机械强度分析
机械强度与刚度分析

机械强度与刚度分析机械强度和刚度是机械工程中两个重要的概念,它们对于材料和结构的设计与分析至关重要。
机械强度指的是材料或结构抵抗外力施加时的能力,而刚度则是描述材料或结构受力变形时的特性。
本文将对机械强度和刚度进行详细的分析和解释。
一、机械强度分析机械强度是指材料或结构在外力作用下能够承受的最大荷载。
它与材料的物理性质、结构形式和外力条件密切相关。
机械强度的分析需要考虑以下几个方面:1. 材料强度:不同材料具有不同的强度特性。
常见的材料强度参数包括抗拉强度、屈服强度、硬度等。
在机械设计中,需要选择具有足够强度的材料来满足设计要求。
2. 结构形式:不同的结构形式对其机械强度有显著影响。
例如,在梁的设计中,梁的几何形状、截面形式以及连接方式都会影响其承载能力。
因此,对于不同形式的结构,需要进行详细的强度计算与分析。
3. 外力条件:外力是导致机械强度问题的主要原因之一。
不同的外力作用方式会产生不同的应力分布,从而对结构的强度产生影响。
在机械设计中,需要充分考虑各种外力条件,包括静力、动力以及温度等,进行合理的强度分析。
二、刚度分析刚度是指材料或结构在受力作用下的变形特性。
它对于结构的稳定性与变形控制至关重要。
刚度分析需要考虑以下几个方面:1. 弹性模量:弹性模量是衡量材料刚度的重要参数,它描述了材料在一定应力下的应变能力。
不同材料的弹性模量不同,因此在刚度分析中需要准确确定材料的弹性模量。
2. 结构刚度:结构的刚度与其几何形状和材料性质密切相关。
例如,在弹簧设计中,弹簧的刚度与其材料特性、直径和线圈数等因素有关。
因此,结构刚度分析需要充分考虑这些因素。
3. 变形控制:对于某些特定的机械结构,需要在一定范围内控制其变形,以保证其正常工作。
在刚度分析中,需要充分考虑结构变形的要求,并通过适当的方式对变形进行控制。
三、机械强度与刚度优化在机械设计中,机械强度和刚度的优化是一个重要的研究课题。
通过合理选择材料、优化结构形式以及合理设计外力条件,可以提高机械结构的强度和刚度,并满足设计要求。
电力变压器线圈结构分析及机械强度的问题探讨

电力变压器线圈结构分析及机械强度的问题探讨电力变压器线圈结构种类比较多,主要分为低压线圈、高压线圈和调压线圈三种,它们在保障变压器使用安全的过程中扮演着重要的角色。
电力变压器线圈质量对于变压器的运行安全性影响比较大,在变压器线圈机械强度检查活动中,技术人员应该检查线圈使之处于绕紧缠绕牢固的状态,并且对线圈的机械强度进行检验,确保其能够经久耐磨,并在用电高峰期时线圈结构处的电压处于较高状态下线圈不会出现失稳现象。
文章从电力变压器线圈结构安全保障的角度进行分析,提出几点有利于提升电力变压器运行安全性的可行性措施。
标签:变压器;线圈结构;机械强度;电力系统电力变压器的线圈结构应该采用紧密缠绕的方式进行设计,并且不同结构的线圈采用不同的绕组方式。
变压器不同绕组的线圈其径向力和轴向力之间应该满足一定的数值要求,达到径向力和轴向力的对应平衡。
并且,为了确保电力变压器线圈结构的使用安全,技术人员应该对线圈结构的机械强度进行精准控制。
从输入时间及压紧应力进行分析,技术人员应该认真做好短路电流的计算工作,根据电力变压器线圈短路电流的大小计算线圈的弹性系数。
重点对变压器线圈的阻尼因数进行认真计算,防止线圈在电流过大的情况下出现不规则。
计算上下铁圈结构夹件力的大小,保证其符合一定机械强度下的耐磨性能所需。
1 电力变压器线圈结构分析1.1 电力变压器调压线圈结构设计在变压器调压线圈设计方式中,一般有两种层式结构类型,主要分为单匝模型设计方法和双饼模型两种。
