组B线性表示,则r(A)<=r(B). (2) 等价向量组的秩相同.
如果 A 为 mχ n 矩阵,则 R(A)≤ min (m,n)。
特别当 R(A)=m 时,称矩阵 A 为行满秩;当 R(A)=n 时,称矩
阵 A 为列满秩;当 R(A)=m=n 时,称矩阵 A 为满秩矩阵。
例 求矩阵的秩
2 1 0 3 2
B


0
3
1 2
5

0 0 0 4 3
1 1,2,0,1,2 0,1,0,1,3 1,3,0,2,4 1,2,1,1
解法1:构造矩阵
1 0 1 1
1 0 1 1
1 0 1 1
A


2
1
3
2

r2

2r1

0
1
1
0

r4
r2

0

线性代数4-2 向量组的秩

线性代数4-2 向量组的秩

第二节向量组的秩最大线性无关向量组第四章向量空间向量组的秩矩阵的秩与向量组的秩的关系12r r ∴≤推论等价向量组秩相等.反之不一定.定理1 给定向量组和,若设12V V {}{}1122,.r V r r V r ==且可由线性表出,则12V V .12r r ≤证明:设分别为的最大无关组,,12U U ,12V V 则所含向量个数分别为,12U U ,12r r 可由线性表出12V V 12U U ⇒可由线性表出又线性无关,1U,),,,(),,,,(2121k r r n n ==αααβααα ,1),,,,(21+=k r n γααα =),,,,,(21γβαααn r 【例1】已知且则()(A) k (B) k + 1 (C) 2k + 1 (D) 1【解】由,),,,(),,,,(2121k r r n n ==αααβααα 知可由线性表出,βn ααα,,,21 所以向量组与等价,βααα,,,,21n n ααα,,,21 从而与等价, γβααα,,,,,21n γααα,,,,21n 1),,,,(),,,,,(2121+==k r r n n γαααγβααα 故【例2 】求向量组的最大无关组及秩.123456121021121020120111001111120111αααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪======----- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,,,,,,,,,,123456αααααα方法:将每一向量作为一列构造矩阵,再对其进行行变换化为行梯形阵,然后在每个台阶上取一列,则得最大无关组的序号。

定理3T()()()()()()()r A r A r A r A r A B r A r B λ==+≤+,,()r AB ()min ()()r A r B ≤,()()r A r B s +-≤(1) 若A , B 是任意的m ×n 矩阵,数,则0λ≠(2) 若A 是m ×s 矩阵, B 是s ×n 矩阵,则证明(1) 若A , B 是任意的m ×n 矩阵, 则r (A +B )≤r (A )+r (B ).1212,,,;,,,sti i i j j jαααβββ {}{}12121122,,,,,,,s t n n i i i j j j r r αβαβαβαααβββ∴+++≤ ,,,s t≤+()()()r A B r A r B ⇒+≤+()()1212n n A B αααβββ== ,,,,,,,将A , B 列分块,()1122n n A B αβαβαβ+=+++ ,,,则若r (A ) = s , r (B ) = t ,则可分别设向量组1212n n αααβββ ,,,,,,与的最大无关组为:从而向量组可由向量组1122n n αβαβαβ+++ ,,,1212,,,,,,,sti i i j j j αααβββ 线性表出.11()()s n A AB ααγγ== ,,,,,111111(,,)(,,)n n s s sn b b b b γγαα⎛⎫⎪= ⎪⎪⎝⎭ ()()r AB r A ∴≤利用此结论可得:()()()TTTT()r AB r BAr B =≤()()r AB r B ≤()()min ()()r AB r A r B ∴≤,(2) 对A m ×s , B s ×n 有()r AB ()min ()()r A r B ≤,将A 和AB 列分块:设B = ( b ij ),则由知矩阵AB 的列向量组能由矩阵A 的列向量组线性表出即【例3】设A 为n 阶方阵,且A 2=I ,证明:()()r A I r A I n++-=()()()()r A I r A I r A I r I A ++-=++-()(2)r A I I A r I ≥++-=()()r A I r A I n++--()()()r A I A I ≤+-2()()0r A I r O =-==()()n r A I r A I n∴≤++-≤()()r A I r A I n⇒++-=()()r A r B n+≤【证明】n=又一般地,对n 阶方阵A ,B ,若A B =O ,则有。

