《大学物理》 第二版课后习题答案 第七章

合集下载

《大学物理学》第二版上册课后答案

《大学物理学》第二版上册课后答案

大学物理学习题答案习题一 答案习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?(5)r 和r 有区别吗?v 和dv 0 和d vv 有区别吗?0 各代表什么运动?dtdt(6) 设质点的运动方程为: xx t, y y t ,在计算质点的速度和加速度时,有人先求出 rx 2y 2 ,然后根据vdr 及d 2 rdt a2dt而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即2dy 222dx及ad 2xd 2yvdtdt 2 dt 2dt你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零 .”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,a n 、 a t 、 a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿 x 轴运动,坐标与时间的变化关系为 x 4t2t 2 ,式中 x, t 分别以 m 、 s 为单位,试计算: (1) 在最初2s内的位移、平均速度和2s 末的瞬时速度;(2) 1s末到 3s 末的平均加速度; (3) 3s末的瞬时加速度。

解:(1)最初 2s 内的位移为为:x x(2)x(0)00 0(m / s)最初 2s 内的平均速度为:v ave x00(m / s) t2dxt 时刻的瞬时速度为:v(t)44tdt2s末的瞬时速度为:v(2)4424m / s(2)1s 末到 3s末的平均加速度为:aave v v(3) v(1)8 04m/ s2 t22(3)3s末的瞬时加速度为:a dv d(4 4t )4(m / s2 ) 。

大学物理第7章静电场中的导体和电介质课后习题及答案

大学物理第7章静电场中的导体和电介质课后习题及答案

大学物理第7章静电场中的导体和电介质课后习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。

用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。

忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。

试证明:Rr=21σσ 。

证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为R R V 0211π4επσ=14εσR= 半径为r 的导体球的电势为r r V 0222π4επσ=24εσr= 用细导线连接两球,有21V V =,所以R r =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。

证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ(1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得S S d E S ∆+==⋅⎰)(10320σσε 故 +2σ03=σ上式说明相向两面上电荷面密度大小相等、符号相反。

(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又 +2σ03=σ 故 1σ4σ=3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。

解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V由电势叠加原理,球心电势为=O V R qdq R 3π4π4100εε+⎰03π4π400=+'=Rq R q εε故 -='q 3q 4.半径为1R 的导体球,带有电量q ,球外有内外半径分别为2R 、3R 的同心导体球壳,球壳带有电量Q 。

《大学物理学》第二版上册课后答案

《大学物理学》第二版上册课后答案

大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?(5) r ∆ 和r ∆ 有区别吗?v ∆ 和v ∆ 有区别吗?0dvdt= 和0d v dt = 各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt = 及 22d r a dt=而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-= 最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。

