国外高速铁路防灾安全监控系统简介.
铁路防灾安全监测系统简述

强烈的地震造成路基严重损坏 ,导致列车出轨、倾覆和大量
人员伤亡。
第一章 系统介绍
1.3 系统简介
铁路防灾安全监测系统是保证高速列车行驶安全的重要装备之一 。系统对可能发生的自然灾害风(风、雨、地震)、异地物震侵入限异界物进侵行限 监测报警和防护,提供经智能分析后的预警、限速、停运等信息,为 运行计划调整、下达行车管制、抢险救援、维修提供依据,保证高速 列车安全正点、高效舒适。
对上报数据进行存储、分析、转发,主要 由应用服务器、数据库服务器组成。
人机界面显示并统计灾害数据,主要由各 种应用终端组成。
第二章 系统构成
2.1 灾害监测设备
(一)风向风速计
分类:三杯式、螺旋桨式、超声波式与热场式。
客运专线中,多选用超声波式风速风向计,其抗电力牵引电磁干扰能力强,
适应复杂、恶劣的环境。
铁路防灾安全监测系统简述
V1.0版
目录
第一章、 系统介绍 第二章、 系统构成 第三章、 系统功能 第四章、 系统特点 第五章、 技术指标
第一章 系统介绍
1.1 什么是铁路防灾安全
随铁路不断提速,高速铁路 防灾安全成为热点话题,大风、 雨雪、泥石流、地震等自然灾害 以及桥梁路段的落物,时刻威胁 高速铁路运输的安全。
目前国内铁路防灾系统的现状是因地区差异不同。比如乌鲁木齐地区受 风灾最为严重,其防风子系统就相对完善与成熟;西南地区的雨量监测系统 就相对完善。
新建的客运专线铁路防灾安全监控系统作为保证行车安全的重要设备 ,陆续在京津、郑西、武广、沪宁、海南东环等铁路应用。
第一章 系统介绍
1.5 设计目的及原则
借鉴国外先进经验,结合我国实际情况,构建安全可靠的铁路防灾安 全监控平台。
高速铁路防灾安全监控系统

高速铁路防灾安全监控系统
一、国外高速铁路灾害监测监控系统
主要监测监控内容 ➢ 异物侵限(法国、西班牙、日本、韩国等) ➢ 风速(法国、西班牙、意大利、日本、韩国等) ➢ 地震(日本、法国地中海线、韩国) ➢ 积雪深度(日本、韩国) ➢ 降雨量 (日本、韩国)
服务对象 ➢ 列车调度员 ➢ 基础设施维护人员
☆作为新干线沿线的地震仪主要用于监测内陆地震(包括直下型地震),一般 按每20km間隔设在变电站内。
☆当地震动加速度达到0.04g及以上时,地震监测系统通过与牵引供电和列 控系统的接口,立即使接触网断电、自动控制列车制动。
高速铁路防灾安全监控系统
法国地中海线沿线的地震仪
平均每10km安装一处,地震监测系统监测到地震后,铁路方面要首先与 法国国家地震部门验证,在得到确认后再人工向列车发限速命令:地震 动加速度0.04g≤a<0.065g时限速170km/h,地震动加速度a ≥0.065g时停运。
D 外侧限 界
DP
监测范 围
1.435
5
2.4
5
4 监测范围
L
2
限
0o
界
坠落轨
迹
a
限界
20
o
坠落轨
迹
高速铁路防灾安全监控系统
☆发生异物侵限灾害时,电网断裂,通过与信号 列控系统的接口,使列车自动制动停车。电网 的特点是监测准确,能够产生“0”、“1”二种 状态,与信号系统接口使列车自动停车。
高速铁路防灾安全监控系统
二、高速铁路防灾安全监控系统
监控数据处理设备
调度所
交换机
数据库 磁盘 服务器 阵列
数据库 服务器
应用 服务器
国外安全综合监控系统

国外安全综合监控系统
1.日本新干线高速铁路调度系统
