(推荐)中职高一数学三角函数练习题
中职数学三角函数测试.pdf

x
sin
x
+
π 2
(
0
)的最小正周期为
π
.
(Ⅰ)求 的值;
(Ⅱ)求函数
f
(x)
在区间
0,23π
上的取值范围.
19.(本小题满分 12 分)
已知向量 m = (sin A,cos A),n = (1, −2) ,且 m n = 0.
(Ⅰ)求 tanA 的值;
(Ⅱ)求函数 f (x) = cos 2x + tan Asin x(x R)的值域.
C.既是奇函数又是偶函数
D.非奇非偶函数
4..函数 y = sin(2x + ) 图像的对称轴方程可能是( ) 3
A. x = − 6
B. x = − 12
C. x = 6
D. x = 12
5.
为得到函数 y
=
cos
x
+
π 3
的图象,只需将函数
y = sin x 的图像(
)
A.向左平移 π 个长度单位 6
A.最小正周期为 2π 的偶函数 C.最小正周期为 π 的偶函数
B.最小正周期为 2π 的奇函数 D.最小正周期为 π 的奇函数
12 .函数 y = tan x + sin x − tan x − sin x 在区间 ( , 3 ) 内的图象是( ) 22
y
y
y
y
3
2
2
2
2-
2-
o
−2 -
xo
(2) x [− , ],2x − [− , 5 ]
12 2
6 36
因为 f (x) = sin(2x − ) 在区间[− , ] 上单调递增,在区间[ , ]上单调递减,
高一数学三角函数测试题(完整版)

高一数学三角函数测试题命题人:谢远净一、选择题(每小题5分,共50分.在每小题给出的四个选项中,仅有一个选项是正确的) 1.角α的终边上有一点P (a ,a ),a ∈R 且a ≠0,则sinα值为 ( )A .22-B .22 C .1 D .22或22-2.函数x sin y 2=是( )A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数 3.若f (cos x )=cos3x ,则f (sin30°) 的值( )A .1B .-1C .0D .214.“y x ≠”是“y x sin sin ≠”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.设M 和m 分别表示函数1cos 31-=x y 的最大值和最小值,则M+m 等于 ( )A .32B .32-C .34-D .-2 6.αααα2cos cos 2cos 12sin 22⋅+=( )A .tan αB .tan 2αC .1D .127.sinαcosα=81,且4π<α<2π,则cosα-sinα的值为 ( )A .23 B .23- C .43 D .43-8.函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为()A .)48sin(4π+π-=x yB .)48sin(4π-π=x yC .)48sin(4π-π-=x yD .)48sin(4π+π=x y9.若tan(α+β)=3, tan(α-β)=5, 则tan2α= ( )A .74 B .-74 C .21 D .-2110.把函数)20(cos 2π≤≤=x x y 的图象和直线2=y 围成一个封闭的图形,则这个封闭图形的面积为 ( )A .4B .8C .2πD .4π11.9.设)4tan(,41)4tan(,52)tan(παπββα+=-=+则的值是 ( )A .1813B .2213 C .223 D .6112.已知α+ β =3π, 则cos αcos β –3sin αcos β –3cos αsin β – sin αsin β 的值为 ( )A .–22B .–1C .1D .–2二、填空题(每小题4分,共16分。
中职三角函数练习题

中职三角函数练习题三角函数练题教材练5.1.11.选择题:1) 下列说法中,正确的是()A。
第一象限的角一定是锐角B。
锐角一定是第一象限的角C。
小于90的角一定是锐角D。
第一象限的角一定是正角2) -50角的终边在()。
A。
第一象限B。
第二象限C。
第三象限D。
第四象限2.在直角坐标系中分别作出下列各角,并指出它们是第几象限的角:⑴60°;⑵-210°;⑶225°;⑷-300°。
