矩阵的秩与向量组的秩一致

矩阵的秩与向量组的秩一致
矩阵的秩与向量组的秩一致

矩阵的“秩”,是线性代数第一部分的核心概念。

“矩阵的秩与向量组的秩一致。矩阵的秩就是其行(或列)向量组的秩。”怎样证明?就当做习题练一练。

设矩阵A的秩为r ,则A必有一个r 阶子式不为0,而所有 r + 1阶子式全为 0

逻辑1——r 阶子式不为0,则 r个r 维向量线性无关。

分析这是格莱姆法则推论,带来的直接判别方法。

(画外音:r个未知量 r个方程的齐次线性方程组仅有0 解的充分必要条件是其系数行列式不为0)

逻辑思维链——这r 个r 维向量与A 的行(或列)向量组有何关系?

逻辑2——(“线性无关,延长无关。”定理)——

已知一个n 维向量组线性无关,如果在相同的位置,给组内每个向量都增加一个分量,则所得的n + 1维向量组也线性无关。

分析不妨认为给线性无关的n 维向量组a1,a 2,…,a k 的每个向量都加上第n + 1个分量,形成一个n + 1 维向量组b1,b 2,…,b k

若有一组不全为零的数c1,c2,…,c k ,使得c1b1+ c2b 2+ ---+ c k b k = 0

,如何证明“这组常数只能全为0”?

每个向量有n + 1 分量,向量“线性组合为0”实际上是n + 1个等式。前n 个等式即

c1 a1+ c2a2+ ---+ c k a k = 0

由已知线性无关即得,这组常数只能全为0,而最后那个(第n + 1个)等式自然成立。

逻辑3 ——将线性无关的 r个r 维向量,逐次延长为矩阵A 的r 个行向量(或列向量),它们线性无关。

(潜台词:简而言之,不为0的r阶子式所在的r个行向量(或列向量)线性无关。)

逻辑思维链(关键问题)——这r 个行向量是行向量组的最大无关组吗?

唯一信息——A的所有r + 1阶子式全为0

分析不妨设不为0 的r 阶子式就由这r 个行的左起前r 个分量排成。(画外音:画个示意图最好。)

任取A的一行,其左起前 r个分量形成的r 维向量,必定可以被r 阶子式的r 个行线性表示。

记为β = c1a1+ c2 a2 + ---+ c r a r

把式中各个向量,增加入第r+ 1个分量,这个表达式还成立吗?(潜台词:增加入第 r+ 1个分量,讨论的背景是A的一个 r + 1阶子式。 r + 1 阶子式为 0,则

r + 1个 r + 1维向量线性相关。β 所在的那行,可以被另 r 行线性表示。问题就在于,和增加一个分量之前对比,线性表示的“系数变还是没变”。)

实际上,这 r+ 1个 r+ 1维向量排成A 的r + 1阶子式。是那个不为 0 的r 阶子式的“加边行列式”。其值为0 (画外音:继续画示意图。)

对这个 r + 1阶子式作试算变形,设法利用r 维向量β = c1a1+

c2a2+ ---+ c r a r

把第一行乘以? c1 ,第二行乘以?c2 ,……,第r行乘以? c r ,全都加到第r+ 1行。则第 r+ 1行的前r 个分量都变为0,设此时第 r+ 1行的第 r+ 1个分量为c ,

按第r + 1行来展开 r + 1 阶子式得方程: (左上r 阶子式)c = 0,只有c = 0

这就表明,增加入第 r+ 1个分量,β = c1a1+ c2a2+ ---+ c r a r 对r+1维向量还是成立。

添加的第 r+ 1列,自然可以随意换为第 r+ 2个分量那列,或第 r+3个分量那列,……,讨论过程与结论都一样。即,线性组合关系存在,组合系数始终不变。

这样一来,A的任意一行,都能被r 阶子式所在的r个行线性表示。A的秩就是其行(或列)向量组的秩。

矩阵的秩与向量组的秩一致。求向量组的秩,排成一个矩阵,作初等变换求矩阵的秩。

想通了。有意思,很愉快。你对向量线性相关的定义式,是否理解得更细了。

矩阵的秩与向量组的秩一致

矩阵的“秩”,是线性代数第一部分的核心概念。 “矩阵的秩与向量组的秩一致。矩阵的秩就是其行(或列)向量组的秩。”怎样证明?就当做习题练一练。 设矩阵A的秩为r ,则A必有一个r 阶子式不为0,而所有 r + 1阶子式全为 0 逻辑1——r 阶子式不为0,则 r个r 维向量线性无关。 分析这是格莱姆法则推论,带来的直接判别方法。 (画外音:r个未知量 r个方程的齐次线性方程组仅有0 解的充分必要条件是其系数行列式不为0) 逻辑思维链——这r 个r 维向量与A 的行(或列)向量组有何关系? 逻辑2——(“线性无关,延长无关。”定理)—— 已知一个n 维向量组线性无关,如果在相同的位置,给组内每个向量都增加一个分量,则所得的n + 1维向量组也线性无关。 分析不妨认为给线性无关的n 维向量组a1,a 2,…,a k 的每个向量都加上第n + 1个分量,形成一个n + 1 维向量组b1,b 2,…,b k