《大学物理学》第二版上册课后答案

《大学物理学》第二版上册课后答案

大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别 在什么情况下二者的量值相等 在什么情况下二者的量值不相等 2 平均速度和平均速率有何区别 在什么情况下二者的量值相等3 瞬时速度和平均速度的关系和区别是什么 瞬时速率和平均速率的关系和区别又是什么 (4) 质点的位矢方向不变,它是否一定做直线运动 质点做直线运动,其位矢的方向是否一定保持不变 (5) r ∆和r ∆有区别吗 v ∆和v ∆有区别吗0dvdt =和0d v dt=各代表什么运动 (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =然后根据drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确 两者区别何在7 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗9 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么10 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变 11 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中 如果石子抛出后,火车以恒定加速度前进,结果又如何1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:1在最初s 2内的位移、平均速度和s 2末的瞬时速度;2s 1末到s 3末的平均加速度;3s 3末的瞬时加速度;解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-= 最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-2 s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ 3 s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-;1.3 质点作直线运动,初速度为零,初始加速度为0a ,质点出发后,每经过τ时间,加速度均匀增加b ;求经过t 时间后,质点的速度和位移;解: 由题意知,加速度和时间的关系为0ba a t τ=+利用dv adt =,并取积分得000vtb dv a t dv τ⎛⎫=+ ⎪⎝⎭⎰⎰,202b v a t t τ=+ 再利用dx vdt =,并取积分设0t =时00x =得xtx dx vdt =⎰⎰,230126b x a t t τ∆=+ 1.4 一质点从位矢为(0)4r j =的位置以初速度(0)4v i =开始运动,其加速度与时间的关系为(3)2a t i j =-.所有的长度以米计,时间以秒计.求:1经过多长时间质点到达x 轴;2到达x 轴时的位置; 解: 203()(0)()4(2)2t v t v a t dt t i t j ⎛⎫=+=+- ⎪⎝⎭⎰ ()()3201()(0)442tr t r v t dt t t i t j ⎛⎫=+=++- ⎪⎝⎭⎰ (1) 当240t -=,即2t s =时,到达x 轴; (2) 2t s =时到达x 轴的位矢为 :(2)12r i =即质点到达x 轴时的位置为12,0x m y ==;1.5 一质点沿x 轴运动,其加速度与坐标的关系为2a x ω=-,式中ω为常数,设0=t 时刻的质点坐标为0x 、速度为0v ,求质点的速度与坐标的关系;解:按题意 222d xx dt ω=- 由此有 dx dvv dt dx dx dv dt dv dtx d x ====-222ω, 即 xdx vdv 2ω-=,两边取积分 ⎰⎰-=xx vv xdx vdv 02ω,得2022122212021221x x v v ωω+-=-由此给出 v =±,20202x v A +⎪⎭⎫ ⎝⎛=ω1.6 一质点的运动方程为k t j t i t r++=24)(,式中r ,t 分别以m 、s 为单位;试求:1 质点的速度与加速度;2 质点的轨迹方程;解:1 速度和加速度分别为: (8)dr v t j k dt ==+, j dtvd a 8==2 令k z j y i x t r ++=)(,与所给条件比较可知 1=x ,24t y =,t z =所以轨迹方程为:21,4x y z ==;1.7 已知质点作直线运动,其速度为213()v t t ms -=-,求质点在0~4s 时间内的路程; 解: 在求解本题中要注意:在0~4s 时间内,速度有时大于零,有时小于零,因而运动出现往返;如果计算积分4vdt ⎰,则求出的是位移而不是路程;求路程应当计算积分4v dt ⎰;令230v t t =-=,解得3t s =;由此可知:3t <s 时,0v >,v v =; 3t =s 时,0v =;而3t >s时,0v <,v v =-;因而质点在0~4s 时间内的路程为 ()()434342233()33s v dt vdt v dt t t dt t t dt ==+-=---⎰⎰⎰⎰⎰34232303313116()23233t t t t m ⎡⎤⎡⎤=---=⎢⎥⎢⎥⎣⎦⎣⎦;1.8 在离船的高度为h 的岸边,一人以恒定的速率0v 收绳,求当船头与岸的水平距离为x 时,船的速度和加速度;解: 建立坐标系如题 1.8图所示,船沿X 轴方向作直线运动,欲求速度,应先建立运动方程,由图题1.8,可得出0v1.8图222x r h =-两边求微分,则有22dx dr xr dt dt = 船速为dx r drv dt x dt==按题意0drv dt=-负号表示绳随时间t 缩短,所以船速为 0v =负号表明船速与x 轴正向反向,船速与x 有关,说明船作变速运动;将上式对时间求导,可得船的加速度为2203h v dva dt x==-负号表明船的加速度与x 轴正方向相反,与船速方向相同,加速度与x 有关,说明船作变加速运动;1.9 一质点沿半径为10cm 的圆周运动,其角坐标θ以弧度rad 计可用下式表示324t θ=+其中t 的单位是秒s 试问:1在2t s =时,它的法向加速度和切向加速度各是多少 2当θ等于多少时其总加速度与半径成45角解:1 利用 324t θ=+,2/12d dt t ωθ==,/24d dt t αω==,得到法向加速度和切向加速度的表达式24144n a r rt ω==,24t a r rt α==在2t s =时,法向加速度和切向加速度为:4421441440.12230.4()n a rt m s -==⨯⨯=⋅,224240.12 4.8()t a rt m s -==⨯⨯=⋅2 要使总加速度与半径成45角,必须有n t a a =,即414424rt rt = 解得 31/6t =,此时 67.2423=+=t θrad1.10 甲乙两船,甲以10/km h 的速度向东行驶,乙以15/km h 的速度向南行驶;问坐在乙船上的人看来,甲船的速度如何 坐在甲船上的人看来乙船的速度又如何解:以地球为参照系,设i 、j分别代表正东和正北方向,则甲乙两船速度分别为h km i v /101 =,h km j v /152-=根据伽利略变换,当以乙船为参照物时,甲船速度为h km j i v v v /)1510(21+=-=h km v /1.18151022=+=, 31.561015==arctg θ即在乙船上看,甲船速度为18.1/km h ,方向为东偏北 31.56 同理,在甲船上看,乙船速度为18.1/km h ,方向为西偏南 31.56;1.11 有一水平飞行的飞机,速率为0v ,在飞机上安置一门大炮,炮弹以水平速度v 向前射击;略去空气阻力,1 以地球为参照系,求炮弹的轨迹方程;2 以飞机为参照系,求炮弹的轨迹方程;3 以炮弹为参照系,飞机的轨迹如何解:1 以地球为参照系时,炮弹的初速度为01v v v +=,而t v x 1=,25.0gt y -= 消去时间参数t ,得到轨迹方程为:202)(2v v gx y +-=若以竖直向下为y 轴正方向,则负号去掉,下同 2 以飞机为参照系时,炮弹的初速度为v ,同上可得轨迹方程为222vgx y -=3 以炮弹为参照系,只需在2的求解过程中用x -代替x ,y -代替y ,可得 222v gx y =.1.12如题1.12图,一条船平行于平直的海岸线航行,离岸的距离为D ,速率为v ,一艘速率为u v <的海上警卫快艇从一港口出去拦截这条船;试证明:如果快艇在尽可能最迟的时刻出发,那么快艇出发时这条船到海岸线的垂线与港口的距离为x u=;快艇截住这条船所需的时间为t =;D 港口 习题1.12图证明:在如图所示的坐标系中,船与快艇的运动方程分别为 11x vty D =⎧⎨=⎩ 和22cos sin x x u ty u t θθ=+⋅⎧⎨=⋅⎩ 拦截条件为:⎩⎨⎧==2121y y x x 即 cos sin vt x u tD u tθθ=+⋅⎧⎨=⋅⎩ 所以()cos sin D v u x u θθ-=,x 取最大值的条件为:0/=θd dx ,由此得到cos /u v θ=,相应地sin θ=;因此x 的最大值为x =x 取最大值时对应的出发时间最迟;快艇截住这条船所需的时间为sin D t u θ==x习题二答案 习题二2.1 简要回答下列问题:1 有人说:牛顿第一定律只是牛顿第二定律在合外力等于零情况下的一个特例,因而它是多余的.