教材练5.1.21.在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角:⑴405°;⑵-165°;⑶1563°;⑷-5421°。
2.写出与下列各角终边相同的角的集合,并把其中在-360°~360°范围内的角写出来:⑴45°;⑵-55°;⑶-220°45′;⑷1330°。
教材练5.2.11.把下列各角从角度化为弧度(口答):180°=π;90°=π/2;45°=π/4;15°=π/12;60°=π/3;30°=π/6;120°=2π/3;270°=3π/2.2.把下列各角从弧度化为角度(口答):π=180°;2π=360°;3π=540°;2π/3=120°;5π/6=150°;-π/4=-45°;-π=180°。
3.把下列各角从角度化为弧度:⑴75°;⑵-240°;⑶105°;⑷67°30′。
4.把下列各角从弧度化为角度:⑴π/2;⑵-2π/3;⑶-π/4;⑷-6π。
5.圆内一条弦的长度等于半径的长度,其所对的圆心角是不是1弧度的角?该圆心角等于多少度?将其换算为弧度。
中职数学基础模块上册第五章《三角函数》单元检测试题及参考答案

中职数学基础模块上册第五章《三角函数》单元检测试题及参考答案中职数学第五章《三角函数》单元检测一、选择题(本大题共12小题,每小题3分,共36分)1.-60°角的终边在(。
)。
A、第一象限。
B、第二象限。
C、第三象限。
D、第四象限2.150°=(。
)。
A、2π/3.B、π/5.C、3π/5.D、5π/33.与角30°终边相同的角是(。
)。
A、-60°。
B、390°。
C、-300°。
D、-390°4.下列各角中不是轴限角的是(。
)。
A、-180°。
B、280°。
C、90°。
D、360°5.如果α是第四象限的角,则角-α是第几象限的角(。
)。
A、第一象限。
B、第二象限。
C、第三象限。
D、第四象限6.求值5cos180°-3sin90°+2tanθ-6sin270°=(。
)。
A、-2.B、2.C、3.D、-37.角α终边上一点P(-3,4),则sinα=(。
)。
A、-4/5.B、4/5.C、-3/5.D、3/58.与75°角终边相同的角的集合是(。
)。
A、{β=75°+k·360°,k∈Z}。
B、{β=75°+k·180°,k∈Z}C、{β=75°+k·90°,k∈Z}。
D、{β=75°+k·270°,k∈Z}9.已知sinθ0,则角θ为第(。
)象限角。
A、一。
B、二。
C、三。
D、四10.下列各选项中正确的是(。
)。
A、终边相同的角一定相等。
B、第一象限的角都是锐角C、锐角都是第一象限的角。
D、小于90°的角都是锐角11.下列等式中正确的是(。
)。
A、cos(α+2π)=cosα。
B、sin(α+720°)=-sinαC、sin(α-360°)=-sinα。
(完整版)高一数学三角函数测试题

高一数学必修4三角函数试题一、选择题(本大题10小题,每小题5分,共50分.只有一项是符合题目要求的)1.cos(60)-的值是 ( )A.12B.12- C. D. 2.下列函数是偶函数且周期为π的是 ( )A. sin y x =B. cos y x =C.tan y x =D. cos 2y x =3.已知sin 0,cos 0θθ<>,则θ的终边在 ( )A.第一象限B. 第二象限C. 第三象限D. 第四象限4.函数()sin f x x =的周期为 ( )A. πB. 2πC. 3πD. 4π 5.已知sin(),cos(),tan()654a b c πππ=-=-=-,则大小关系为 ( ) A. a b c << B. c a b << C. b a c << D. c b a << 6.已知扇形的半径为3,圆心角为120°,则扇形的弧长和面积分别为 ( )A.π、2πB. 2π、3πC. 3π、4πD. 4π、4π7.集合{sin }A y y x ==,{cos }B y y x ==,下列结论正确的是 ( )A. A B =B. A B ⊆C. [1,0)A C B =-D. [1,0]A C B =-8.下列关于正切函数tan y x =的叙述不正确的是 ( )A.定义域为{,}2x x k k Z ππ≠+∈ B. 周期为πC.在(,),22k k k Z ππππ-++∈上为增函数 D.图象不关于点(,0)2k π,k Z ∈对称 9.