双饼模型设计活动中,技术人员应该考虑阻性参数对于铁芯结构的影响,一般来说,支路铁心电感应具有较强的阻抗矩阵效果,如果铁芯结构的设计不够合理,支路空气电感应效果不强。
在变压器的集合结构参数线圈的结构和形式设计活动中,技术人员还应该考虑到阻性参数对于变压器线圈结构的具体影响。
将焦耳损耗和电解质损耗降低到最低水平。
技术人员应该注意处理好铁芯半径与绕组内外半径之间的参数对应关系,总线匝数和饼间垫块数以及垫块宽度,都是影响电力变压器强度的关键参数。
机械强度优化设计分析

机械强度优化设计分析机械强度是机械设计中重要的一个方面,它能够直接决定机械的可信度和寿命。
在机械设计中,强度分析与强度优化设计是必须的工作,对于机械制造和运行中的安全性和可靠性有着至关重要的作用。
机械强度的优化设计分析,是指将材料力学和结构力学的相关理论应用于设计过程中的强度和其它相关问题的分析,通过对机械的材料性质、结构形式、工作条件及其它因素的综合考虑,选择合理的设计方案及合适的材料,最终达到机械完美的结构和性能要求。
机械设计中的强度分析,通常是基于专门软件或一些数学模型。
通过数学模型和强度分析结果,可以有效地确定机械的材料使用和结构安排,从而达到优化设计的目的。
在进行强度分析时,一般要将机械的设计图纸进行建模,在建模的过程中可以包括机械构件的几何形状、材料物理和力学特性等。
强度分析是对机械进行有效的评价,并且可以为强度优化设计提供依据,只有在动态发展的机械冶金技术的支撑下,才能有效地应对市场和改进过程中的挑战。
优化设计的方法在机械设计中,强度分析和优化设计需要结合特定的工作条件、维修和维护等因素。
此外,机械的快速操作、高可靠性和持久性等因素也需要考虑。
为了达到强度优化设计的目的,有以下几种优化方法。
1.确定对机械的强度分析在机械强度优化设计中,强度分析是必须的,只有通过强度分析才能确定机械的使用材料和结构形式,从而达到优化方案。
强度分析可以根据实际需要分别从静态和动态强度方面进行。
2.选择优化材料为了提高机械的强度和耐用性,机械的材质必须经过仔细的思考和选择,从而选择出最为优化的材料,能够实现机械的安全和可靠性。
3.合理分配结构参数在机械优化设计中,结构参数的分配也是至关重要的。
合理分配结构参数可以改善机械的强度,提高其使用寿命和耐用性,同时还可以增加机械的运行效率。
4.优化压力和温度压力和温度作为机械操作的指标之一,也是机械强度设计优化中需要考虑的内容。
通过对温度和压力的优化,可以提高机械的强度和安全性,同时还能保持机械的稳定状态。
膜的机械强度测定实验报告

膜的机械强度测定实验报告本实验旨在通过测定膜的机械强度来评估其抗耐压性能,为膜材料的应用提供参考依据。
实验原理:膜的机械强度是指膜材料在外力作用下能够承受的最大应力。
常用的测定方法有拉伸测试、撕裂测试和压缩测试等。
本实验选择了拉伸测试方法来测定膜的机械强度。
实验步骤:1. 准备工作:将所需的膜材料切割成适当的测试样品尺寸,得到满足标准要求的试件。
2. 实验前处理:根据膜材料的特性,进行适当的处理,如干燥、清洗、消毒等。
3. 设置拉伸测试仪参数:根据膜材料的特性和要求,设置拉伸测试仪的拉伸速度、力传感器灵敏度等相关参数。
4. 将试件夹在拉伸测试仪上:用夹具将试件夹在拉伸测试仪上,保证不会滑动和变形。
5. 进行拉伸测试:启动拉伸测试仪,开始进行拉伸测试,同时记录力值和位移值。
6. 计算机械强度参数:通过测量的力值和位移值,计算膜的抗拉强度、断裂伸长率等机械强度参数。
实验结果及数据处理:根据实验测得的力值和位移值,计算得到膜的抗拉强度和断裂伸长率等机械强度参数。
将计算结果绘制成曲线,便于对膜的机械性能进行分析和比较。
实验讨论:膜的机械强度是影响其使用性能的重要指标之一。
通过本实验确定膜的机械强度参数,可以对膜材料的物理性能进行评估和比较,为膜材料的选择和应用提供参考依据。