你的看法如何2 物体的运动方向与合外力方向是否一定相同3 物体受到了几个力的作用,是否一定产生加速度4 物体运动的速率不变,所受合外力是否一定为零5 物体速度很大,所受到的合外力是否也很大6 为什么重力势能有正负,弹性势能只有正值,而引力势能只有负值7 合外力对物体所做的功等于物体动能的增量,而其中某一分力做的功,能否大于物体动能的增量8质点的动量和动能是否与惯性系的选取有关 功是否与惯性系有关 质点的动量定理与动能定理是否与惯性系有关 请举例说明. 9判断下列说法是否正确,并说明理由:a 不受外力作用的系统,它的动量和机械能都守恒.b 内力都是保守力的系统,当它所受的合外力为零时,其机械能守恒.c 只有保守内力作用而没有外力作用的系统,它的动量和机械能都守恒. 10 在弹性碰撞中,有哪些量保持不变,在非弹性碰撞中,又有哪些量保持不变11 放焰火时,一朵五彩缤纷的焰火质心运动轨迹如何 为什么在空中焰火总是以球形逐渐扩大 忽略空气阻力2.2 质量为m 质点在流体中作直线运动,受与速度成正比的阻力F kv =-k 为常数作用,0t =时质点的速度为0v ,证明: 1t 时刻的速度为0kt v v e-=;2由0到t 的时间内经过的距离为0()[1]kt x mv k e-=⋅-; 3停止运动前经过的距离为0mv k ;证明: 1 由 dv ma mF kv dt ===- 分离变量得 dv k dt v m=-,积分得 00vt v dvk dt v m =-⎰⎰ ,0ln v k t v m=-,0kt v v e -= 2 //000(1)tkt m kt m mv x vdt v e dt e k--===-⎰⎰3 质点停止运动时速度为零,即t →∞,故有/000kt mmv x v e dt k∞-'==⎰;2.3一质量为10 kg 的物体沿x 轴无摩擦地运动,设0t =时,物体的速度为零,物体在力34F t =+Nt 以s 为单位的作用下运动了3s,求它的速度和加速度. 解. 根据质点动量定理,30Fdt mv mv =-⎰, ()334t dt mv +=⎰322103233232.7()10t t v ms m -⎡⎤+⨯+⨯⎣⎦===根据牛顿第二定律,F ma =[]334343 1.510t t F a m m =++⨯====m/s 22.4 一颗子弹由枪口射出时速率为0v ms -1,当子弹在枪筒内被加速时,它所受的合力为()F a bt =-Na,b 为常数,其中t 以秒为单位:1假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;2求子弹所受的冲量; 3求子弹的质量; 解:1由题意,子弹到枪口时,有()0F a bt =-=, 得a t b=2子弹所受的冲量⎰-=-=tbt at dt bt a I 0221)(,将at b=代入,得b a I 22=3由动量定理可求得子弹的质量 0202bv a v I m ==2.5 一质量为m 的质点在xoy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=,求质点的动量及0t =到2t πω=时间内质点所受的合力的冲量和质点动量的改变量; 解:质点的动量为()sin cos p mv mr m a ti b tj ωωω===-+将0t =和2t πω=分别代入上式,得 1p m bj ω=,2p m ai ω=- 动量的增量,亦即质点所受外力的冲量为21()I p p m ai bj ω=-=-+2.6 作用在质量为10kg 的物体上的力为(102)F t iN =+,式中t 的单位是s ;1求4s 后,这物体的动量和速度的变化,以及力给予物体的冲量;2为了使这力的冲量为200Ns,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度16jm s --⋅的物体,回答这两个问题; 解:1若物体原来静止,则410(102)56t p Fdt t idt i ∆==+=⎰⎰1kg m s -⋅⋅,沿x 轴正向,1111115.656[]p v i m s I p i kg m s m--∆∆==⋅=∆=⋅⋅[], 若物体原来具有初速度106v jm s -=-⋅,则0000,()tp mv p t mv Fdt =-=-+⎰于是 201()p p t p p ∆=-=∆ 同理, 2121,v v I I ∆=∆=这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量亦即冲量就一定相同,这就是动量定理. 2同上理,两种情况中的作用时间相同,即⎰+=+=ttt dt t I 0210)210(令210200t t +=,解得10t s =;2.7 一小船质量为100kg,船头到船尾共长3.6m;现有一质量为50kg 的人从船尾走到船头时,船头将移动多少距离 假定水的阻力不计;习题2.7图 解:由动量守恒 0=-人人船船v m V M又 dt VS t⎰=船船,船人船船人船人人S m M dt V m M dt v s tt===⎰⎰0,如图,船的长度 L S s =+人船 所以 3.61.21001150L S m M m ===++船船人即船头相对岸边移动m S 2.1=船2.8 质量2m kg =的质点,从静止出发沿X 轴作直线运动,受力(12)F t i =N,试求开始3s 内该力作的功;解 3(12)(12)x x LLA F dx t dx tv dt ===⎰⎰⎰而200001232tttx x x x F v v a dt dt tdt t m =+===⎰⎰⎰ 所以()333234003612336729(J)4A t t dt t dt t ⎡⎤=⋅===⎢⎥⎣⎦⎰⎰2.9 一地下蓄水池,面积为250s m =,水深度为1.5m ,假定水的上表面低于地面的高度是5.0m ,问欲将这池水全部抽到地面,需作功多少O1h解:建坐标如习题 2.9图,图中0h 表示水面到地面的距离,1h 表示水深;水的密度为3310kg m ρ=,对于坐标为y 、厚度为dy 的一层水,其质量dm sdy ρ=,将此层水抽到地面需作功dA dmgy sgydy ρ==将蓄水池中的水全部抽到地面需作功()01012201012h h h h h h A dA sgydy sg h h h ρρ++⎡⎤===+-⎣⎦⎰⎰()2101122sg h h h ρ=+ ()32110509.8 1.52 5.0 1.52=⨯⨯⨯⨯+⨯⨯64.2310=⨯J 2.9一炮弹质量为m ,以速度v 飞行,其内部炸药使此炮弹分裂为两块,爆炸后由于炸药使弹片增加的动能为T ,且一块的质量为另一块质量的k 倍,如两者仍沿原方向飞行,试证其速率分别为v ,v 证明:设一块的质量为1m ,则另一块的质量为21m km =;利用12m m m +=,有 11m m k =+, 21km m k =+ ① 又设1m 的速度为1v ,2m 的速度为2v ,则有2222211212121mv v m v m T -+=② 1122m v m v mv += 动量守恒 ③联立①、③解得12(1)v kv k v +=+,12(1)v k v kv =+- ④联立④、②解得22)(2v v kmT-=,于是有km T v v 22±= 将其代入④式,有12(1)kTv k v k v v m⎛=+-= ⎝又因为爆炸后,两弹片仍沿原方向飞行,当1k >时只能取 kmTv v m kT v v 2,221-=+=; 2.10一质量为m 的子弹射入置于光滑水平面上质量为M 并与劲度系数为k 的轻弹簧连着的木块后使弹簧最大压缩了L ,求子弹射入前的速度0v .习题2.10图解: 子弹射入木块到相对静止的过程是一个完全非弹性碰撞,时间极短,木块获得了速度,尚未位移,因而弹簧尚未压缩.此时木块和子弹有共同的速度1v ,由动量守恒,()10m M v mv +=此后,弹簧开始压缩,直到最大压缩,由机械能守恒, ()2211122m M v kL += 由两式消去1v ,解出0v 得0v =2.11质量m 的物体从静止开始,在竖直平面内沿着固定的四分之一圆周从A 滑到B ;在B 处时,物体速度的大小为B v ;已知圆的半径为R ,求物体从A 滑到B 的过程中摩擦力所作的功:1用功的定义求; 2用动能定理求;3用功能原理求;习题2.11图解 方法一:当物体滑到与水平成任意θ角的位置时,物体在切线方向的牛顿方程为cos t dv mg f ma mdt θ-== 即cos dv f mg mdtθ-=-+ 注意摩擦力f 与位移dr 反向,且||dr Rd θ=,因此摩擦力的功为00||cos Bv f dr A mg Rd m dv dt πθθ=-+⎰⎰22001cos 2B v B mgR d m vdv mgR mv πθθ=-+=-+⎰⎰方法二: 选m 为研究对象,合外力的功为()A mg f N dr =++⋅⎰考虑到N 0dr ⋅=⎰,因而2cos ||cos f f f A A mg dr A mgR d A mgR πθθθ=+⋅=+=+⎰⎰由于动能增量为2102k B E mv ∆=-,因而按动能定理有 212f BA mgR mv +=,212f B A mgR mv =-+;方法三:选物体、地球组成的系统为研究对象,以B 点为重力势能零点; 初始在A 点时,0p E mgR =、00k E = 终了在B 点时,0p E =,212k B E mv =由功能原理知:21012f A E E E mv mgR =∆=-=- 经比较可知,用功能原理求最简捷;2.12 墙壁上固定一弹簧,弹簧另一端连接一个物体,弹簧的劲度系数为k ,物体m 与桌面间的摩擦因素为μ,若以恒力F 将物体自平衡点向右拉动,试求到达最远时,系统的势能;习题2.12图解:物体水平受力如图,其中k f kx =,f mg μμ=;物体到达最远时,0v =;设此时物体的位移为x , 由动能定理有()0--00xF kx mg dx μ=-⎰即 21--02Fx kx mgx μ= 解出 ()2F mg x kμ-=系统的势能为 ()22212p F mg E kx kμ-==2.13 一双原子分子的势能函数为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=6012002)(r r r r E r E p式中r 为二原子间的距离,试证明: ⑴0r 为分子势能极小时的原子间距;⑵分子势能的极小值为0E -; ⑶当0)(=r E p 时,原子间距离为62r ;证明:1当()0P dE r dr=、22()0P d E r dr >时,势能有极小值min )(r E P ;由 126126000000137()2120P r r r r dE r d E E dr dr r r rr ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦ 得 12600r r r r ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭所以0r r =,即0r 为分子势能取极值时的原子间距;另一方面,12620002148()12137P r r d E r E dr rr ⎛⎫=- ⎪⎝⎭ 当0r r =时,200222200072()137120P E d E r E dr r r r ⎛⎫=-=> ⎪⎝⎭,所以0r r =时,)(r E P 取最小值;2当0r r =时,12600min0000()2P r r E r E E r r ⎡⎤⎛⎫⎛⎫⎢⎥=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦3令126000()20P r r E r E r r ⎡⎤⎛⎫⎛⎫=-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,得到1260020r r r r ⎡⎤⎛⎫⎛⎫-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,602r r ⎛⎫= ⎪⎝⎭,r =2.14 质量为7.2×10-23kg,速度为6.0×107m/s 的粒子A,与另一个质量为其一半而静止的粒子B 相碰,假定这碰撞是弹性碰撞,碰撞后粒子A 的速率为5×107m/s,求:⑴粒子B 的速率及偏转角; ⑵粒子A 的偏转角;B习题2.14图解:两粒子的碰撞满足动量守恒B B A A A A v m v m v m '' +=写成分量式有βαcos 'cos 'B B A A A A v m v m v m +=βαsin 'sin 'B B A A v m v m =碰撞是弹性碰撞,动能不变:222'21'2121B B A A A A v m v m v m += 利用kg m A 23102.7-⨯=, kg m m AB 23106.32-⨯==, s m v A /100.67⨯=,s m v A /100.5'7⨯=,可解得s m v B /1069.4'7⨯=,'454 =β,'2022 =α;2.15 平板中央开一小孔,质量为m 的小球用细线系住,细线穿过小孔后挂一质量为1M 的重物;小球作匀速圆周运动,当半径为0r 时重物达到平衡;今在1M 的下方再挂一质量为2M 的物体,如题2-15图;试问这时小球作匀速圆周运动的角速度ω'和半径r '为多少习题2.15图解:在只挂重物1M 时,小球作圆周运动的向心力为1M g ,即2100M g mr ω= ①挂上2M 后,则有212()M M g mr ω''+= ②重力对圆心的力矩为零,故小球对圆心的角动量守恒.即 22220000r mv r mv r r ωω''''=⇒= ③联立①、②、③得2/33/212100112,M M M r r M M M ωω⎫⎛⎫+''===⋅⎪ ⎪+⎭⎝⎭2.16 哈雷慧星绕太阳运动的轨道是一个椭圆;它离太阳最近距离为m r 1011075.8⨯=时的速率是1411046.5-⨯=msv ,它离太阳最远时的速率是1221008.9-⨯=msv ,这时它离太阳的距离r 2是多少 太阳位于椭圆的一个焦点;解:哈雷彗星绕太阳运动时受到太阳的引力——即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有 1122r mv r mv =∴ 10412112228.7510 5.4610 5.2610[]9.0810rv r m v ⨯⨯⨯===⨯⨯2.17 查阅文献,对变质量力学问题进行分析和探讨,写成小论文;参考文献:1石照坤,变质量问题的教学之浅见,大学物理,1991年第10卷第10期; 2任学藻、廖旭,变质量柔绳问题研究,大学物理,2006年第25卷第2期; 2.18 通过查阅文献,形成对惯性系的进一步认识,写成小论文;参考文献:1高炳坤、李复,“惯性系”考,大学物理,2002年第21卷第4期; 2高炳坤、李复,“惯性系”考续,大学物理,2002年第21卷第5期;习题三答案 习题三3.1简要回答下列问题:(1) 地球由西向东自转,它的自转角速度矢量指向什么方向 作图说明.2 刚体的转动惯量与那些因素有关 “一个确定的刚体有确定的转动惯量”这句话对吗3 平行于z 轴的力对z 轴的力矩一定为零,垂直于z 轴的力对z 轴的力矩一定不为零.这种说法正确吗4 如果刚体转动的角速度很大,那么作用于其上的力是否一定很大 作用于其上的力矩是否一定很大5 两大小相同、质量相同的轮子,一个轮子的质量均匀分布,另一个轮子的质量主要集中在轮子边缘,两轮绕通过轮心且垂直于轮面的轴转动;问:a 如果作用在它们上面的外力矩相同,哪个轮子转动的角速度较大 b 如果它们的角加速度相同,哪个轮子受到的力矩大 c 如果它们的角动量相等,哪个轮子转得快6 为什么质点系动能的改变不仅与外力有关,而且也与内力有关,而刚体绕定轴转动动能只与外力矩有关,而与内力矩无关7 下列物理量中,哪些与参考点的选择有关,哪些与参考点的选择无关:a 位矢;b 位移;c 速度;d 动量;e 角动量;f 力;g 力矩.8 做匀速圆周运动的质点,对于圆周上某一定点,它的角动量是否守恒 对于通过圆心并与圆平面垂直的轴上任一点,它的角动量是否守恒 对于哪一个定点,它的角动量守恒 9 一人坐在角速度为0ω的转台上,手持一个旋转着的飞轮,其转轴垂直于地面,角速度为'ω;如果忽然使飞轮的转轴倒转,将发生什么情况 设转台和人的转动惯量为I ,飞轮的转动惯量为'I ;3.2质量为m 长为l 的均质杆,可以绕过B 端且与杆垂直的水平轴转动;开始时,用手支住A 端,使杆与地面水平放置,问在突然撒手的瞬时,1绕B 点的力矩和角加速度各是多少 2杆的质心加速度是多少解:1绕B 点的力矩M 由重力产生,设杆的线密度为ρ,lm=ρ,则绕B 点的力矩为 00012mg m l M xdG gxdm gx dx mgl ρ====⎰⎰⎰杆绕B 点的转动惯量为 2020231ml dx x dm x I l m ===⎰⎰ρ角加速度为 32M gI lβ==2杆的质心加速度为 g l a 432==β3.3 如图所示,两物体1和2的质量分别为1m 与2m ,滑轮的转动惯量为I ,半径为r ;⑴如物体2与桌面间的摩擦系数为μ,求系统的加速度a 及绳中的张力1T 与2T 设绳子与滑轮间无相对滑动;⑵如物体2与桌面间为光滑接触,求系统的加速度a 及绳中的张力1T 与2T ;T m习题3.2图解:⑴先做受力分析,物体1受到重力g m 1和绳的张力1T ,对于滑轮,受到张力1T 和2T ,对于物体2,在水平方向上受到摩擦力g m 2μ和张力2T ,分别列出方程a m T g m 111=- ()a g m T -=11 a m g m T 222=-μ ()g a m T μ+=22()12aT T r M I Irα-=== 通过上面三个方程,可分别解出三个未知量()()212212m m gr a m m r I μ-=++,()()22112121m r g Ig T m m m r I μ++=++,()()21222121m r g Ig T m m m r I μμ++=++ ⑵ 在⑴的解答中,取0=μ即得()21212m gr a m m r I =++, ()2211212m r g Ig T m m m r I +=++,()2122212m m r gT m m r I =++; 3.4 电动机带动一个转动惯量为I=50kg·m 2的系统作定轴转动;在0.5s 内由静止开始最后达到120r/min 的转速;假定在这一过程中转速是均匀增加的,求电动机对转动系统施加的力矩; 解:由于转速是均匀增加的,所以角加速度α为2120/min 2/8/0.560/minr rad rrad s t s s ωπαπ∆⨯===∆⨯从而力矩为322508 1.25710M I kgm s απ-==⨯=⨯3.5 一飞轮直径为0.30m,质量为5.00kg,边缘绕有绳子,现用恒力拉绳子的一端,使其由静止均匀的加速,经0.50s 