下列关系式成立的是 ( )A.sin(3)sin παα+= B .tan(5)tan παα-= C.3cos()sin 2παα+= D.3sin()cos 2παα-= 10. 下列不等式成立的是 ( )A. sin1cos1<B. sin 2cos2<C. sin3cos3<D. sin 4cos4<第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上.11.函数2sin(3)6y x π=+的最大值为 . 12.已知1cos 3α=,则sin()2πα-= . 13.已知tan 1α=,(,2)αππ∈,则cos α= .14.函数()sin(3)f x x π=+的最小正周期为 .15.已知sin()y A x ωϕ=+(0,0,)2A πωϕ<><的部分图象,则y = .三、解答题:本大题共6小题,共75分,解答题应写出文字说明、证明过程或演算步骤。
最新职业高中高一数学三角函数试卷

三角函数考试卷1.1560角是…………………………………………………………………( ) A .第一象限角 B .第二象限角 C .第三象限角 D. 第四象限角 2.若θθθ则,0cos ,0sin <>的终边一定是在………………………………( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限函数 3.在下列各角中,与 330终边相同的角是 ………………………………( ) A. 60- B. 390- C. 390 D. 930 4.的最大值是x y cos 2-=…………………………………………………( ) A 1 B 2 C 3 D 4 5.已知3tan =α,则=-+ααααcos 2sin cos sin 3……………………………………( ) A.10 B.10- C.4 D.4- 6、下列说法正确的是………………………………………………………( ) A .第一象限角一定是锐角 B .第一象限角一定是正角 C .锐角都是第一象限角 D. 小于90 的角都是锐角 7. 下面与sin a 不同值的是…………………………………………………( ) A .sin ()απ- B .sin ()απ-2 C .sin ()πα4- D. sin ()απ-3 8. 30=α是的21sin =α……………………………………………………( ) A .充分非必要条件 B .必要非充分条件 C .充要必要 D. 既非充分又非必要 9.下列区间上x y sin =为减函数的是………………………………………( ) A .⎥⎦⎤⎢⎣⎡-0,2π B .⎥⎦⎤⎢⎣⎡-2,2ππ C .[]π,0 D. ⎥⎦⎤⎢⎣⎡ππ,2 10. =- 100sin 12…………………………………………………………( ) A. 100sin B. 100sin - C. 100cos D. 100cos - 11,已知54cos =α且),0(πα∈,则αtan 的值为。
高一数学三角函数练习题

高一数学三角函数练习题1. 简答题1. 请简要说明正弦函数、余弦函数和正切函数的定义和性质。
- 正弦函数(sin)的定义:对于任意角θ,其正弦值sinθ等于对边与斜边的比值。
- 正弦函数的性质:- 值域:[-1, 1]- 周期:2π- 对称性:sin(-θ) = -sinθ- 函数图像:以原点为中心,上下振动的波形,曲线在x轴的正半轴和负半轴上交替。
- 余弦函数(cos)的定义:对于任意角θ,其余弦值cosθ等于邻边与斜边的比值。
- 余弦函数的性质:- 值域:[-1, 1]- 周期:2π- 对称性:cos(-θ) = cosθ- 函数图像:以原点为中心,左右摆动的波形,曲线在x轴的正半轴和负半轴上交替。
- 正切函数(tan)的定义:对于任意角θ,其正切值tanθ等于对边与邻边的比值。
- 正切函数的性质:- 值域:(-∞, +∞)- 周期:π- 奇偶性:tan(-θ) = -tanθ- 函数图像:周期性的上升或下降波形,曲线在x轴的正半轴和负半轴上交替。
2. 请解释单位圆与三角函数之间的关系。
- 单位圆是半径为1的圆,其圆心是原点(0,0)。
单位圆与三角函数之间的关系如下:- 正弦函数:单位圆的上半圆弧上的点的纵坐标等于该点所对应的角的正弦值。
- 余弦函数:单位圆的右半圆弧上的点的横坐标等于该点所对应的角的余弦值。
- 正切函数:单位圆的右半圆弧上的点的纵坐标等于该点所对应的角的正切值。