日本新干线使用的C0MIRAC系统包括运行图生成与变更、车辆与乘务员运用、列车运行控制、列车运行监视、旅客信息等运营管理功能以及电力调度、车辆运用管理、接触网、线路状态检查、灾害监测(地震、风冰、雨、雪、滑坡)等安全功能,是一个功能较为完备的复杂系统。
COSMOS系统集行车控制、电力控制、车辆运用管理、运行图生成及变更、信息系统(灾害信息、旅客信息等)、维修作业管理、车站作业管理等功能于一体,将几乎所有与铁路运营有关的子系统都挂接在中央局域网(LAN)上,使开放运营的铁路系统在信息传输上形成相对的闭环系统,是现代控制技术与计算机技术、网络技术的有机结合。
2.法国TGV高速线综合调度系统
TGV高速线综合调度系统以调度集中为核心,依靠车一地之间可靠的通信将列车、沿线设备和控制中心联系起来。
车载设备包括TVM300或TVM430机车信号、故障监测和诊断装置、车载局域网等;沿线分布了接触网、热轴、风、雨、雪、桥隧落物等各种监测设备;控制中心主要包括行车调度、电力调度和中央维护监督三部分,通过网络传递信息。
3.德国ICE高速铁路综合调度系统
德国ICE高速列车通过LZB系统列车一地面问双向通信、险情报警信息系统(包括风、雪、塌方、热轴)、车载无线故障监视诊断系统与地面控制中心和维修中心构成集行车调度指挥、控制、故障监测、维护等功能于一体的系统。
此外,欧洲主要国家铁路都已承诺采用欧洲铁路运输管理系统(ERTMS),该系统本身就是综合调度自动化系统,其核心为欧洲列车控制系统(ETCS)。
铁路防灾安全监控系统

铁路防灾安全监控系统结合各线地理气候特点,为防止或降低自然灾害、突发事件对铁路运输的影响,满足运营维护部门的使用需求,沿线设置防灾安全监控系统。
防灾安全监控系统由风监测子系统、雨量监测子系统及异物侵限监控子系统组成。
系统采用统一的处理平台,由风、雨及异物侵限等现场监测设备、现场监控单元、监控数据处理设备、调度所设备、工务/通信/调度台防灾终端设备及传输网络等组成。
1.现场监测设备(1)风监测子系统1)现场设备风监测子系统现场设备由风速风向计、现场控制箱、传输电缆等组成。
现场监测设备采集到的数据传送到现场监控单元,再通过传输网络上传至监控数据处理设备。
2)设置地点风速风向监测点主要布点原则如下:①设计速度250km∕h及以上铁路沿线近20年极大风速值超过20m∕s的区段应设置风速风向监测点。
②铁路沿线山区城口、峡谷、河谷、桥梁及高路堤等区段宜设置风速风向监测点。
③山区t亚口、峡谷、河谷等区段风速风向监测点设置间距宜为Ikm~5km 桥梁、高路堤等区段宜为5km-10km o其他地段按IOkm左右间距布设。
3)设备设置风速风向计按非机械式双套设置,并远离现场障碍物干扰。
风速风向计安装于接触网支柱上。
根据铁科技[2013]35号《铁道部关于印发(高速铁路自然灾害及异物侵限监测系统总体技术方案(暂行))的通知》,系统应据据报警级别、报警阈值、报警及解除时限、控制范围,对有效风速数据进行报警判定,生成大风监测报警及解除信息。
2、雨量监测子系统1)现场设备雨量监测子系统现场设备由雨量计、现场控制箱、传输电缆等组成。
2)设置地点雨量监测点主要布点原则如下:①雨量监测点应设置于路基地段及艰险山区铁路易发生滑坡、泥石流及危岩、落石或崩塌地段等处所。
②有昨轨道线路连续路基区段雨量监测点设置间距宜为15km~20km,无昨轨道线路连续路基区段雨量监测点设置间距宜为20km〜25km o3)设备设置雨量计采用非机械式,主要设置在大雨区间位于山坡山脚地带的填土路基以及可能发生滑坡、泥石流或路基下沉的路堑、路堤、隧道口等处,安装地点为无遮掩、宽敞的场所。