转速达到10r/s;假定飞轮可看作实心圆柱体,求:⑴飞轮的角加速度及在这段时间内转过的转数; ⑵拉力及拉力所作的功;⑶从拉动后t=10s 时飞轮的角速度及轮边缘上一点的速度和加速度; 解:⑴ 飞轮的角加速度为210/2/125.7/0.5r s rad rrad s t sωπα∆⨯===∆ 转过的圈数为r s s r n 5.25.0/1021=⨯⨯= ⑵ 飞轮的转动惯量为 221mr I =, 所以,拉力的大小为110.35125.747.1()222M I F mr N r r αα====⨯⨯⨯=拉力做功为47.1 2.5 3.140.3111()W FS F n d J π==⨯=⨯⨯⨯=⑶从拉动后t=10s 时,轮角速度为3125.710 1.25710(/)t rad s ωα''==⨯=⨯ 轮边缘上一点的速度为31.257100.15188(/)v r m s ω''==⨯⨯= 轮边缘上一点的加速度为2125.70.1518.8(/)a r m s α==⨯=;3.6 飞轮的质量为60kg,直径为0.50m,转速为1000r/min,现要求在5s 内使其制动,求制动力F;假定闸瓦与飞轮之间的摩擦系数μ=0.4,飞轮的质量全部分布在轮的外周上;尺寸如图所示;习题3.6图解:设在飞轮接触点上所需要的压力为F ',则摩擦力为F μ',摩擦力的力矩为2dF 'μ,在制动过程中,摩擦力的力矩不变,而角动量由2dmv 变化到0,所以由 0Mdt L L =-⎰有 222dd m t d F ⋅='ωμ解得785.42m d F N t ωμ'==;由杆的平衡条件得 0.5314.21.25F F N '==; 3.7 弹簧、定滑轮和物体的连接如图3.7所示,弹簧的劲度系数为2.0N m -1;定滑轮的转动惯量是0.5kg m 2,半径为0.30m,问当6.0kg 质量的物体落下0.40m 时,它的速率为多大 假设开始时物体静止而弹簧无伸长;习题3.7图解:当物体落下0.40m 时,物体减少的势能转化为弹簧的势能、物体的动能和滑轮的动能, 即222222121rIv mv kh mgh ++=, 将kg m 6=,2/8.9s kgm g =,m h 4.0=,25.0kgm I =,m r 3.0=代入,得s m v /01.2=3.8 在自由旋转的水平圆盘上,站一质量为m 的人;圆盘的半径为R ,转动惯量为J ,角速度为ω;如果这人由盘边走到盘心,求角速度的变化及此系统动能的变化; 解:系统的角动量在整个过程中保持不变;人在盘边时,角动量为 ()ωω2mR J I L +==人走到盘心时角动量为 ωω'=''=J I L因此 ()ωωJmR J 2+='人在盘边和在盘心时,系统动能分别为22212121ωωJ R m W +=,()222222121ωωJ mR J J W +='= 系统动能增加 24222122121ωωJR m R m W W W +=-=∆ 3.9 在半径为1R ,质量为m 的静止水平圆盘上,站一质量为m 的人;圆盘可无摩擦地绕通过圆盘中心的竖直轴转动;当这人开始沿着与圆盘同心,半径为2R 21R R <的圆周匀速地走动时,设他相对于圆盘的速度为v ,问圆盘将以多大的角速度旋转解:整个体系的角动量保持为零,设人匀速地走动时圆盘的角速度为ω,则()2122120L L L m v R R mRωω=+=--=人盘 解得 v R R R 2221222+-=ω 3.10 如题3.10图示,转台绕中心竖直轴以角速度0ω作匀速转动;转台对该轴的转动惯量J =5×10-5 kg·m 2;现有砂粒以1g/s 的速度落到转台,并粘在台面形成一半径r =0.1m 的圆;试求砂粒落到转台,使转台角速度变为102ω所花的时间;解:要使转台角速度变为102ω,由于砂粒落下时不能改变体系角动量,所以必须要使体系的转动惯量加倍才行,即 J r m =2沙粒;将25105m kg J ⋅⨯=-和m r 1.0=代入得kg m 3105-⨯=沙粒所以 s sg kgt 5/11053=⨯=- 3.11 一脉冲星质量为1.5×1030kg,半径为20km;自旋转速为2.1 r/s,并且以1.0×10-15r/s 的变化率减慢;问它的转动动能以多大的变化率减小 如果这一变化率保持不变,这个脉冲星经过多长时间就会停止自旋 设脉冲星可看作匀质球体;解:脉冲星的转动惯量为 252mr I =转动动能为 2225121r m I W ωω==转动动能的变化率为 225dW d mr dt dtωω= ()230415250.4 1.510210 2.12 1.0102 1.9910/J s ππ-=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯由d dtωα=,t ωα=,得停止自旋所需要的时间为151522.1/ 2.1101.010/r s t s r sωα-===⨯⨯ 3.12 两滑冰运动员,质量分别为M A =60kg,M B =70kg,它们的速率V A =7m/s,V B =6m/s,在相距1.5m 的两平行线上相向而行,当两者最接近时,便拉起手来,开始绕质心作圆周运动并保持两者间的距离为1.5m;求该瞬时:⑴系统的总角动量;⑵系统的角速度;⑶两人拉手前、后的总动能;这一过程中能量是否守恒,为什么解:⑴设两滑冰运动员拉手后,两人相距为s ,两人与质心距离分别为A r 和B r ,则 s M M M r B A B A +=, s M M M r BA AB +=两人拉手前系统总角动量为()s kgm s V V M M M M r V M r V M L L L B A BA BA B B B A A A B A /6302=++=+=+=⑵设两人拉手后系统的角速度为ω,由于两人拉手后系统角动量不变22A AB B L M r M r ωω=+所以, s rad s V V r M r M LB A BB A A /67.822=+=+=ω ⑶两人拉手前总动能为: J V M V M W B B A A 27302121221=+=拉手后,由于整个体系的动量保持为零,所以体系动能为 ()J V V M M M M r M r M W B A BA B A B B A A 2730212121222222=++=+=ωω 所以体系动能保持守恒;可以算出,当且仅当B B A A V M V M =时,体系能量守恒,否则能量会减小,且()()22121B B A A B A V M V M M M W W W -+=-=∆-3.13一长l =0.40m 的均匀木棒,质量M=1.00kg,可绕水平轴O 在竖直平面内转动,开始时 棒自然地竖直悬垂;现有质量m=8g 的子弹以v=200m/s 的速率从A 点与O 点的距离为34l ,如图;求:⑴棒开始运动时的角速度;⑵棒的最大偏转角;习题3.13图解:系统绕杆的悬挂点的角动量为 21340.48L mvl kgm s -== 子弹射入后,整个系统的转动惯量为 222054.016931kgm ml Ml I =+= 所以 s rad IL/88.8==ω⑵子弹射入后,且杆仍然垂直时,系统的动能为212 2.13W I J ω==动当杆转至最大偏转角θ时,系统动能为零,势能的增加量为()()31241cos 1cos W Mgl mgl θθ∆=-+-势 由机械能守恒,势动W W ∆= 得 24.94=θ3.14 通过查阅文献,探讨计算刚体转动惯量的简化方法,写成小论文;参考文献:周海英、陈浩、张晓伟,巧算一类刚体的转动惯量,大学物理,2005年第24卷第2期;3.15 通过上网搜寻,查找对称陀螺规则进动在生活、生产中的应用事例,并进行分类;习题四参考解答4.1 惯性系'K 相对惯性系K 以速度u 运动;当它们的坐标原点O 与'O 重合时,0'==t t ;在惯性系'K 中一质点作匀速率圆周运动,轨道方程为()()222a y x ='+',0='z ,试证:在惯性系K 中的观测者观测到该质点作椭圆运动,椭圆的中心以速度u 运动; 提示:在惯性系K 中的观测者观测到该质点的轨道方程为1)1()(22222=+--ay a ut x β; 证明:根据洛仑兹坐标变换关系 ,12β--='ut x x ,y y =' z z ='代入原方程中,得到 22221)(a y ut x =+--β 化简得 1)1()(22222=+--a y a ut x β所以,在K 系中质点做椭圆运动,椭圆中心以速度u 运动;4.2 一观测者测得运动着的米尺长m5.0,问此米尺以多大的速度接近观测者 解:由相对论长度缩短关系 ()20/1c v L L -=得到 ()()s m L L c v /106.22/11100.3/182820⨯=-⨯⨯=-=4.3 如题图4.3所示,在'K 系的Y X O '''平面内放置一固有长度为0 的细杆,该细杆与x '轴的夹角为θ';设'K 系相对于K 系沿x 轴正向以速率u 运动,试求在K 系中测得的细杆的长度 和细杆与x 轴的夹角θ;O X ,X '题图4.3解:细杆在K '系中的两个坐标上的投影分别为 ⎩⎨⎧'='∆'='∆θθsin cos 00l y l x细杆在K 系中的两个坐标上的投影分别为()()⎪⎩⎪⎨⎧'='∆=∆'-='∆-=∆θθsin cos /1/10202l y y c u l x c u x在K 系中细杆的长度为()[]()20222022/cos 1si cos /1c u l n c u l y x l θθθ'-='+'-=∆+∆=。