- 三角函数的性质和图像可以通过单位圆来计算和理解。
2. 计算题1. 求解方程sinx = 0.5在区间[0, 2π]内的所有解。
解答:sinx = 0.5根据等式sinx = 0.5,可知x等于π/6(或30°)和11π/6(或330°)两个解。
在区间[0, 2π]内,满足sinx = 0.5的解为x = π/6和x = 11π/6。
2. 已知tanθ = 2,求解θ的值,且θ满足π/2 ≤ θ ≤ π。
中职数学(人教版):三角函数检测题及答案.doc

高一数学第一册(下)三角函数综合检测题(A)★江西上饶刘烈庆一、选择题(每小题 5 分,共 60 分)1. 若13 , 则()7A. sin 0 且 cos 0B. sin 0 且 cos 0C. sin 0 且 cos 0D. sin 0 且 cos 02. 函数 y 3sin x 4cos x 5 的最小正周期是()A.5 B.2C. D. 23. 已知定义在 [ 1,1]上的函数 y f ( x) 的值域为 [ 2,0] ,则函数 y f (cos x) 的值域为()A. [ 1,1]B. [ 3, 1]C. [ 2,0]D. 不能确定4. 方程sin x 1 )x 的解的个数是(4A.5B.6C.7D.85. 函数 y 2 sin(2 x ) cos[2( x )] 是()A. 周期为的奇函数B. 周期为的偶函数4 4C. 周期为的奇函数D. 周期为的偶函数2 26. 已知ABC 是锐角三角形,P sin A sin B, Q cos A cos B, 则()A. P QB. P QC. P QD. P 与Q的大小不能确定7.设 f (x) 是定义域为R,最小正周期为则 f ( 15) 等于()43 cos x,( x 0)2的函数,若 f ( x) 2 ,sin x,(0 x )A.1B.2D.2C.02 28. 将函数y f ( x)sin x 的图象向右平移个单位后,再作关于 x 轴的对称变换,得到4y 1 2sin 2 x 的图象,则 f ( x) 可以是()A. cos xB.2cos xC. sin xD. 2sin x9. 如果函数f ( x) sin( x )(0 2 ) 的最小正周期是T ,且当 x 2 时取得最大值, 那么()A. T 2,B. T 1,C. T 2,D. T 1,2 2 10.若0 y x , 且tan x 3tan y, 则x y 的最大值为()2A. B. C. D.不存存34 611. 曲线y A sin x a( A 0, 0) 在区间[0,2] 上截直线y 2 及 y 1 所得的弦长相等且不为0,则下列对A, a的描述正确的是()A. a 1, A 3 B. a1, A 3 C. a 1, A 1 D. a 1, A 1 2 2 2 212. 使函数 f(x)=sin(2x +θ ) + 3 cos(2x+θ)是奇函数,且在[0,]上减函数的θ的4值是A. B. 2 C. 4 D. 53 3 33二、填空题(每小题 4 分,共 16 分)13、已知sin cos 2 3, 那么sin 的值为, cos2 的值为;2 2 314、已知在ABC 中,3sin A 4cos B 6,4sin B 3cos A 1, 则角C的大小为15、设扇形的周长为8cm ,面积为4cm2,则扇形的圆心角的弧度数是16、关于x的函数 f(x) = cos(x +α ) 有以下命题:①对任意α,f(x)都是非奇非偶函数;②不存在α,使f(x)既是奇函数,又是偶函数;③存在α,使f(x) 是偶函数;④对任意α,f(x)都不是奇函数.其中一个假命题的序号是,因为当时,该命题的结论不成立.三、解答题(共74 分)17.(本小题满分 12 分)已知函数 f ( x) a(cos2 x sin x cos x) b( 1)当 a> 0 时,求 f(x) 的单调递增区间;( 2)当 a< 0 且x[0,] 时,f(x)的值域是[3, 4],求a、b的值.218. (本小题满分12 分)设0, P sin 2sin cos .(1)若 t = sin θ- cos θ用含 t 的式子表示 P;(2)确定 t 的取值范围,并求出 P 的最大值和最小值 .19.(本小题满分 12 分)已知函数 f ( x) sin( x ) cos( x ) 的定义域为R,( 1)当0时,求 f ( x)的单调区间;( 2)若(0, ) ,且sin x 0 ,当为何值时, f ( x) 为偶函数.20.