3向量组与矩阵的秩

3向量组与矩阵的秩

s
ki i
i 1
k1a1 p2
k2a2 p2
ksasp2
k1a1 pn k2a2 pn ksaspn
上两式只是各分量的排列顺序不同,因此
k11 k2 2 ks s 0
当且仅当 k11 k2 2 ks s 0
所以1,2 , s和1, 2 , s 有相同的线性相关性。
(8)1
(9)0 0
(10)k0 0
(11)如果k 0且 0,那么k 0
上页 下页
§2 线性相关与线性无关
矩阵与向量的关系:
通常把维数相同的一组向量简称为一个向量组,n维行
向量组 1,2 , s可以排列成一个s×n分块矩阵
1
2
s
其中 i为由A的第i行形成的子块, 1,2 , s称为A的行向量组。
上页 下页
定理5 在r维向量组1,2 , s 的各向量添上n-r个分 量变成n维向量组 1, 2 , s 。
(1)如果 1, 2 , s线性相关,
那么
1
,
2
,
也线性相关。
s
(2)如果1,2 , s线性无关,
那么1, 2 , s也线性无关。
证 对列向量来证明定理。
(1,2 , ,s ) A1
(1, 2,
当且仅当k1=k2=…=kn=0
因此 1 , 2 , n 线性无关。
1,2
,
称为基本单位向量。
n
上页
下页
例 设向量组 1,2 ,3线性无关,1 1 2 , 2 2 3 ,3 3 1,试证向量组 1, 2 , 3也
线性无关。
证 对任意的常数都有
k11 k22 k33 (k1 k3 )1 (k1 k2 )2 (k2 k3 )

矩阵的秩的性质以及矩阵运算和矩阵的秩的关系

矩阵的秩的性质以及矩阵运算和矩阵的秩的关系

高等代数第二次大作业1120133839 周碧莹30011303班矩阵的秩的性质1.阶梯型矩阵J的行秩和列秩相等,它们都等于J的非零行的数目;并且J的主元所在的列构成列向量的一个极大线性无关组。

2.矩阵的初等行变换不改变矩阵的行秩。

证明:设矩阵A的行向量组是a1,…,as.设A经过1型初等行变换变成矩阵B,则B的行向量组是a1,…,ai,kai+aj,…,as.显然a1,…,ai,kai+aj,…,as可以由a1,…,as线性表处。

由于aj=1*(kai+aj)-kai,因此a1,…,as可以由a 1,…,ai,kai+aj,…,as线性表处。

于是它们等价。

而等价的向量组由相同的秩,因此A的行秩等于B的行秩。

同理可证2和3型初等行变换使所得矩阵的行向量组与原矩阵的行向量组等价,从而不改变矩阵的行秩。

3.矩阵的初等行变换不改变矩阵的列向量组的线性相关性。

证明:一是为什么初等行变换不改变列向量的线性相关性?二是列向量进行初等行变换后,为什么可以根据行最简形矩阵写出不属于极大无关组的向量用极大无关组表示的表示式?第一个问题:设α1,α2,…,αn是n个m维列向量,则它们的线性相关性等价于线性方程组AX=0(其中A=(α1,α2,…,αn),X=(x1,x2,…,xn)T)是否有非零解,即α1,α2,…,αn线性相关等价于AX=0有非零解,α1,α2,…,αn 线性无关等价于AX=0只有零解。