同时,实验中可能会受到一些因素的干扰,如试件制备的误差、拉伸测试仪的精度等,需要注意这些因素对实验结果的影响。
实验总结:本实验通过测定膜的机械强度来评估其抗耐压性能。
实验结果可以用于膜材料的选择和应用。
在实验中,我们要注意试件制备的准确性和拉伸测试仪的精度,以保证实验结果的准确性和可靠性。
同时,我们还可以通过进一步的实验研究,探究膜材料的机械性能与其结构、成分等之间的关系,为膜材料的开发和改进提供理论基础。
机械强度

强度金属材料在外力作用下抵抗永久变形和断裂的能力称为强度。
按外力作用的性质不同,主要有屈服强度、抗拉强度、抗压强度、抗弯强度等,工程常用的是屈服强度和抗拉强度,这两个强度指标可通过拉伸试验测出强度是指零件承受载荷后抵抗发生断裂或超过容许限度的残余变形的能力。
也就是说,强度是衡量零件本身承载能力(即抵抗失效能力)的重要指标。
强度是机械零部件首先应满足的基本要求。
机械零件的强度一般可以分为静强度、疲劳强度(弯曲疲劳和接触疲劳等)、断裂强度、冲击强度、高温和低温强度、在腐蚀条件下的强度和蠕变、胶合强度等项目。
强度的试验研究是综合性的研究,主要是通过其应力状态来研究零部件的受力状况以及预测破坏失效的条件和时机。
强度是指材料承受外力而不被破坏(不可恢复的变形也属被破坏)的能力.根据受力种类的不同分为以下几种:(1)抗压强度--材料承受压力的能力.(2)抗拉强度--材料承受拉力的能力.(3)抗弯强度--材料对致弯外力的承受能力.(4)抗剪强度--材料承受剪切力的能力.屈服强度材料拉伸的应力-应变曲线yield strength是材料屈服的临界应力值。
(1)对于屈服现象明显的材料,屈服强度就是在屈服点在应力(屈服值);(2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的永久形变)时的应力。
通常用作固体材料力学机械性能的评价指标,是材料的实际使用极限。
因为材料屈服后产生颈缩,应变增大,使材料失去了原有功能。
当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。
当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。
这一阶段的最大、最小应力分别称为上屈服点和下屈服点。
由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(σs或σ0.2)。
有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度(yield strength)。
机械强度及寿命仿真分析

机械强度及寿命仿真分析机械强度及寿命仿真分析是机械工程研究的一个重要方向。
随着计算机技术的发展,仿真分析已经成为研究机械强度及寿命的主要手段之一。
一、机械强度仿真分析机械强度仿真分析主要是通过计算机模拟机械结构的力学行为来判断机械结构的强度。
机械结构在使用过程中由于受到各种外部力的作用,容易发生疲劳破坏、塑性变形等问题。
为了避免这样的问题,需要对机械结构的强度进行仿真分析,找出潜在的问题并解决。
机械强度仿真分析主要包括静力学分析和动力学分析。
静力学分析是指对机械结构受静载荷时的应力分布进行仿真分析,用以判断机械结构在使用过程中是否出现应力集中和破坏问题。
动力学分析则是指对机械结构在承受动态载荷时的应力分布进行仿真分析,用以判断机械结构在使用过程中是否发生失效和疲劳问题。
二、机械寿命仿真分析机械寿命仿真分析主要是通过计算机模拟机械结构的疲劳寿命来判断机械结构的寿命。
机械结构在使用过程中由于受到多种力的作用,容易产生疲劳问题,如疲劳破坏、塑性变形等。