若有一组不全为零的数c1,c2,…,c k ,使得c1b1+ c2b 2+ ---+ c k b k = 0 ,如何证明“这组常数只能全为0”? 每个向量有n + 1 分量,向量“线性组合为0”实际上是n + 1个等式。前n 个等式即 c1 a1+ c2a2+ ---+ c k a k = 0 由已知线性无关即得,这组常数只能全为0,而最后那个(第n + 1个)等式自然成立。 逻辑3 ——将线性无关的 r个r 维向量,逐次延长为矩阵A 的r 个行向量(或列向量),它们线性无关。 (潜台词:简而言之,不为0的r阶子式所在的r个行向量(或列向量)线性无关。) 逻辑思维链(关键问题)——这r 个行向量是行向量组的最大无关组吗? 唯一信息——A的所有r + 1阶子式全为0 分析不妨设不为0 的r 阶子式就由这r 个行的左起前r 个分量排成。(画外音:画个示意图最好。)

1求下列向量组的秩与一个极大线性无关组

习题4.3 1.求下列向量组的秩与一个极大线性无关组: (1) []12,1,3,1T α=-, []23,1,2,0T α=-, []31,3,4,2T α=-,[]44,3,1,1T α=-. (2) []11,1,1,1T α=, []21,1,1,1T α=--, []31,1,1,1T α=--,[]41,1,1,1T α=---. (3) []11,1,2,4T α=-, []20,3,1,2T α=,[]33,0,7,14T α=, []41,1,2,0T α=-,[]52,1,5,6T α=. 分析 向量组的秩等于该向量组构成的矩阵的秩, 所以求向量组的秩可以转化为求矩阵的秩. 先把向量构成矩阵通过矩阵的初等行变换成阶梯形, 通过阶梯形便可得到矩阵的秩, 它也就是该向量组的秩, 而阶梯形的阶梯头所在的列对应的向量便构成该向量组的一个极大线性无关组. 解 (1) []1 23 423141133113301123241000010210000αααα--???????? ---??? ?=??→????????--???? , 所以该向量组的秩为2, 且1α, 2α为它的一个极大线性无关组. (2) []1 23 41111111111110 1011111001111110001αααα--???? ????---??? ?=??→???? ---???? --???? , 所以该向量组的秩为4, 且1α,2α,3α,4α为它的一个极大线性无关组. (3) []1 234 51031 21 0312130110110121725000104214060 0000ααααα???? ????--? ???=??→???? ??? ? ???? , 所以该向量组的秩为3, 且1α,2α,4α为它的一个极大线性无关组. 2.计算下列向量组的秩,并判断该向量组是否线性相关. (1) []11,1,2,3,4T α=-,[]23,7,8,9,13T α=-,

1求下列向量组的秩与一个极大线性无关组概要

习题4.3 1. (1) []12,1, 3,1T α=-, []23,1,2,0T α=-, []31,3,4,2T α=-,[]44,3,1,1T α=-. (2) []11,1,1,1T α=, []21,1, 1,1T α=--, []31,1,1,1T α=--,[]41,1,1,1T α=---. (3) []11, 1,2,4T α=-, []20,3,1,2T α=,[]33,0,7,14T α=, []41,1,2,0T α=-,[]52,1,5,6T α=. 分析 向量组的秩等于该向量组构成的矩阵的秩, 所以求向量组的秩可以转化为求矩阵的秩. 先把向量构成矩阵通过矩阵的初等行变换成阶梯形, 通过阶梯形便可得到矩阵的秩, 它也就是该向量组的秩, 而阶梯形的阶梯头所在的列对应的向量便构成该向量组的一个极大线性无关组. 解 (1) []1 23 423141133113301123241000010210000αααα--???????? ---??? ?=??→????????--???? , 所以该向量组的秩为2, 且1α, 2α为它的一个极大线性无关组. (2) []1 23 4111111 1111110 1011111001111110 01αααα--????????---??? ?=??→???? ---????--???? , 所以该向量组的秩为4, 且1α,2α,3α,4α为它的一个极大线性无关组. (3) []1 234 51 03121 312130110110121725000104 2140 60 000 0ααααα????????--? ???=??→???????????? , 所以该向量组的秩为3, 且1α,2α,4α为它的一个极大线性无关组. 2.计算下列向量组的秩,并判断该向量组是否线性相关. (1) []11, 1,2,3,4T α=-,[]23,7,8,9,13T α=-,

求向量组的秩与极大无关组(修改整理)