高速铁路防灾安全监控系统

高速铁路防灾安全监控系统高速铁路防灾安全监控系统文档1. 引言高速铁路是现代交通的重要组成部分,对于国家经济发展和人民生活起到了至关重要的作用。
然而,随着高速铁路的不断发展,其安全问题也越来越突出。
为了保障高速铁路的运行安全,我们需要建立一套高效可靠的监控系统,及时发现和处理各类安全隐患。
本文将详细介绍高速铁路防灾安全监控系统的设计原理和功能。
2. 设计原理高速铁路防灾安全监控系统的设计原理基于数据采集、数据传输与处理、数据分析与决策三个主要环节。
(1) 数据采集:系统依靠各类传感器、摄像头等设备,对高速铁路进行全方位、多角度的监测。
传感器可以监测温度、湿度、震动等物理参数,摄像头可以获取实时的图像信息。
通过这些设备,可以及时获得高速铁路的运行状态,并发现潜在的安全隐患。
(2) 数据传输与处理:采集到的数据需要通过传输设备及时传送到监控中心。
传输过程中需要保证数据的可靠性和实时性,以便在发生紧急情况时能够快速做出应对。
传输完成后,数据将被送至系统的后台,进行进一步的处理和分析。
(3) 数据分析与决策:通过对采集到的数据进行分析,确定当前高速铁路的运行状态,并通过算法进行预测,识别潜在的危险事故。
在分析的过程中,系统将会根据事先制定的安全标准,对数据进行评估和判定。
一旦系统检测到异常情况,将会立即向管理人员发出警报,并及时采取措施,确保人员和财产的安全。
3. 功能实现为了确保高速铁路防灾安全监控系统的效果和功能,我们提出以下几点实现建议:(1) 设备标准化:统一采用国际先进的设备标准,确保不同设备的兼容性和互操作性。
标准化设备的使用和维护更加简单方便,也便于后期的系统扩展。
(2) 网络建设:建立高速铁路专用的网络通信系统,确保数据传输的稳定和安全。
网络系统应包括主干网和支线网,覆盖整个高速铁路的范围。
此外,还应配置备用网络,以提供系统可靠性。
(3) 数据处理:建立高效的数据处理中心,配备强大的计算和存储设施。
防灾安全监测系统

防灾安全监测系统一、系统简介高铁防灾安全监测体系是实现对风速、降雨量、降雪量、地震、异物侵限等危及列车安全运行的自然灾害因素实时监测,对监测数据的分散式采集、综合分析,集中管理、及时掌握灾害发生动态,与调度指挥、牵引供电、列控系统、综合维修和应急救援等系统互相连通,构成对列车运输安全的保障体系。
高铁防灾安全监控报警系统主要由大风、雪深、降雨量、异物侵限、地震等监侧子系统构成。
系统主要由现场传感设备层、基站层、铁路局数据中心层设备和防灾终端层构成。
现场层为数据采集层,主要完成对风、雨、雪、异物侵限、地震信息数据的实时采集。
基站层为基站防灾监控单元,主要承担对采集、解析、处理、数据的汇集传输。
铁路局层接收传输数据,实现对数据的存储、处理、分析,将结果发送到调度中心防灾终端。
调度中心及其它业务防灾终端主要完成各监测信息的显示、报警以及行车建议的生成。
二、系统结构按照结构进行划分,高铁防灾安全监控系统主要由基站PLC监控单元层、现场传感器数据采集层、铁路局数据处理中心层和用户监控终端层四个层次部分构成,其结构图如图所示。
牵引供电系统牵引供电系统三、设计方案西宁到敦煌地理环境以黄土高原区和风沙干旱区为特色。