为了提高机械结构的使用寿命,需要对机械结构的寿命进行仿真分析,并找出潜在的问题进行改进。
机械寿命仿真分析主要包括基于模拟的疲劳分析和寿命预测。
基于模拟的疲劳分析是指通过计算机模拟机械结构在使用过程中的应力变化来分析机械结构的疲劳寿命。
寿命预测是指通过发现机械结构的潜在问题并进行改进来预测机械结构的寿命。
这些仿真分析方法能够通过研究机械结构的疲劳寿命,提高机械结构的使用寿命和安全性。
三、机械强度及寿命仿真分析的应用机械强度及寿命仿真分析已经成为工业和科研领域不可或缺的重要工具。
在机械制造中,通过仿真分析可以大大降低机械结构的设计成本,加快机械生产速度,提高机械的使用寿命和安全性。
在科学研究领域,仿真分析可以提供机械结构的强度和寿命预测,这对于提高机械制造的精度和稳定性很有帮助。
总之,机械强度及寿命仿真分析是机械工程研究的重要方向之一。
通过仿真分析可以发现机械结构的弱点和潜在问题,并及时采取措施进行改进,提高机械的安全性和使用寿命。
机械刚度与强度

机械刚度与强度机械刚度和强度是工程设计中非常重要的指标,它们直接影响着机械结构的性能和可靠性。
本文将对机械刚度和强度进行详细介绍,并探讨它们之间的关系和相互影响。
一、机械刚度的概念及意义机械刚度是指物体在受力作用下产生的形变量与所施加的力之间的比值。
简单地说,机械刚度反映了物体在外力作用下的变形程度,能够衡量结构是否能承受外部载荷而保持稳定。
机械刚度的大小与结构的刚性有关。
刚性较大的结构在受力作用下变形较小,具有较高的机械刚度。
而刚性较小的结构在受力作用下变形较大,具有较低的机械刚度。
机械刚度在工程设计中具有重要意义。
一方面,机械刚度可保证结构在工作条件下保持稳定,避免产生过大的变形和振动。
另一方面,机械刚度还对结构的工作性能和寿命产生直接影响。
二、机械强度的概念及意义机械强度是指物体在承受外部力作用下不断发生形变或破坏之前所能承受的最大力的大小。
简单地说,机械强度反映了物体的抗力能力,即承受外部载荷而不会发生破坏的能力。
机械强度与材料的物理和化学性质有关,不同材料的机械强度可以有很大差异。
例如,金属材料的机械强度通常较高,而塑料材料的机械强度较低。
机械强度在工程设计中也具有重要意义。
首先,机械强度可以评估结构是否能够承受预期的外部载荷,保证结构的安全可靠。
其次,机械强度还对结构的抗疲劳性能和使用寿命产生直接影响。
三、机械刚度与强度的关系机械刚度和强度虽然都与结构的力学性能有关,但并不是完全等同的概念。
机械刚度关注结构的形变程度,即结构在受力作用下的变形量。
而机械强度关注结构的承载能力,即结构能够承受的最大力。
机械刚度和强度在很多情况下是相互制约的。
一方面,提高结构的刚度可以降低结构的变形量,减小破坏的可能性,从而提高结构的强度。
例如,在设计桥梁时,增加梁的截面尺寸可以提高其刚度,从而增强桥梁的承载能力。
另一方面,提高结构的强度也可以增加结构的刚度。
例如,在设计高层建筑时,为了提高其整体抗风能力,可以采用更坚固的结构材料和加强梁柱的尺寸,这样既提高了结构的强度,同时也增加了结构的刚度。
800kVGIS长母线管道变工况下机械强度分析

Y n Ya g a ag n ,F n Yu—g a g u n ,Gu in oJa g—b o
( colfm ca i legnei , i,si uui r t, i S ni 70 6 , hn ) Sho o eh n a ie n X n h o nv sy X h x 1o 5 C i c n rg o y ei一套 80 V I 压 电器 0 k G S高
应 力 的作 用 ; ④风 载荷 及地 震载荷 的作 用 。
2 2 确 定 工 况 .