而对A进行三种行初等变换分别相当于对线性方程组中的方程进行:两个方程交换位置,对一个方程乘一个非零常数,将一个方程的常数倍对应加到另一个方程上。

显然进行三种变换后所得方程组与原方程组同解,若设所得方程组为BX=0,则B即为对A进行行初等变换后所得矩阵。

B 的列向量的线性相关性与BX=0是否有解等价,也就是与AX=0是否有解等价,即与A的列向量的线性相关性等价!第二个问题以一个具体例子来说明。

例:设矩阵,求A的列向量组的一个极大无关组,并把不属于极大无关组的列向量用极大无关组线性表示。

2020年秋季国家开放大学《工程数学本》形考任务(1-5)试题与答案解析

2020年秋季国家开放大学《工程数学本》形考任务(1-5)试题与答案解析

2020年秋季国家开放大学《工程数学本》形考任务(1-5)试题与答案解析(红色标注为正确答案)工程数学作业(第一次)(满分100分)第2章矩阵(一)单项选择题(每小题2分,共20分)⒈设,则(D).A. 4B. -4C. 6D. -6⒉若,则(A).A. B. -1 C. D. 1⒊乘积矩阵中元素(C).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是(B).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是(D).A. B.C. D.⒍下列结论正确的是(A).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为(C).A. B.C. D.⒏方阵可逆的充分必要条件是(B).A. B. C. D.⒐设均为阶可逆矩阵,则(D).A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是(D).A. B.C. D.(二)填空题(每小题2分,共20分)⒈7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为5×4 矩阵.⒋二阶矩阵.⒌设,则.⒍设均为3阶矩阵,且,则-72 .⒎设均为3阶矩阵,且,则-3 .⒏若为正交矩阵,则0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则.(三)解答题(每小题8分,共48分)⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.⒉设,求.⒊已知,求满足方程中的.⒋写出4阶行列式中元素的代数余子式,并求其值.⒌用初等行变换求下列矩阵的逆矩阵:⑴;⑵;⑶.⒍求矩阵的秩.(四)证明题(每小题4分,共12分)⒎对任意方阵,试证是对称矩阵.⒏若是阶方阵,且,试证或.⒐若是正交矩阵,试证也是正交矩阵.工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122 ⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为(A ). A. 3 B. 2 C. 4 D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组.A. αα12,B. ααα123,,C. ααα124,,D. α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量(二)填空题(每小题2分,共16分) ⒈当λ= 1 时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多 解,且系数列向量ααα123,,是线性 相关 的. ⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是 .⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 相同 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个.⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为 .(三)解答题(第1小题9分,其余每小题11分) 1.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ为何值时,方程组有唯一解?或有无穷多解?2.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,,3.计算下列向量组的秩,并且(1)判断该向量组是否线性相关;(2)求出该向量组的一个极大无关组。

向量组的秩与矩阵秩的关系

向量组的秩与矩阵秩的关系

向量组1
a12
a22
a1n a2n
am1 am2 amn
A的列向量组为1,2 ,,n ; A的行向量组为 1T , 2T ,, mT.
➢ 称A的列向量组的秩为A的列秩;
➢ 称A的行向量组的秩为A的行秩.
向量组的秩与矩阵秩的关系
设矩阵A
1 0
1 1
1 2
,试确定矩阵的秩,行秩,列秩.
0 0 0
➢ 矩阵A的秩为 2;
➢ A的行向量组为:1T 1 1 1, 2T 0 1 2, 3T 0 0 0.

1T
,
T 2

A 的行向量组的一个极大无关组,A 的行秩是2.
向量组的秩与矩阵秩的关系
1
1
1
A的列向量组为 1 0,2 1,3 2.
感谢观赏
小学教育专业群教学资源库
向量组的秩与矩阵秩的关系
Lorem Ipsum is simply dummy text of the printing and typesetting industry
01
向量组的秩与矩阵秩的关系
向量组的秩与矩阵秩的关系
含有限个向量的有序向量组与矩阵一一对应
Amn 1 2 n
向量组的秩与对应的矩阵的秩具有什么联系?
0
0
0
由于 1,2线性无关,3 22 1 ,故 1,2是A的列向量
组的一个极大无关组,因而A的列秩为2.
在本例中,我们发现矩阵的秩等于其行秩和列秩! 这一结论是否具有普遍意义呢?
向量组的秩与矩阵秩的关系
回顾
1 0
0 1
0 0
c11 c21
c1,nr c2,nr
A B 0 0 1 cr1 cr,nr
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵的“秩”,是线性代数第一部分的核心概念。