黄土高原灾害类型很多,如旱灾、水土流失、暴雨、滑坡、地裂缝及地震等等,但暴雨主要集中在东部,西部的降雨量很少,主要是风沙灾害与昼夜温差大。
因此,西宁到敦煌的防灾安全监控系统主要是针对大风天气、温度对轨道的影响、沙尘暴、地裂缝、落石、地面沉降以及水土冲击流失的监控。
管辖1.系统设计思路1)西宁到敦煌的行车路线主要经过武威、张掖、嘉峪关三座主要城市,同时距离兰州非常的近。
因此考虑在这六座城市设立防灾安全监控系统的调度所,放置防灾服务器和防灾终端。
2)在兰州设置总调度中心,负责统筹各站段的防灾安全监测数据,对全局内的列车进行总体调度,必要时可接管下属站段的调度权,保证行车安全。
3)铁路沿途设置监控单元,并针对各路段主要自然灾害的不同,监控单元的密度设置不同,以充分利用GSM-R的4MHz带宽。
高速铁路防灾安全监控系统简介 PPT

防灾范畴
危及高速铁路运行安全的因素:
自然灾害:强风、暴雨、大雪、地震等 异物侵限:公跨铁、公铁并行和隧道口的异物侵入(如翻车、落物落石、滑坡等)
防灾系统概述
监控对象:
自然灾害:风、雨、雪、 地震
异物侵限
建设目标:
建立灾害监测系统平台 为调度指挥和工务提供灾
害信息 积累基础数据,开展灾害
大风监测子系统使用的风速计安装在接触网支柱上,每个监 测点设置两套风速计,垂直于线路方向布置,距轨面4 m。现场 控制箱采用小型化结构,固定在接触网支柱下部。 当风速超过限制值时,报警信息上传到调度中心,由列车调 度员根据预案发布限速或停运命令。 目前中国高速铁路使用的超声波式风速计兼其雨最监测功能。
激光镭射 进口 可视激光反射 0~10m ±10mm 0.5s 12VDC -40℃~+ 60℃
安装方案
异物监测子系统
异物侵限监控子系统现场设备包括公路铁桥、公铁并行、 隧道洞门口三类,由监测防护网(内嵌双电网传感器)、轨旁控 制器、安装附件和传输线缆等组成。异物侵限轨旁控制箱安装 在线路外侧(混凝土基础固定)或接触网支柱上。一旦异物侵限 设备发出报警,信息将自动传输到列控系统,同时发出停车信 号。
防灾系统组成
综合维修工区机房
监控数据 处理设备
应用 数据 服务器A 服务器A
存储
应用 数据 服务器B 服务器B
维修 终端
工务 终端
传输网络
2×2M FE
监控单元
继电组合
监控单元 (沿线基站)
调度中心
防灾监控 终端
调度所
列控系统 牵引供电系统
现场监测设备 冗余
传输单元
异物控制箱
风传感器
高速铁路自然灾害及异物侵限监测系统介绍

到欧洲SIL4安全检测标准。
38
4.西班牙 马德里-莱里达线是在法国技术支持下建设,同时建立风、 雨、地震、异物侵限等多种监测装置保证列车运行安全。隧道
入口和上跨的公路桥处都装有金属防护网,设置的金属防护网
比法国还强,桥下线路两侧还安装了多组红外线监测装置,检 测异物侵限。另外还在高速列车检修段与高速正线间的联络线
10
雨量计
水位计
洪水引发的灾害
道床被冲断
桥梁被冲垮
护坡崩塌
11
11
暴雨环境下列车运行管制规则
12
雪深监测子系统
新干线在沿线的路堑、边坡、隧道出入口、道 岔等容易被积雪造成灾害的地段装设了雪深计, 可将雪深数据传送至安装在工务段(领工区)的 雪深报警装置上,当超过报警阈值时发出警报并 将数据发送到地区调度所。
报方法或预报着眼点。
46
2.民航 针对飞机起降影响较大的灾害性天气,主要包括云、能见 度、天气现象、气压、气温、湿度、地面风、降水量、积雪深
度,特殊天气报告标准和特殊天气发布管理办法。
47