开关设备于夏季投产使用 , 运行状况 良好 , 入冬 以后 气温降低至 一 O 2 ℃以下 , 长母线管道局部位置出现大 量 s F 气体泄露 , 同期沈阳地区同型号设备也 出现此 现象。S6 F 气体具有优 良的绝缘性能与灭弧性能 , 被 广 泛应用 于 GS高 压 电 器 设 备 当 中 。但是 S 6 一 I F是 种 温室气 体 , 一旦 泄 露 会 污染 环 境 ; 重 要 的是 泄漏 更
研 夯 与 分 析
・
机械 研 究 与应 用 ・
8 0 V S长 母 线 管 道 变 工 况 下 机械 强 度 分 析 0 k GI
杨 洋 , 玉光 , 樊 郭江波
70 6 ) 10 5 ( 安石油大学 机械工程学院, 西 西安 西 陕
摘
要 :I G S管道作为 变电站 中的重要设备 , 常常工作 于气候环境较 恶劣 的地 区, 尤其是 北方冬 季 S 6气体 常有 泄露 F
力; ②夏 季 3  ̄ 0C安装设 备 升温到 极 限温度 7  ̄ 此 时 0C, 温 差为 4 K, 0 管道 所受 载荷 为 内压 力 、 重力 、 架 约束 支
力 及温 度应 力 ; 夏 季 3  ̄ 装 设 备 降 温 到极 限 温 ③ 0C安
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见的工程断裂问题
据美国和欧共体的权威专业机构统计:世界上 由于机件、构件及电子元件的断裂、疲劳、腐蚀、 磨损破坏造成的经济损失高达各国国民生产总值 的6~8%。
据我国劳动部统计,我国在20世纪80年代发 生的锅炉和压力容器的爆炸事故约五千起,人员 累计伤亡近万人,居国内劳动安全事故的第二位。
断裂力学的研究意义在于防范上述的破坏行为, 降低由断裂和破坏造成的经济损失,减少事故的 发生。
机械强度分析
2020/11/18
机械强度分析
机械强度分析
课程内容
断裂强度分析(24)
材料断裂、裂纹
接触强度分析(2)
接触静强度、接触疲劳
联接强度分析(4)
金属结构联接方法、螺 栓联接强度、焊接联接、 焊缝强度
压力容器强度分析(2)
薄壁容器强度分析方法
机械强度分析
断裂强度分析
➢ 绪论
断裂力学的发展史,断裂的跨尺度特性
实验表明:对塑性材料,此理论比第三强度理 论更符合试验结果,在工程中得到了广泛应用。
机械强度分析
四种常用的强度理论 强度理论的统一表达式:
相当应力
机械强度分析
传统强度理论的弊端
➢ 从物理学角度上,它不能识别固体材料的典型特征破坏过程;
(1)微裂纹汇合成宏观裂纹,进而发展成脆性断裂;(2)孔洞形成、 长大、片状汇合到持续撕裂的韧性断裂;(3)驻留滑移带处累积塑 性变形导致疲劳裂纹形成,继而呈花纹状碾压扩展的疲劳断裂。
Welding J., 1963, 10: 563-570.
机械强度分析
宏观断裂力学发展史
➢ 20世纪60年代,Rice的J积分和Hutchinson等的HRR场理论使得 弹塑性断裂力学趋于成熟;
• Rice J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech., 1968, 35: 379-386. • Hutchinson J W. Singular behavior at the end of a tensile crack tip in a hardening material. J. Mech. Phys.Solids, 1968, 16:13-31. • Rice J R, Rosengren G F. Plane strain deformation near a crack tip in power-law hardening material. J. Mech. Phys.Solids, 1968, 16:1-12.
机械强度分析
四种常用的强度理论
形状改变比能理论(第四强度理论) 无论材料处于什么应力状态,只要发生屈服,都是 由于微元的最大形状改变比能达到一个极限值。 -构件危险点的形状改变比能
-形状改变比能的极限值,由单拉实验测得
机械强度分析
四种常用的强度理论
形状改变比能理论(第四强度理论) 屈服条件 强度条件
机械强度分析
破坏力学的三个发展阶段
➢ 第一阶段(16世纪末---第二次世界大战前)
以强度理论为中心的破坏准则体系; 不引入任何缺陷尺度; 材料本构行为的连续介质描述;
推动了变形体力学的发展
无缺陷经验理论
➢ 第二阶段(第二次世界大战结束---20世纪末)
以断裂韧性理论为中心的破坏准则体系;
引入宏观缺陷,但不考虑细-微观缺陷;
➢ 20世纪50年代,G.Irwin完成了应力强度因子理论的基本框架;
• Irwin G R. Analysis of stresses and strains near the end of a crack transversing a plate. J.Appl.Mech., 1957, 24:361-364.