“矩阵的秩与向量组的秩一致。

矩阵的秩就是其行(或列)向量组的秩。

”怎样证明?就当做习题练一练。

设矩阵A的秩为r ,则A必有一个r 阶子式不为0,而所有 r + 1阶子式全为 0
逻辑1——r 阶子式不为0,则 r个r 维向量线性无关。

分析这是格莱姆法则推论,带来的直接判别方法。

(画外音:r个未知量 r个方程的齐次线性方程组仅有0 解的充分必要条件是其系数行列式不为0)
逻辑思维链——这r 个r 维向量与A 的行(或列)向量组有何关系?
逻辑2——(“线性无关,延长无关。

”定理)——
已知一个n 维向量组线性无关,如果在相同的位置,给组内每个向量都增加一个分量,则所得的n + 1维向量组也线性无关。

分析不妨认为给线性无关的n 维向量组a1,a 2,…,a k 的每个向量都加上第n + 1个分量,形成一个n + 1 维向量组b1,b 2,…,b k
若有一组不全为零的数c1,c2,…,c k ,使得c1b1+ c2b 2+ ---+ c k b k = 0
,如何证明“这组常数只能全为0”?
每个向量有n + 1 分量,向量“线性组合为0”实际上是n + 1个等式。

前n 个等式即
c1 a1+ c2a2+ ---+ c k a k = 0
由已知线性无关即得,这组常数只能全为0,而最后那个(第n + 1个)等式自然成立。

逻辑3 ——将线性无关的 r个r 维向量,逐次延长为矩阵A 的r 个行向量(或列向量),它们线性无关。

(潜台词:简而言之,不为0的r阶子式所在的r个行向量(或列向量)线性无关。


逻辑思维链(关键问题)——这r 个行向量是行向量组的最大无关组吗?
唯一信息——A的所有r + 1阶子式全为0
分析不妨设不为0 的r 阶子式就由这r 个行的左起前r 个分量排成。

(画外音:画个示意图最好。


任取A的一行,其左起前 r个分量形成的r 维向量,必定可以被r 阶子式的r 个行线性表示。

记为β = c1a1+ c2 a2 + ---+ c r a r
把式中各个向量,增加入第r+ 1个分量,这个表达式还成立吗?(潜台词:增加入第 r+ 1个分量,讨论的背景是A的一个 r + 1阶子式。

r + 1 阶子式为 0,则
r + 1个 r + 1维向量线性相关。

β 所在的那行,可以被另 r 行线性表示。

问题就在于,和增加一个分量之前对比,线性表示的“系数变还是没变”。


实际上,这 r+ 1个 r+ 1维向量排成A 的r + 1阶子式。

是那个不为 0 的r 阶子式的“加边行列式”。

其值为0 (画外音:继续画示意图。


对这个 r + 1阶子式作试算变形,设法利用r 维向量β = c1a1+
c2a2+ ---+ c r a r
把第一行乘以− c1 ,第二行乘以−c2 ,……,第r行乘以− c r ,全都加到第r+ 1行。

则第 r+ 1行的前r 个分量都变为0,设此时第 r+ 1行的第 r+ 1个分量为c ,
按第r + 1行来展开 r + 1 阶子式得方程: (左上r 阶子式)c = 0,只有c = 0
这就表明,增加入第 r+ 1个分量,β = c1a1+ c2a2+ ---+ c r a r 对r+1维向量还是成立。

添加的第 r+ 1列,自然可以随意换为第 r+ 2个分量那列,或第 r+3个分量那列,……,讨论过程与结论都一样。

即,线性组合关系存在,组合系数始终不变。

这样一来,A的任意一行,都能被r 阶子式所在的r个行线性表示。

A的秩就是其行(或列)向量组的秩。

矩阵的秩与向量组的秩一致。

求向量组的秩,排成一个矩阵,作初等变换求矩阵的秩。

想通了。

有意思,很愉快。

你对向量线性相关的定义式,是否理解得更细了。

相关文档
最新文档