3.核电站 大亚湾核电站在1994年也建立了用于地震报警的地震 仪表系统,该系统由6个三分量加速度计、4个三分量峰 值加速度计和2台地震触发器组成,当地震动超过给定的 阀值(0.01 g)时,中心控制室的警报器报警;经专家系 统决策后采取相应的措施。
检测光缆 检测光缆
16
地震监测子系统
在60年代日本建造世界上第一条高速铁路东海道新干
线时,就考虑了高速铁路震监测及紧急处置系统,该系统 经过四十多年的建设,积累了大量监测数据和实际运用经
验,地震监测技术发展已经成功完成三次大规模升级,目
前正在进行地震监测点加密加强的推广应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
感震器最 判定 大值/Gal 震度
3 以下* ≥40<80
4 以上
运行规则
紧 急 巡检
提速
停车
限速
地面 巡检
添乘巡检 30 km/h 70 km/h 70 km/h
感震器监管范围内 70 km/h 以下, 但判定震度未明确前 30 kin/h 以
震器动作点与
碴轨道轨温 55℃以上时发生地震
徒步巡检 乘巡检
相邻感震器间
注:①工程施工地点、灾害注意地点,根据养路工长或电力段长的报告决定限速值; ②此表摘自“日本新干线安全对策概要”(1999年12月日文版)。
指提速时有设备及电气人员添乘。
②“特例”是指下列情况之一:
连续雨量达120 mm以上降雨时发生地震;
日落以后(包括浓雾)发生地震,但“*”行的情况除外;
气温上升,轨温达50cI=以上时发生地震。
③此表摘自“日本新干线安全对策概要”(1999年12月日文版)。
防止强风灾害,是铁道行业的重要课题。与强风相关的问题及其相互关系见图6.7.4。人们关心的是强风
丁
/
/
注:(1)“地震强度”是UrEDAS早期监测系统判定的地震烈度。 (2)“特例”是指下列情况之一:
①连续雨量达120 mm以上降雨时发生地震; ②气温上升,轨温达50℃以上时发生地震; ③日落以后(包括浓雾)时发生地震(地震强度丙时除外)。 (3)甲、乙、丙、丁系根据震级—震中距关系曲线划分的为恢复行车而采取相应措施的4档规定: 甲—停车后对全线巡检;乙—停车后对部分区间巡检;丙—停车后,从70 km/h逐步提速;J—无停 车后规定。 (4)此表摘自“日本新干线安全对策概要”(1999年12月日文版)。
≥40<120 4
监管范 气人员添乘 70 km/h 以下,特例 间的特
围内
30 km/h 以下
定地点
同上
设备电气 设备电气 设备
5 以上 同上
同上
停车 区间
同上 设备电气 设备电气 设备
≥120
同上
同上
同上
同上 设备电气 设备电气 设备
注:①“其他”是指工程施工或灾害注意地点,根据养路工长或电力区长的报告确定限速值。“设备电气”
第七节 国外高速铁路防灾安全监控系统简介
世界各国在建设高速铁路之初,均把“安全”作为高速铁路的先导核心技术加以系统研究,并在实际运用 中不断完善。通过实现基础设施高标准、技术装备高质量、运行管理自动化和安全监控实时化,来保证高速列 车安全正点运行。
以日本、法国和德国为代表的高速铁路,由于其所处的自然环境、地理条件及运营方式不同,各自采用了 不同特点的防灾安全保障措施。
可能造成列车的脱轨倾覆,在弯道行驶的车辆主要受到重力、横向振动力、离心力和风压力的影响,它们的合
力若落在左右车轮与钢轨接触点之内则不会倾覆;合力若正好通过接触点,此时称之为临界倾覆状态,记为危