为了建立复杂应力状态下的强度条件,而提出 的关于材料破坏原因的假设及计算方法。
机械强度分析
传统材料力学的强度问题
两大假设:均匀、连续机械强来自分析四种常用的强度理论
最大拉应力理论(第一强度理论) 材料发生断裂的主要因素是最大拉应力达到极限值
-构件危险点的最大拉应力 -极限拉应力,由单拉实验测得
断裂条件 强度条件
杨氏模量
表面能密度
English engineer
13 June 1893 – 13 Oct 1963 材料的理论强度
晶格间距
Theory
A flaw would propagate in a stressed material only when, by doing so, it
brought about a reduction in elastically stored energy W more than sufficient
机械强度分析
Griffith 脆断理论
Motivation
Griffith's work was motivated by two contradictory facts:
The stress needed to fracture bulk glass is around 100 MPa (15,000 psi). The theoretical stress needed for breaking atomic bonds is approximately 10,000 MPa (1,500,000 psi).
机械强度分析
四种常用的强度理论
最大切应力理论(第三强度理论) 屈服条件 强度条件
低碳钢拉伸
低碳钢扭转
机械强度分析
四种常用的强度理论
最大切应力理论(第三强度理论) 实验表明:此理论对于塑性材料的屈服破坏能够得到 较为满意的解释。并能解释材料在三向均压下不发生 塑性变形或断裂的事实。
局限性: 1、未考虑 的影响,试验证实最大影响达15%。 2、不能解释三向均拉下可能发生断裂的现象,
to meet the free energy requirements of newly formed frac机t械ur强e度s分u析rfaces.
Griffith 脆断理论
Griffith裂纹
1913年,Inglis给出了关于含椭圆孔的无 限大平面介质的数学解
Griffith认为宏观材料强度的剧烈下降, 主要原因在于材料中存在大量缺陷
带裂纹标准试件的断裂指标;
宏观缺陷
破坏力学上升为独立学科
宏观断裂力学
➢ 第三阶段(20世纪末---至今)
追溯从变形、损伤至断裂的全过程;
引入多层次的缺陷几何结构;
微观缺陷
宏微观理论
本构行为的宏—细—微观相结合的描述-----材料的微结构; 机械强度分析
传统强度理论
强度理论:人们根据大量的破坏现象,通过判断推 理、概括,提出了种种关于破坏原因的假说,找出 引起破坏的主要因素,经过实践检验,不断完善, 在一定范围与实际相符合,上升为理论。
• Barenblatt G I. The mathematical theory of equillibrium cracks in brittle fracture.
Adv. Appl. Mech. V.7. New York: Academic Press, 1962. 55-129.
• Wells A A. Application of fracture mechanics a and beyond general yielding. British
➢ 从力学角度上,它不能描述由于裂纹状缺陷存在而于裂纹尖 端产生的严重应力集中;
无法表征裂纹尖端的奇异场
➢ 从材料学角度上,它不能解释理论强度远高于实际强度的原
因;
无法考虑宏观、微观的缺陷
➢ 从工程应用角度上,它不足以防止工程结构的破坏。
如低应力脆断事故
机械强度分析
断裂力学
均匀性假设仍成立,但且仅在缺陷处不连续
机械强度分析
常见的工程断裂问题
压力容器发生破裂
天然气和其他压力管道的裂纹扩展
机械强度分析
常见的工程断裂问题
飞机机身和船体开裂
铁轨与车轴等构件的疲劳断裂
机械强度分析
常见的工程断裂问题
断裂问题的分类: 线弹性断裂力学——脆性断裂 弹塑性断裂力学——延性断裂(韧性断裂)
脆性断裂
延性断裂
机械强度分析
机械强度分析
宏观断裂力学发展史
➢ 20世纪初,英国科学家A.A.Griffith建立了脆断理论的基本框架;
• Griffith A A. The phenomena of rupture and flow in solids. Phil.Trans., Ser.A. 1920, 221:163-198. • Griffith A A. The theory of rupture. Proc.of the First Int. Congr. For Appl. Mech. Delft, 1924, 55-63. • Inglis C E. Stresses in a plate due to the presence of cracks and sharp corners. Trans. Naval Arch., 1913, 55:219-241.
Griffith将Inglis的数学解中椭圆的一个
轴趋近于零,得到Griffith裂纹
Inglis, Sir Charles Edward (1875–1952), civil engineer
In 1913 he published a paper on the stresses in a plate due to the presence of cracks and sharp corners. This may well be his most far-reaching contribution, since A. A. Griffith's classic explanation of the discrepancy between observed and calculated strengths of amorphous substances, such as glass and silica fibres, was based on it.