大学物理学(课后答案)第7章

大学物理学(课后答案)第7章

⼤学物理学(课后答案)第7章第七章课后习题解答、选择题7-1处于平衡状态的⼀瓶氦⽓和⼀瓶氮⽓的分⼦数密度相同,分⼦的平均平动动能也相同,则它们[](A) 温度,压强均不相同(B)温度相同,但氦⽓压强⼤于氮⽓的压强(C)温度,压强都相同(D)温度相同,但氦⽓压强⼩于氮⽓的压强3分析:理想⽓体分⼦的平均平动动能τk= kT,仅与温度有关,因此当氦⽓和氮2⽓的平均平动动能相同时,温度也相同。

⼜由理想⽓体的压强公式p =nkT ,当两者分⼦数密度相同时,它们压强也相同。

故选( C)O7-2理想⽓体处于平衡状态,设温度为T,⽓体分⼦的⾃由度为i ,则每个⽓体分⼦所具有的[](A)动能为-kT (B)动能为丄RT2 2(C)平均动能为^kT (D)平均平动动能为^RT分析:由理想⽓体分⼦的的平均平动动能3 kT和理想⽓体分⼦的的平均动能2T⼆丄kT ,故选择(C)O27-3三个容器A、B、C中装有同种理想⽓体,其分⼦数密度n相同,⽽⽅均根1/2 1/2 1/2速率之⽐为V A : V B : V C 1:2:4 ,则其压强之⽐为P A : P B : P C[](A) 1:2:4 (B) 1:4:8 (C) 1 : 4 : 16 (D) 4:2:1分析:由分⼦⽅均根速率公式= J3RT,⼜由物态⽅程p = nkT ,所以当三容器中得分⼦数密度相同时,得p1: P2: P3 =T1 :T2 :T3 =1:4:16 O故选择(C)O7-4图7-4中两条曲线分别表⽰在相同温度下氧⽓和氢⽓分⼦的速率分布曲线。