(本小题满分 12 分)已知函数x xy sin 3 cos , .22( 1)求y取最大值时相应的x 的集合;( 2)该函数的图象经过怎样的平移和伸变换可以得到y sin x( x R) 的图象.21.(本小题满分 12 分)已知奇函数 f ( x) 在 ( ,0) U (0, ) 上有意义,且在 (0, ) 上是增函数, f (1) 0, 函数 g ( ) sin2 mcos 2m, [0, ]. 若集合 M m g( ) 0 ,2N m f [ g ( )] 0 , 求 M I N.22.(本小题满分 14 分)已知函数f ( ) 4 sin 2x2sin 2x2, . x x R( 1)求f ( x)的最小正周期及 f ( x) 取得最大值时x 的集合;( 2)求证:函数 f ( x) 的图象关于直线x 对称8高中数学第一册(下)三角函数综合检测题(A )及答案★江西上饶 刘烈庆一、选择题(每小题 5 分,共 60 分)1、提示: C 角 13是第四象限角 .74 ,2、提示: Dy 3sin x 4cos x5 5sin( x) 5, 其中 tan最小正周期为T 2 .33、提示: C当 x0 时,则 cos x1,1 ,又 Q x1,1时, f ( x) 2,0f (cos x )2,0 .故选 C.4、提示: C 易知 y sin x, y1x 都是奇函数,只须考虑 x 0 时,作图有 4 个交点,当 x0 时有 3 个交点,综上有 47 个交点,故选 C.5、提示: Cy2 sin(2 x) cos(2 x 2 )2 sin 2x cos2x2sin 4 x,2则函数的周期 T2 , 是奇函数,故选 C.6、提示: B由题可知:A BABsinA cos ,22B同理 sin B cos Asin A sin B cos A cos B, 故选 C.7、提示: B15) f ( 15 3 )3 )32f (3f (sin4.442428、提示:B 作函数 y 1 2sin 2 x 的图象关于 x 轴对称的图象, 得函数y 1 2sin 2 x ,即 ycos 2x, 再向左移个单位,得 ycos2(x4 ), 即 y sin 2x42sin x cos x, f ( x)2cos x, 故选 B.9、提示: Ay sin( x), 其周期 T2 , 当 x2k时取得最大值 , 由题知22 T2.又当 x 2时,有2 2k2(k1).22又 02 .k 1. 则,故选 A.210、提示: C 由 0 y xtan y 0 且 0 x ytan x tan y22 , tan(x y)tan x tan y12tan y 2tan y 3 , x y .易验证得y 时,等号成立,选 C.1 3tan2 y 23 tan y 3 6611、提示:A 依题意 y 2 与 y 1 关于 y a 对称, a 2 1 1,Q y 2 及y 1所3 2 2截得的弦大于0,2A 2 ( 1), A. 12、提示:2 二、填空题(每小题 4 分,共 16 分)13、已知sin cos 2 3, 那么sin 的值为 1 , cos2 的值为7 ;2 23 3 9提示:17 由 sin2cos22 3 (sin cos ) 2 43 9 3 2 2 31 sin 4sin13.31 7由cos2 1 2sin 2 1 2 ( )2 .3 914、已知在ABC 中,3sin A 4cos B 6,4sin B 3cos A 1, 则角C的大小为提示:两式平方相加得:sin( A B) 1, 又Q 3sin A 6 4cos B 2,65 2A B , A B , C.6 6 615、设扇形的周长为8cm ,面积为4cm2 ,则扇形的圆心角的弧度数是2r r 8提示: 2 设扇形半径为r, 圆心角的弧度数为, 则 1 r2 4 2.216、关于x的函数f (x) cos( x ) 有以下命题:①对任意, f (x) 都是非奇非偶函数;②不存在,使 f (x) 既是奇函数,又是偶函数;③存在,使 f (x) 是偶函数;④对任意, f (x) 都不是奇函数.其中一个假命题的序号是提示:答案1:①;,因为当时,该命题的结论不成立. k(k Z ). 