求向量组的秩与最大无关组 一、对于具体给出的向量组,求秩与最大无关组 1、求向量组的秩(即矩阵的秩)的方法:为阶梯形矩阵 【定理】矩阵的行秩等于其列秩,且等于矩阵的秩.(三秩相等) ①把向量组的向量作为矩阵的列(或行)向量组成矩阵A; ②对矩阵A进行初等行变换化为阶梯形矩阵B; ③阶梯形B中非零行的个数即为所求向量组的秩. 【例1】求下列向量组a1=(1, 2, 3, 4),a2 =( 2, 3, 4, 5),a3 =(3, 4, 5, 6)的秩. 解1:以a1,a2,a3为列向量作成矩阵A,用初等行变换将A化为阶梯形矩阵后可求. 因为阶梯形矩阵的列秩为2,所以向量组的秩为2. 解2:以a1,a2,a3为行向量作成矩阵A,用初等行变换将A化为 阶梯形矩阵后可求. 因为阶梯形矩阵的行秩为2,所以向量组的秩为2. 2、求向量组的最大线性无关组的方法 方法1 逐个选录法 给定一个非零向量组A:α1, α2,…, αn ①设α1≠ 0,则α1线性相关,保留α1 ②加入α2,若α2与α1线性相关,去掉α2;若α2与α1线性无关,保留α1,α2; ③依次进行下去,最后求出的向量组就是所求的最大无关组

【例2】求向量组:()()()1231,2,12,3,14,1,1,,,T T T ααα=-=-=-的最大无关组 解:因为a 1非零,故保留a 1 取a 2,因为a 1与a 2线性无关,故保留a 1,a 2 取a 3,易得a 3=2a 1+a 2,故a 1,a 2 ,a 3线性相关。 所以最大无关组为a 1,a 2 方法2 初等变换法 【定理】 矩阵A 经初等行变换化为B ,则B 的列向量组与A 对应的列向量组有相同的线性相关性. 证明从略,下面通过例子验证结论成立. 向量组:α1=(1,2,3)T , α2=(-1,2,0)T , α3=(1,6,6)T 由上可得,求向量组的最大线性无关组的方法: (1)列向量行变换 ①把向量组的向量作为矩阵的列向量组成矩阵A ; ②对矩阵A 进行初等行变换化为阶梯形矩阵B ; ③A 中的与B 的每阶梯首列对应的向量组,即为最大无关组. 【例3】求向量组 :α1=(2,1,3,-1)T , α2=(3,-1,2,0)T , α3=(1,3,4,-2)T , α4=(4,-3,1,1)T 的秩和一个最大无关组, 并把不属于最大无关组的向量用最大无关组线性表示。 解 以α1,α2,α3,α4为列构造矩阵A , 并实施初等行变换化为行阶梯形矩阵求其秩: ()???? ? ?-- ? ?==→ ? ? ? ?--????123423141-13-3113305-510,,,324105-51010210-11-2A αααα---?? ? ?→ ? ? ?? 1133011200000000 知r (A )=2, 故向量组的最大无关组含2个向量

实验矩阵的秩与向量组的极大无关组

项目五 矩阵运算与方程组求解 实验2 矩阵的秩与向量组的极大无关组 实验目的 学习利用Mathematica 求矩阵的秩,作矩阵的初等行变换; 求向量组的秩与极大无关组. 基本命令 1. 求矩阵M 的所有可能的k 阶子式组成的矩阵的命令:Minors[M,k]. 2. 把矩阵A 化作行最简形的命令:RowReduce[A]. 3. 把数表1,数表2, …,合并成一个数表的命令:Join[list1,list2,…]. 例如输入 Join[{{1,0,-1},{3,2,1}},{{1,5},{4,6}}] 则输出 {{1,0,-1},{3,2,1},{1,5},{4,6}} 实验举例 求矩阵的秩 例2.1 (教材 例2.1) 设,815073*********???? ? ??-------=M 求矩阵M 的秩. 输入 Clear[M]; M={{3,2,-1,-3,-2},{2,-1,3,1,-3},{7,0,5,-1,-8}}; Minors[M,2] 则输出 {{-7,11,9,-5,5,-1,-8,8,9,11},{-14,22,18,-10,10,-2, -16,16,18,22},{7,-11,-9,5,-5,1,8,-8,-9,-11}} 可见矩阵M 有不为0的二阶子式. 再输入 Minors[M,3] 则输出 {{0,0,0,0,0,0,0,0,0,0}} 可见矩阵M 的三阶子式都为0. 所以.2)(=M r

例2.2 已知矩阵???? ? ??----=1t 0713123123M 的秩等于2, 求常数t 的值. 左上角的二阶子式不等于0. 三阶子式应该都等于0. 输入 Clear[M]; M={{3,2,-1,-3},{2,-1,3,1},{7,0,t,-1}}; Minors[M,3] 输出为 {{35-7t,45-9t,-5+t}} 当5=t 时, 所有的三阶子式都等于0. 此时矩阵的秩等于2. 例2.3 (教材 例2.2) 求矩阵???????? ??-----322 4211631095114047116的行最简形及其秩. 输入 A={{6,1,1,7},{4,0,4,1},{1,2,-9,0},{-1,3,-16,-1},{2,-4,22,3}} MatrixForm[A] RowReduce[A]//MatrixForm 则输出矩阵A 的行最简形 ???????? ??-0000000010000510 01 01 根据矩阵的行最简形,便得矩阵的秩为3. 矩阵的初等行变换 命令RowfReduce[A]把矩阵A 化作行最简形. 用初等行变换可以求矩阵的秩与矩阵的逆. 例2.4 设,41311221222832A ???? ? ??--=求矩阵A 的秩. 输入