如果(VP O和(V P 分别表⽰氧⽓和氢⽓的最概然速率,则[](A)图中a表⽰氧⽓分⼦的速率分布曲线且V P O z V P H= 4(B) 图中a表⽰氧⽓分⼦的速率分布曲线且V P O/ V P H? =1/4(C) 图中b表⽰氧⽓分⼦的速率分布曲线且V P O / V P H=1/4(D) 图中b表⽰氧⽓分⼦的速率分布曲线且V P O/ V P H2 =4分析:在温度相同的情况下,由最概然速率公式'..P=I j2RT及氢⽓与氧⽓的摩尔质量M H2£M o2,可知氢⽓的最概然速率⼤于氧⽓的最概然速率,故曲线a对应于氧分⼦的速率分布曲线。

大学物理教程第二版课后答案

大学物理教程第二版课后答案

引言:大学物理教程是一本经典的物理教材,旨在帮助学生理解和掌握物理学的基本原理和概念。

课后习题是帮助学生巩固所学知识的重要部分。

本文将提供《大学物理教程第二版》课后答案,以帮助学生检查和纠正他们的理解,提高物理学习的效果与成绩。

概述:物理学是自然科学的重要分支,研究物质、能量和它们之间相互作用的规律。

大学物理教程第二版是一本全面介绍物理学的教材,内容涵盖了力学、热学、电磁学等领域。

通过解答课后习题,学生可以深入理解课堂教学中所介绍的物理学原理,提高问题解决能力和科学思维。

正文:一、力学1.速度和加速度的关系2.运动中的力和加速度3.牛顿三定律的应用4.匀速运动和变速运动的区别5.质点和刚体的运动分析二、热学1.理想气体定律的应用2.热传导和传热的方式3.热量和能量的转化4.热力学循环和效率5.热力学第一定律和第二定律的概念三、电磁学1.电场和电势的关系2.高斯定律和库仑定律的应用3.磁场的产生和性质4.安培定律和法拉第电磁感应定律的应用5.电磁波的特性和传播四、光学1.光的折射和反射2.物体成像的方式3.凸透镜和凹透镜的工作原理4.光的波粒二象性的解释5.干涉和衍射现象的解释五、量子物理1.微观粒子的波函数和几率分布2.波粒二象性的测量3.斯特恩盖拉赫实验和双缝干涉实验4.原子和分子的结构5.量子力学的基本原理和数学表达总结:通过解答《大学物理教程第二版》的课后习题,学生可以深入理解物理学的基本原理和概念。

力学、热学、电磁学、光学和量子物理是大学物理的重要领域,通过系统学习和练习,学生可以提高问题解决能力和科学思维。

课后答案的提供可以帮助学生检查自己的理解,并及时纠正错误,提高物理学习的效果与成绩。

希望本文所提供的《大学物理教程第二版》课后答案能对学生的学习起到一定的帮助和指导作用。

大学物理第七章习题及答案

大学物理第七章习题及答案

第七章 振动学基础一、填空1.简谐振动的运动学方程是 。

简谐振动系统的机械能是 。

2.简谐振动的角频率由 决定,而振幅和初相位由 决定。

3.达到稳定时,受迫振动的频率等于 ,发生共振的条件 。

4.质量为10-2㎏的小球与轻质弹簧组成的系统,按20.1cos(8)3x t ππ=-+的规律做运动,式中t 以s 为单位,x 以m 为单位,则振动周期为 初相位 速度最大值 。

5.物体的简谐运动的方程为s ()x A in t ωα=-+,则其周期为 ,初相位6.一质点同时参与同方向的简谐振动,它们的振动方程分别为10.1cos()4x t πω=+,20.1cos()4x t πω=-,其合振动的振幅为 ,初相位为 。

7.一质点同时参与两个同方向的简谐振动,它们的振动方程分别为)4cos(06.01πω+=t x ,250.05cos()4x t πω=+,其合振动的振幅为 ,初相位为 。

8.相互垂直的同频率简谐振动,当两分振动相位差为0或π时,质点的轨迹是 当相位差为2π或32π时,质点轨迹是 。

二、简答1.简述弹簧振子模型的理想化条件。

2.简述什么是简谐振动,阻尼振动和受迫振动。

3.用矢量图示法表示振动0.02cos(10)6x t π=+,(各量均采用国际单位).三、计算题7.1 质量为10×10-3㎏的小球与轻质弹簧组成的系统,按X=0.1cos (8πt+2π/3)的规律做运动,式中t 以s 为单位,x 以m 为单位,试求:(1)振动的圆频率,周期,初相位及速度与加速度的最大值;(2)最大恢复力,振动能量;(3)t=1s ,2s ,5s ,10s 等时刻的相位是多少?(4)画出振动的旋转矢量图,并在图中指明t=1s ,2s ,5s ,10s 等时刻矢量的位置。

7.2 一个沿着X 轴做简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示,如果在t=0时刻,质点的状态分别为:(1)X 0=-A ;(2)过平衡位置向正向运动;(3)过X=A/2处向负向运动;(4)过X=2A处向正向运动。

(完整版)大学物理学(课后答案)第7章

(完整版)大学物理学(课后答案)第7章

第七章课后习题解答一、选择题7-1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们[ ](A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强 (C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强分析:理想气体分子的平均平动动能32k kT ε=,仅与温度有关,因此当氦气和氮气的平均平动动能相同时,温度也相同。

又由理想气体的压强公式p nkT =,当两者分子数密度相同时,它们压强也相同。

故选(C )。

7-2 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的[ ](A) 动能为2i kT (B) 动能为2iRT(C) 平均动能为2i kT (D) 平均平动动能为2iRT分析:由理想气体分子的的平均平动动能32k kT ε=和理想气体分子的的平均动能2ikT ε=,故选择(C )。

7-3 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()1/21/21/222::2A B Cv v v =1:2:4,则其压强之比为A B C p :p :p[ ](A) 1:2:4 (B) 1:4:8 (C) 1:4:16 (D) 4:2:1=,又由物态方程p nkT =,所以当三容器中得分子数密度相同时,得123123::::1:4:16p p p T T T ==。