答案2:②;k(k Z ).2 2三、解答题(共 74 分)17、(本小题满分 12 分)已知函数 f ( x) a(cos 2 x sin x cos x) b( 1)当 a 0 时,求 f ( x) 的单调递增区间;()当 a0 且 x [0, ] 时, f ( x) 的值域是 [3, 4], 求 a,b 的值 .2解:( 1) f ( x)a(1 cos2 x sin 2x) b2asin(2 x) a b,224 2由 222() 得3k2x4kk Zk8x k(k Z ),238当 a 0 时, f ( x) 的递增区间为 [ k, k ]( k Z ).8 8(2)由 0x得 2x5 , 2 sin(2 x ) 1.44 22 44又 a 02 1a b 2asin(2 x) a b b,224 22 12 2 .由题意知2a b 3 a 2b 4b 418、(本小题满分 12 分) 设 0, P sin 2 sin cos .( 1)若 tsincos , 用含 t 的式子表示 P ;( 2)确定 t 的取值范围,并求出 P 的最大值和最小值 .解:( 1)由 t sincos , 有 t 2 1 2sin cos 1 sin 2 .sin 2 1t 2 .P 1 t 2 tt 2 t 1.( 2) tsincos2sin().Q 0 ,344,441 sin( ) 1. 即 t 的取值范围是 1 t 2.24P(t)t 2 t 1(t 1) 2 5, 从而 P(t) 在 [ 1,1] 内是增函数,在 [ 1, 2]2 4 2 2 内是减函数 . 又 P( 1)1,P( 1 5 2) 2 1, P( 1) P( 2) 1 ) , P( P( ).2 4 2P 的最大值是5,最小值为1.419、(本小题满分 12 分)已知函数 f ( x) sin( x) cos( x ) 的定义域为 R ,( 1)当0时,求 f ( x) 的单调区间;( 2)若(0, ) ,且 sin x0 ,当 为何值时, f ( x) 为偶函数.解:(1)0 时, f (x) sin x cosx2 sin(x)3 4当 2kx2k,即 2kx 2k( kZ )时 f (x)2 424 4单调递增;当 2k2x 4 2k3 ,即 2k4 x 2k5 ( k Z )时 f (x)24单调递减;( 2)若 f (x) 偶函数,则 sin( x ) cos( x ) sin( x ) cos( x )即 sin( x)sin( x) cos(x) cos( x) =02sin x cos 2sin xsin2sin x(cossin ) 02 cos(4 ) 0Q (0,)4 ,此时, f (x) 是偶函数.20、(本小题满分 12分)已知函数xx ,.ysin23 cosx R1y 2取最大值时相应的 x 的集合;( )求( 2)该函数的图象经过怎样的平移和伸变换可以得到 ysin x( x R) 的图象 .解: y 2sin( x).23( 1)当 y最大2.x { x | x 4k3 , k Z}( 2)把 y2sin(x) 图象向右平移 2 ,再把每个点的纵坐村为原来的 1 ,23 3 1,纵坐标不变, 2横坐标不变 .然后再把每个点的横坐标变为原来的2即可得到 ysin x 的图象21、(本小题满分 12 分)已知奇函数 f ( x) 在 (,0) U (0, ) 上有意义 , 且在 (0, ) 上是增函数 , f (1) 0,函数 g () sin 2mcos2m,[0, 2 ]. 若集合 M m g() 0 ,N m f [ g ( )] 0 , 求 M I N.解: Q 奇函数 f (x) 满足 f (1)0,f ( 1) f (1) 0.Q f ( x) 在 (0,) 上是增函数 , f ( x) 在 (,0) 上也是增函数 .由 f ( g( )]0 可得 g( )1 或 0 g( ) 1, Nm g( )1或0 g( ) 1 .M I N m g( )1 .