向量组的等价及向量组的秩

向量组的等价及向量组的秩 一 基本概念 1 设T 是由若干个n 维向量构成的集合,向量12,,,r T ααα∈L ,若有 (1)12,,,r αααL 线性无关; (2)T 中任一向量都可由12,,,r αααL 线性表示。 那么,则称12,,,r αααL 是T 的一个极大无关组。称r 为T 的秩数,若T 无极大无关组,即T 不含非零向量时,称T 的秩数为0。T 的秩数记为()R T 。 2设有n 维向量组Ⅰ:12,,,s αααL 与n 维向量组Ⅱ:12,,,t βββL 。如果Ⅰ中任一向量都可由Ⅱ中向量线性表示,反之Ⅱ中任一向量都可由Ⅰ中向量线性表示,那么则称向量组Ⅰ与Ⅱ等价。 3 矩阵A 的行向量组的秩数称为A 的行秩数;A 的列向量组的秩数称为A 的列秩数。A 的行秩数记为行秩A ;A 的列秩数记为列秩A 。 二 主要结论 1 简化行阶梯形矩阵的性质 (1)主列构成的向量组线性无关; (2)每一非主列均可由前面的主列线性表示;从而若有非主列,则其列向量组必线性相关。 (3)主列构成的向量组即为列向量组的一个极大无关组;从而列秩数等于主列的个数。 2 对矩阵A 进行行的初等变换不改变A 的列向量组的线性关系。 3 个数大于维数的向量组必线性相关;特别有,n +1个n 维向量必线性相关。 4 设向量组12,,,s αααL 中任一向量都可由向量12,,,t βββL 线性表示。那么,如果s t >,则向量组12,,,s αααL 必线性相关。 等价陈述即其逆否命题为:设向量组12,,,s αααL 中任一向量都可由向量12,,,t βββL 线性表示。那么,如果向量组12,,,s αααL 线性无关,则必有s t ≤。 推论1:向量组T 的极大无关组中所含向量个数被T 所唯一确定。即T 的任意两个极大无关组中所含向量个数相等。 推论2:设向量组(Ⅰ)中任一向量都可由(Ⅱ)中向量线性表示,则R (Ⅰ)≤ R (Ⅱ)。 推论3:等价的向量组的秩数相等。 5 对任意矩阵A 均有,行秩A =列秩A =R (A )。

向量组的秩

第四节向量 定义1:设有两个向量组(A):s ααα,,,21 和(B):t βββ,,,21 ,如果向量组(A)中每一个向量都可由向量组(B)线性表示,则称向量组(A)可由向量组(B)线性表示。 定义2:设有两个向量组(A):s ααα,,,21 和(B):t βββ,,,21 ,如果向量组(A)可由向量组(B)线性表示,而且向量组(B)也可由向量组(A)线性表示,则称向量组(A)和向量组(B)等价。 等价向量组的性质: (1) 反身性:任一向量组和它自身等价。 (2) 对称性:如果向量组(A)与向量组(B)等价,则向量组(B)也与向量组(A)等价。 (3) 传递性:如果向量组(A)与向量组(B)等价,而向量组(B)与向量组(C)等价,则向量组(A)也与向量组(C)等价。 定理1:设有两个向量组(A):s ααα,,,21 和(B):t βββ,,,21 ,如果向量组(B)可由向量组(A)线性表示,且s