险率D=1.O,见图6.7.5;挡风墙fl-算时考虑安全系数,则取D=0.8。
表6.7.3 发生地震时列车停车后的运行规则(东北、上越、长野新干线)
下,特例 30 kin/h 以下
无;特例时同 “限速”区间
设备电气 设备
感震器监管范围内 30 km/h 以下, 但有设备及电气人员添乘 70 km/h
以下,特例 30 kin/h 以下
特例时同“限 设备电气 设备电气 设备
速”区间
3 以下
同上
同上 设备电气 设备电气 设备
感震器 感震器监管范围内,有设备、电 停车区
无 碴轨道区间钢轨温度 55℃以上时发生地震;②日 落(包括浓雾、大雪)后发生地震时特别规定的区间 (实行地面巡检的除外)
对限速区 间进行添 乘巡检
超 过 120
超过 120 伽的感震器与相邻感震器间,地面巡检 对 停 车 对 限 速 区
Gal 时,在感
120 Gal 以上
完后 70 km/h 以下,但下列情况 30 km/h 以下:有 区 间 进 行 间 进 行 添
表6.7.1 地震发生时列车运行规则(东海道新干线)
地震强度
停车
行车规则 限速运行
甲 在规定的区间停车 在规定的区间限速 70 km/h 以下,特例 30 km/h 以下
乙 在规定的区间停车 在规定的区间限速 70 km/h 以Leabharlann ,特例 30 km/h 以下丙
/
在规定的区间限速 70 km/h 以下,特例 30 km/h 以下
Gal 值 线
行 车规则
紧急巡检
(沿线) 80 Gal 以下
停车
80Gal 以上, 120 Gal 以下
限速
徒步巡检 添乘巡检
根据调度员的命令恢复运行
无
无
超过 80 Gal 的感震器点两端 12 km 范围内,开 始供电后 30 km/h 以下;有设备、电力人员添乘 70 kin/h 以下。但下列情况 30 km/h 以下:①有
一、日 本 日本是一个灾害多发国家,台风、暴雨、大雪、地震等自然灾害频繁。新干线自1964年10月开业至今,保 持着无一乘客伤亡的优异成绩。每天运行列车750列,运送旅客75万人次以上,列车晚点平均小于1 min,首先 应归功于日臻完善的防灾安全保障体系。 (一)沿线灾害监测及管制措施 1.地震监测及运行管制 日本是一个多地震国家,除在沿线(大部分在变电所)设置加速度报警检测仪及显示用地震仪外,东北、上 越、长野新干线还沿海岸线设置地震监测系统,以便提前检测到40 Gal以上的地震波。东海道和山阳新干线由 于距东海及关东地震区很近,则采用了更为先进的“地震P波早期监测警报系统(UrEDAS)”,利用沿线地震报警 仪(设定40 Gal)和M(震级)—△(距震中心距)图,对运行管制区域进行判断和管制。图6.7.1为日本地震信息系 统示意图,图6.7.2、图6.7.3为发生地震时的列车运行管制范围和过程。表6.7.1。表6.7.3为发生地震时的列 车运行管制规则。
图6.7.1 日本地震信息系统示意图
图6.7.2 甲、乙、丙、丁所代表的范围
图6.7.3 日本地震发生时的处理过程框图 2.风速监测和运行管制 在易发生强风及突然大风的高架桥、河川等地安装风向风速仪,其信息在中央调度所的显示盘上或CRT上 显示(Cathod Ray Tube是调度员和信息处理系统的电脑互相交换情报的人。机装置)。日本对列车运行进行管制 的风速值,全部为瞬时风速值。管制标准各地区不尽相同,在设置了挡风墙的地段,对强风进行运行管制的标 准可适当放宽。