故选择(C )。

7-4 图7-4中两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线。

如果()2p O v 和()2p H v 分别表示氧气和氢气的最概然速率,则[ ](A) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /4v v =(B) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(C) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(D) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /4v v =分析:在温度相同的情况下,由最概然速率公式p ν=质量22H O M M <,可知氢气的最概然速率大于氧气的最概然速率,故曲线a 对应于氧分子的速率分布曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题精解
7-1一条无限长直导线在一处弯折成半径为R 的圆弧,如图7.6所示,若已知导线中电流强度为I,试利用比奥—萨伐尔定律求:(1)当圆弧为半圆周时,圆心O 处的磁感应强度;(2)当圆弧为1/4圆周时,圆心O 处的磁感应强度。

解(1)如图7.6所示,圆心O 处的磁感应强度可看作由3段载流导线的磁场叠加而成。

因为圆心O 位于直线电流AB 和DE 的延长线上,直线电流上的任一电流元在O 点产生的磁感应强度均为零,所以直线电流AB 和DE 段在O 点不产生磁场。

根据比奥—萨伐尔定律,半圆弧上任一电流元在O 点产生的磁感应强度为 02
4Idl
dB R
μπ=
方向垂直纸面向内。

半圆弧在O 点产生的磁感应强度为 000220
444R
I
Idl I B R R R R
πμμμπππ=
==

方向垂直纸面向里。

(2)如图7.6(b )所示,同理,圆心O 处的磁感应强度可看作由3段载流导线的磁场叠加而成。

因为圆心O 位于电流AB 和DE 的延长线上,直线电流上的任一电流元在O 点产生的磁感应强度均为零,所以直线电流AB 和DE 段在O 点不产生磁场。

根据毕奥—萨伐尔定理,1/4圆弧上任一电流元在O 点产生的磁感应强度为 02
4Idl
dB R μπ=
方向垂直纸面向内,1/4圆弧电流在O 点产生的磁感应强度为
0002
220
4428R
I
Idl I R B R R R
πμμμπππ=
==⎰
方向垂直纸面向里。

7.2 如图7.7所示,有一被折成直角的无限长直导线有20A 电流,P 点在折线的延长线上,设a 为,试求P 点磁感应强度。

解 P 点的磁感应强度可看作由两段载流直导线AB 和BC 所产生的磁场叠加而成。

AB 段在P 点所产生的磁感应强度为零,BC 段在P 点所产生的磁感应强度为 0120
(cos cos )4I
B r μθθπ=
- 式中120,,2
r a π
θθπ=
== 。

所以
500(cos cos ) 4.010()42
I B T a μπ
ππ=
-=⨯ 方向垂直纸面向里。

7-3 如图7.8所示,用毕奥—萨伐尔定律计算图中O 点的磁感应强度。

解 圆心 O 处的磁感应强度可看作由3段载流导线的磁场叠加而成, AB 段在P 点所产生的磁感应强度为 ()0120
cos cos 4I
B r μθθπ=
-
式中1200,,26
r r π
θθ==
= ,所以
00cos 0cos 1262I I B r r μμπππ⎛⎛⎫=
-= ⎪ ⎝⎭⎝⎭
方向垂直纸面向里。

同理,DE 段在P 点所产生的磁感应强度为
005cos cos 1262I I B r r μμππππ⎛
⎛⎫=-= ⎪ ⎝⎭⎝
⎭ 圆弧段在P 点所产生的磁感应强度为 2000322
24436I
Idl I B r r r r
π
μμμπππ=
==⎰
O 点总的磁感应强度为
0001231122226I I I
B B B B r r r
μμμππ⎛⎫⎛⎫=++=
-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 方向垂直纸面向里。

7-4 如图7.9所示,两根长直导线沿半径方向接到粗细均匀的铁环上的A 、B 两点,并与很远处的电源相接,试求环中心O 点的磁感应强度。

解 因为O 点在两根长直导线上的延长线上,所以两根长直导线在O 点不产生磁场,设第一段圆弧的长为1l ,电流强度为1I ,电阻为1R ,第二段圆弧长为2l ,电流强度为2I ,电阻为2R ,因为1、2两段圆弧两端电压相等,可得 1122I R I R = 电阻1
R S
ρ
=,而同一铁环的截面积为S 和电阻率是相同的,于是有 1122I l I l =
由于第一段圆弧上的任一线元在O 点所产生的磁感应强度为 0112
4I dl
dB R μπ=
方向垂直纸面向里。

第一段圆弧在O 点所产生的磁感应强度为 1
00111
122
44l I dl I l B R R
μμππ=
=⎰
方向垂直纸面向里。

同理,第二段圆弧在O 点所产生的磁感应强度为 2
00222
222
44l I dl I l B R R μμππ==⎰
方向垂直纸面向外。

铁环在O 点所产生的总磁感应强度为
001122
1222
044I l I l B B B R R μμππ=-=
-=
7-5 在真空中有两根互相平行的截流长直导线1L 和2L ,相距0.1m ,通有方向相反的电流
120I A =,210I A =,如图7.10所示,求12,L L 所决定的平面内位于2L 两侧各距2L 为0.05m
的a,b 两点的磁感应强度为B 。

解 截流长直导线在空间产生磁感应强度为 02I
B x
μπ=
长直导线在a,b 两点产生磁感应强度为 0101
11,20.0520.15
a b I I B B μμππ==
⨯⨯ 方向垂直纸面向里
长直导线2L 在a,b 两点产生的磁感应强度为 0202
22,20.0520.05
a b I I B B μμππ==
⨯⨯ 长直导线2L 在a 点产生磁感应强度为 40102
12 1.210()20.0520.05
a a a I I B B B T μμππ-=+=+=⨯⨯⨯
方向垂直纸面向里
在b 点产生磁感应强度为
50102
12 1.3310()20.1520.05
b b b I I B B B T μμππ-=+=
+=-⨯⨯⨯
方向垂直纸面向外
7-6 如图7.11(a )所示载流长直导线中的电流为I ,求通过矩形面积CDEF 的磁通量。

解 在矩形平面上取一矩形面元dS ldx =(如图7.11(b ))截流长直导线的磁场穿过该面
元的磁通量为 0022m I I
d dS ldx x x
μμφππ=
= 通过矩形面积的总磁通量为 0
0ln 22b m a I Il b ldx x a
μμφππ==⎰
7-7 一载流无限长直圆筒,内半径为a ,外半径为b ,传到电流为I ,电流沿轴线方向流动,
并均匀的分布在管的横截面上,求磁感应强度的分布。

解 建立如图7.12所示半径为r 的安培回路,由电流分布的对称性,L 上各点B 值相等,方向沿圆的切线,根据安培环路定理有
cos 2L
L
L
B dl dl B dl B r I θπμ'•====⎰⎰⎰蜒?
可得 02I B r
μπ'
=
其中I '是通过圆周L 内部的电流.。

相关文档
最新文档