向量组的等价及向量组的秩

向量组的等价及向量组的秩 一 基本概念 1 设T 是由若干个n 维向量构成的集合,向量12,,,r T ααα∈ ,若有 (1)12,,,r ααα 线性无关; (2)T 中任一向量都可由12,,,r ααα 线性表示。 那么,则称12,,,r ααα 是T 的一个极大无关组。称r 为T 的秩数,若T 无极大无关组,即T 不含非零向量时,称T 的秩数为0。T 的秩数记为()R T 。 2设有n 维向量组Ⅰ:12,,,s ααα 与n 维向量组Ⅱ:12,,,t βββ 。如果Ⅰ中任一向量都可由Ⅱ中向量线性表示,反之Ⅱ中任一向量都可由Ⅰ中向量线性表示,那么则称向量组Ⅰ与Ⅱ等价。 3 矩阵A 的行向量组的秩数称为A 的行秩数;A 的列向量组的秩数称为A 的列秩数。A 的行秩数记为行秩A ;A 的列秩数记为列秩A 。 二 主要结论 1 简化行阶梯形矩阵的性质 (1)主列构成的向量组线性无关; (2)每一非主列均可由前面的主列线性表示;从而若有非主列,则其列向量组必线性相关。 (3)主列构成的向量组即为列向量组的一个极大无关组;从而列秩数等于主列的个数。 2 对矩阵A 进行行的初等变换不改变A 的列向量组的线性关系。 3 个数大于维数的向量组必线性相关;特别有,n +1个n 维向量必线性相关。 4 设向量组12,,,s ααα 中任一向量都可由向量12,,,t βββ 线性表示。那么,如果s t >,则向量组12,,,s ααα 必线性相关。 等价陈述即其逆否命题为:设向量组12,,,s ααα 中任一向量都可由向量12,,,t βββ 线性表示。那么,如果向量组12,,,s ααα 线性无关,则必有s t ≤。 推论1:向量组T 的极大无关组中所含向量个数被T 所唯一确定。即T 的任意两个极大无关组中所含向量个数相等。 推论2:设向量组(Ⅰ)中任一向量都可由(Ⅱ)中向量线性表示,则R (Ⅰ)≤ R (Ⅱ)。 推论3:等价的向量组的秩数相等。 5 对任意矩阵A 均有,行秩A =列秩A =R (A )。

求向量组的秩与极大无关组

求向量组的秩与极大无关组 对于具体给出的向量组,求秩与极大无关组的常用方法如下. 方法1 将向量组排成矩阵: (列向量组时)或(行向量组时) (*) 并求的秩,则即是该向量组的秩;再在原矩阵中找非零的阶子式, 则包含的个列(或行)向量即是的列(或行)向量组的一个极大无关组. 方法2 将列(或行)向量组排成矩阵如(*)式,并用初等行(或列)变换化为行(或列)阶梯形矩阵(或),则(或)中非零行(或列)的个数即等于向量组的秩,且是该向量组的一个极大无关组,其中是(或)中各非零行(或列)的第1个非零元素所在的列(或行). 方法3 当向量组中向量个数较少时,也可采用逐个选录法:即在向量组中任取一个非零向量作为,再取一个与的对应分量不成比例的向量作为, 又取一个不能由和线性表出的向量作为,继续进行下去便可求得向量组的极大无关组. 对于抽象的向量组,求秩与极大无关组常利用一些有关的结论,如“若向量组(Ⅰ)可由向量组(Ⅱ)线性表示,则(Ⅰ)的秩不超过(Ⅱ)的秩”,“等价向量组有相同的秩”,“秩为的向量组中任意个线性无关的向量都是该向量组的极大无关组”等. 例1 求向量组,,,, 的秩与一个极大无关组.

解法1 ,所以向量组的秩为3;又中位于1,2,4行及1,2,4列的3阶子式 故是向量组的一个极大无关组(可知;均可作为极大无关组). 法2 由于的第1,2,4个行向量构成的向量组线性无关,故是向量组的一个极大无关组. 例2 求向量组,,,的秩和一个极大无关组. 解

(1) 当且时,,故向量组的秩为3,且是一个极大无关组; (2) 当时,,故向量组的秩为3,且是一个极大无关组; (3) 当时,若,则,此时向量组的秩为2,且是 一个极大无关组.若,则,此时向量组的秩为3,且是一个极大无关组. 例3 设向量组的秩为.又设 ,, 求向量组的秩. 解法1 由于,且 所以 故向量组与等价,从而的秩为. 法2 将看做列向量,则有

向量组的秩和最大线性无关组

向量组的秩和最大线性无关组 引例:对于方程组 12312312 321221332x x x x x x x -+=-??+-=??-+=-? 容易发现其有效方程的个数为2个,因为第3个方程可由第1个方程减去第2个方程得到(或者第3个方程是第1个方程和第2个方程的线性组合); 由于本章的内容是用向量的关系来研究方程组解的情况,进而从方程组3个方程对应的3个向量来说“有用”(或者也可以说成等价有效)的最少的向量是2个。 因此,对于一个给定的向量组,其中“有用”(或者也可以说成等价有效)的最少的向量应该有多少个呢?在此我们提出最大线性无关组的概念: 最大线性无关组:在s ααα,,,21Λ中,存在ip i i ααα,,,21Λ满足: (1)ip i i ααα,,,21Λ线性无关; (2)在ip i i ααα,,,21Λ中再添加一个向量就线性相关。 则称ip i i ααα,,,21Λ是s ααα,,,21Λ的一个最大线性无关组, 注: Ⅰ、不难看出条件(2)等价的说法还有s ααα,,,21Λ中任一向量均可由ip i i ααα,,,21Λ线性表示;或者亦可以说成s ααα,,,21Λ中任意1p +个向量均线性相关; Ⅱ、从最大线性无关组的定义可以看出最大线性无关组与原先的向量组可以相互线性表示,进而最大线性无关组与原先的向量组是等价的(即