由 g() 1, 得 sin 2m cos2m1, (2 cos )m 2cos 2,2 cos 24 [(2cos )2].m22 coscosQ[0, ], 2 cos[1,2],4 [(2cos )2 4 2 2,2 ]2cosm 4 2 2, 即 M I N m m 4 2 2 .22、(本小题满分 14 分)已知函数f ( ) 4 sin 2 x 2sin 2 x 2, .xx R( 1)求 f ( x) 的最小正周期及 f ( x) 取得最大值时 x 的集合;( 2)求证:函数 f ( x) 的图象关于直线 x对称8解:( 1) f ( x) 2 sin 2 x 2 sin 2x 22 sin 2x 2(1 2 sin 2 x)2 sin 2x 2 cos 2x= 2 2 sin(2x4 )所以 f ( x) 的最小正周期是xR ,所以当 2x42k,即x k 3 (k Z )时, f ( x) 的最大值为 2 2 .28即 f (x) 取得最大值时 x 的集合为 { x | xk3 , k Z}8( 2)证明:欲证函数 f ( x) 的图象关于直线x对称,只要证明对于任意x R ,8有f ( x) f ( ) 成立即可.8 8f ( x) 2 2 sin[2( x) ] 2 2 sin( 2x) 2 2 cos 2x;8 8 4 2f (8 x) 2 2 sin[ 2( x) ] 2 2 sin( 2 x) 2 2 cos2 x.8 4 2f ( x) f ( x).8 8从而函数 f ( x) 的图象关于直线x 对称 .8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中职高一数学三角函数练习题
姓名 学号 得分
一、选择题(每小题3分共30分)
1、( )075sin 的值为
A 、32-
B 、32+
C 、426+
D 、4
26- 2、( )若0cos , 0sin <>x x ,则2x 在
A 、第一、二象限
B 、第三、四象限
C 、第二、三象限
D 、第二、四象限
3、( )若 α的终边过点(1,3-)则αsin 值为
A 、23-
B 、2
1- C 、3 D 、33 4、( )已知βα, 为锐角,10
10sin 55sin ==βα则βα+ 为 A 、450 B 、1350 C 、2250 D 、450或1350
5、( ))3
17cos(π-的值为 A 、23 B 、23- C 、21 D 、2
1- 6、( )计算0
20
5.22tan 15.22tan 2-的值为 A 、1 B 、22 C 、3 D 、3
3 7、( )下列与)45sin(0+x 相等的是
A 、)45sin(0x -
B 、)135sin(0+x
C 、)45cos(0x -
D 、)135sin(0
-x
8、( )计算000160cos 80cos 40cos ++的值为 A 、1 B 、2
1 C 、3 D 、0 9、( )若 2παπ<<化简2
)cos(1απ--的结果为
A 、2cos α
B 、2cos α
- C 、2sin α
D 、2sin α
-
10、( )若)sin(2sin cos α+=+-x x x 则αtan 为
A 、 1
B 、-1
C 、22-
D 、22 二、填空题(每小题3分共30分)
11、=-)4
37sin(π 12、54sin =
x ,x 为第二象限角,则=x 2sin 13、0075sin 15sin ⋅=
14、化简:)](2cos[sin )cos()2sin(βαπ
αβααπ+-++-= 15、化简:16cos 16sin
8
sin
1πππ--= 16、已知32)4sin(-=-x π,24ππ<<x ,则=+)4
sin(x π 17、已知3cot tan =+θθ,则θ2sin =
18、已知532cos =α,则αα22sin 2cos -= 19、已知32tan =θ
,则θsin =
20、计算)32cos(2cos sin 3πααα-
--= 二、解下列各题(每小题5分共40分)
21、求下列各式的值:
1)000040sin 20cos 20sin 40cos + 2)8sin 8cos
ππ⋅
22、已知, 23παπ<
< 53sin -=α 求:)3 tan(π
α+的值
23、已知2 tan =α试求下列各式的值
1)ααα
αcos sin cos sin +-
2)αααα22cos 3cos sin 2sin -+
24、若135
)sin(,53
sin =+=βαα (βα,为第一象限角)
求βcos 的值
25、已知21) sin(=
+βα,3
1) sin(=-βα 求βαtan tan 的值
26、已知βα, 为锐角,且βαtan , tan 是方程04332=+-x x 的两个根, 试求1))tan 1)(tan 1(βα++的值
2)βα+ 的度数
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注!)。