有效的最少的方程构成的方程组与原先的方程组是等价的); Ⅲ、从上面的方程组可以看出同解的有效方程组可以是第1、2两个方程构成,也可以是第2、3两个方程构成(因为第1个方程可以看成第2、3两个方程的和),因此从其对应的向量组来说,向量组的最大线性无关组是不唯一的; Ⅳ、可以发现,虽然同解的有效方程组的形式可以不一样,但是同解的有效方程组中所含的方程的个数是唯一的,即从其对应的向量组来说,最大线性无关组虽然不唯一,但是最大线性无关组中所含向量的个数唯一的。这是从数的角度反映了向量组的性质,在此给出向量组的秩的概念: 向量组的秩:称最大线性无关组中所含向量的个数为向量组的秩,如上面定义中ip i i ααα,,,21Λ是s ααα,,,21Λ的一个最大线性无关组,则称 s ααα,,,21Λ的秩为p ,记为12(,,,)s R p ααα=L 。 例:求向量组123(3,6,4,2,1),(2,4,3,1,0),(1,2,1,2,3),T T T ααα=-=--=-- 4(1,2,1,3,1)T α=-的秩及一个最大线性无关组,并将其余的向量用最大线性无关组表示。 分析:容易发现用定义的形式很难求秩和最大线性无关组,为此我们从方程组和矩阵之间的关系以及方程组和向量组之间的关系可以得到,向量组的秩及其最大线性无关组应该与其对应的矩阵的秩以及矩阵的最高阶非零子式之间有某种关系,为此我们给出: 定理:矩阵的秩等于其行向量组的秩,也等于其列向量组的秩. 略证:设A 的秩为r ,则在A 中存在r 阶子式0r D ≠,从而r D 所在的r 列线性无关,又A 中的所有的1r +阶子式10r D +=,因此A 中的任意1r +个列向量

求向量组的秩与极大无关组(修改整理)

求向量组的秩与最大无关组 一、 对于具体给出的向量组,求秩与最大无关组 1、求向量组的秩(即矩阵的秩)的方法:为阶梯形矩阵 【定理】 矩阵的行秩等于其列秩,且等于矩阵的秩.(三秩相等) ①把向量组的向量作为矩阵的列(或行)向量组成矩阵A ; ②对矩阵A 进行初等行变换化为阶梯形矩阵B ; ③阶梯形B 中非零行的个数即为所求向量组的秩. 【例1】 求下列向量组a 1=(1, 2, 3, 4),a 2 =( 2, 3, 4, 5),a 3 =(3, 4, 5, 6)的秩. 解1:以a 1,a 2,a 3为列向量作成矩阵A ,用初等行变换将A 化为阶梯形矩阵后可求. 因为阶梯形矩阵的列秩为2,所以向量组的秩为2. 解2:以a 1,a 2,a 3为行向量作成矩阵A ,用初等行变换将A 化为 阶梯形矩阵后可求. 因为阶梯形矩阵的行秩为2,所以向量组的秩为2. 2、求向量组的最大线性无关组的方法 方法1 逐个选录法 给定一个非零向量组A :1, 2,…, n ①设1 0,则1线性相关,保留 1 ②加入2,若2与 1线性相关,去掉2;若2与 1线性无关,保留1 ,2; ③依次进行下去,最后求出的向量组就是所求的最大无关组 【例2】求向量组:()()()1231,2,12,3,14,1,1,,,T T T ααα=-=-=-的最大无关组 解:因为a 1非零,故保留a 1 取a 2,因为a 1与a 2线性无关,故保留a 1,a 2 取a 3,易得a 3=2a 1+a 2,故a 1,a 2 ,a 3线性相关。 所以最大无关组为a 1,a 2 方法2 初等变换法 【定理】 矩阵A 经初等行变换化为B ,则B 的列向量组与A 对应的列向量组有相同的线性相关性. 证明从略,下面通过例子验证结论成立. 向量组:1=(1,2,3)T , 2=(-1,2,0)T , 3=(1,6,6)T 由上可得,求

矩阵的秩的性质以及矩阵运算和矩阵的秩的关系

高等代数第二次大作业 1120133839 周碧莹30011303班 矩阵的秩的性质 1.阶梯型矩阵J的行秩和列秩相等,它们都等于J的非零行的数目;并且J的主元所在的列构成列向量的一个极大线性无关组。 2.矩阵的初等行变换不改变矩阵的行秩。 证明:设矩阵A的行向量组是a 1,…,a s. 设A经过1型初等行变换变成矩阵B, 则B的行向量组是a 1,…,a i ,ka i +a j ,…,a s .显然a 1 ,…,a i ,ka i +a j ,…,a s 可以 由a 1,…,a s 线性表处。由于a j =1*(ka i +a j )-ka i ,因此a 1 ,…,a s 可以由 a 1,…,a i ,ka i +a j ,…,a s 线性表处。于是它们等价。而等价的向量组由相同的 秩,因此A的行秩等于B的行秩。 同理可证2和3型初等行变换使所得矩阵的行向量组与原矩阵的行向量组等价,从而不改变矩阵的行秩。 3.矩阵的初等行变换不改变矩阵的列向量组的线性相关性。 证明:一是为什么初等行变换不改变列向量的线性相关性?二是列向量进行初等行变换后,为什么可以根据行最简形矩阵写出不属于极大无关组的向量用极大无关组表示的表示式? 第一个问题: 设α1,α2,…,αn是n个m维列向量,则它们的线性相关性等价于线性方程组AX=0(其中A=(α1,α2,…,αn),X=(x1,x2,…,xn)T)是否有非零解,即α1,α2,…,αn线性相关等价于AX=0有非零解,α1,α2,…,αn 线性无关等价于AX=0只有零解。而对A进行三种行初等变换分别相当于对线性方程组中的方程进行:两个方程交换位置,对一个方程乘一个非零常数,将一个方程的常数倍对应加到另一个方程上。显然进行三种变换后所得方程组与原方程组同解,若设所得方程组为BX=0,则B即为对A进行行初等变换后所得矩阵。B 的列向量的线性相关性与BX=0是否有解等价,也就是与AX=0是否有解等价,即与A的列向量的线性相关性等价! 第二个问题以一个具体例子来说明。 例:设矩阵,求A的列向量组的一个极大无关组,并把不属于极大无关组的列向量用极大无关组线性表示。

向量组的线性相关性和矩阵的秩练习题答案

第三章向量组的线性相关性和矩阵的秩(一)基本要求: (二)内容分析和教学指导 (1)从解方程的过程引出所要解决的问题,每个方程对应于一个行向量,某个方程可由其它方程表示,则该方程可去掉,为无效方程。这对应于讨论向量组中是否有某个向量可由其它向量线性表示,即向量的线性相关性问题。去掉无效方程后的方程求解,需要确定自由未知量和保留未知量,涉及最后的方程系数行列式不等于零的问题 (2)向量的线性运算及其性质,和矩阵的运算相对应。 (3)向量线性相关性的定义和判断:线性相关性定义使用于理论证明,把相关性问题转化为向量方程(即方程组)有无非零解的问题,而等价定义使相关性的含义更加明确。为了加深相关性的定义,对与一个向量,两个向量和三个向量线性相关的几何意义加以强调:单个零向量是线性相关的,两个向量相关是指两个向量共线,三个向量相关是共面。通过利用相关性定义来判断向量组线性相关,重点培养学生的利用概念分析判断,进行逻辑推理的能力。 定义理解中的误区:(1)定义中的系数是独立的,(2)非零组合系数是相对向量组的,不同向量组对应的系数可能不同,(3)向量组线性相关则至少有一个向量可以由其它向量线性表示,至于是那一个向量是依赖于具体的向量组,并不是每个向量都可由其它向量变来表示。 列向量组的线性相关性和线性表示的矩阵表示,行向量组线性相关性和线性表示的矩阵表示。重点是列向量组表示的矩阵形式。

(4)相关表示式的分量形式是理解相关性定理的基础和本质,一个分量对应一个方程,一个向量对应一个未知数。 用子式判断向量的线性相关性的方法,子式不等于对应于只有零解,对应于线性无关,子式等于零对应于有非零解,对应线性相关。 (5)最大无关组和矩阵的秩:重点理解矩阵秩的定义和含义,牢固建立矩阵和向量组的对应关系。矩阵的秩等于行向量组的秩,等于列向量组的秩,就是非零子式的最高阶数。掌握最高阶非零子式和向量组的最大无关组之间的对应关系,子式为零对应于线性相关,子式非零对应于线性无关。 定理的证明重要的是说明思路,关键是理解并利用结论进行推理证明。 重点是利用子式确定矩阵的秩和最大无关组。 (6)初等变换对向量组的影响,初等行变换和化简方程的对应关系。标准形所保留的信息,(变换不变量是矩阵的秩)。可逆矩阵E A ~ (7)通过简单的例子说明左乘相当于行变换,右乘相当于列变换,关键是 理解其意义。通过求逆阵的初等变换方法可得到一种解矩阵方程B A X 1 -=的方 法 (8)介绍向量空间,子空间的基本概念,对比基和最大无关组的定义,加深对基和最大无关组,向量组和向量空间的理解(除零空间外,向量空间是无限的,而向量组可以是有限的)。 生成子空间的概念及其生成子空间的表示。 (四)习题指导(习题3) 1. 1. 设)0,4,3(v ),1,1,0(v ),0,1,1(v 321===,求21v v -及321v v 2v 3-+。 2. 2 . 设 ) (5)(2)(3321α+α=α+α+α-α,其中

第2节 向量组的秩(全)

§2 向量组的秩

回顾:矩阵的秩 定义:在m×n 矩阵A中,任取k 行k 列(k≤m,k≤n),位于这些行列交叉处的k2 个元素,不改变它们在A中所处的位置次序而得的k 阶行列式,称为矩阵A的k 阶子式。 规定:零矩阵的秩等于零。 定义:设矩阵A 中有一个不等于零的r 阶子式D,且所有 r+1 阶子式(如果存在的话)全等于零,那么D 称为矩阵 A的最高阶非零子式,数r称为矩阵A的秩,记作R(A)。 结论:矩阵的秩 = 矩阵中最高阶非零子式的阶数 = 矩阵对应的行阶梯形矩阵的非零行的行数

向量组的秩的概念 定义1设向量组A中的一个部分组a , a2, …, a r ,满足 1 , a2, …, a r 线性无关; ⑴a 1 ⑵向量组A中任意r + 1个向量(如果有)都线性无关。 则称a , a2, …, a r 是向量组A的一个最大线性无关向量组(简称 1 最大无关组); 最大无关组所含向量个数r 称为向量组A的秩,记作R(A)。

例:求矩阵的秩,并求A 的一个最高阶非零子式. 211121121 44622436979A --?? ?- ? = ?-- ?-??

第二步求A 的最高阶非零子式.选取行阶梯形矩阵中非零行 的第一个非零元所在的列,与之对应的是选取矩阵A 的第一、二、四列. 解:第一步先用初等行变换把矩阵化成行阶梯形矩阵. 行阶梯形矩阵有3 个非零行,故R (A ) = 3. 211 121 12141121401110~46224000133 69790 0000r A ---???? ? ? -- ? ?= ? ? --- ? ? -???? 012421 1111(,,)~4623 67r A a a a -?? ? ?== ?-- ???0 111011001000B ?? ? ?= ? ???

向量组的秩和最大线性无关组

向量组的秩和最大线性无关组 引例:对于方程组 1231231 2321221332 x x x x x x x -+=-?? +-=??-+=-? 容易发现其有效方程的个数为2个,因为第3个方程可由第1个方程减去第2个方程得到(或者第3个方程是第1个方程和第2个方程的线性组合); 由于本章的内容是用向量的关系来研究方程组解的情况,进而从方程组3个方程对应的3个向量来说“有用”(或者也可以说成等价有效)的最少的向量是2个。 因此,对于一个给定的向量组,其中“有用”(或者也可以说成等价有效)的最少的向量应该有多少个呢?在此我们提出最大线性无关组的概念: 最大线性无关组:在s ααα,,,21 中,存在ip i i ααα,,,21 满足: (1)ip i i ααα,,,21 线性无关; (2)在ip i i ααα,,,21 中再添加一个向量就线性相关。 则称ip i i ααα,,,21 是s ααα,,,21 的一个最大线性无关组, 注: Ⅰ、不难看出条件(2)等价的说法还有s ααα,,,21 中任一向量均可由 ip i i ααα,,,21 线性表示;或者亦可以说成s ααα,,,21 中任意1p +个向量均线性 相关; Ⅱ、从最大线性无关组的定义可以看出最大线性无关组与原先的向量组可以相互线性表示,进而最大线性无关组与原先的向量组是等价的(即

有效的最少的方程构成的方程组与原先的方程组是等价的); Ⅲ、从上面的方程组可以看出同解的有效方程组可以是第1、2两个方程构成,也可以是第2、3两个方程构成(因为第1个方程可以看成第2、3两个方程的和),因此从其对应的向量组来说,向量组的最大线性无关组是不唯一的; Ⅳ、可以发现,虽然同解的有效方程组的形式可以不一样,但是同解的有效方程组中所含的方程的个数是唯一的,即从其对应的向量组来说,最大线性无关组虽然不唯一,但是最大线性无关组中所含向量的个数唯一的。这是从数的角度反映了向量组的性质,在此给出向量组的秩的概念: 向量组的秩:称最大线性无关组中所含向量的个数为向量组的秩,如上面定义中ip i i ααα,,,21 是s ααα,,,21 的一个最大线性无关组,则称 s ααα,,,21 的秩为p ,记为12(,,,)s R p ααα= 。 例:求向量组1 23(3,6,4,2,1),(2,4,3,1,0),(1,2,1,2,3), T T T α αα=-=--=-- 4(1,2,1,3,1) T α=-的秩及一个最大线性无关组,并将其余的向量用最大线性无 关组表示。 分析:容易发现用定义的形式很难求秩和最大线性无关组,为此我们从方程组和矩阵之间的关系以及方程组和向量组之间的关系可以得到,向量组的秩及其最大线性无关组应该与其对应的矩阵的秩以及矩阵的最高阶非零子式之间有某种关系,为此我们给出: 定理:矩阵的秩等于其行向量组的秩,也等于其列向量组的秩. 略证:设A 的秩为r ,则在A 中存在r 阶子式0 r D ≠,从而r D 所在的r 列 线性无关,又A 中的所有的1r +阶子式10r D +=,因此A 中的任意1r +个列向量

相关文档
最新文档