计量经济学-假设检验
计量经济学第5章假设检验

假设检验中的小概率原理
假设检验中的小概率原理
什么小概率? 1. 在一次试验中,一个几乎不可能发生的事
件发生的概率 2. 在一次试验中小概率事件一旦发生,我们
就有理由拒绝原假设 3. 小概率由研究者事先确定
5-17
假设检验中的小概率原理
由以往的资料可知,某地新生儿的平均体重为3190克,从今年的新生儿中随机 抽取100个,测得其平均体重为3210克,问今年新生儿的平均体重是否为 3190克(即与以往的体重是否有显著差异)?
决策:
在 = 0.05的水平上拒绝H0
结论:
有证据表明新机床加工的零件 的椭圆度与以前有显著差异
5-56
2 已知均值的检验
(P 值的计算与应用)
第1步:进入Excel表格界面,选择“插入”下拉菜单 第2步:选择“函数”点击 第3步:在函数分类中点击“统计”,在函数名的菜单下选
与原假设对立的假设 表示为 H1
5-12
确定适当的检验统计量
什么检验统计量?
1.用于假设检验决策的统计量 2.选择统计量的方法与参数估计相同,需考虑
是大样本还是小样本 总体方差已知还是未知
检验统计量的基本形式为 Z X 0 n
5-13
规定显著性水平(significant level)
(P-value)
1. 是一个概率值
2. 如果原假设为真,P-值是抽样分布中大
于或小于样本统计量的概率
左侧检验时,P-值为曲线上方小于等于检
验统计量部分的面积
右侧检验时,P-值为曲线上方大于等于检
验统计量部分的面积
3. 被称为观察到的(或实测的)显著性水平
5-44
双侧检验的P 值
计量经济学试题误差项的假设检验

计量经济学试题误差项的假设检验在计量经济学中,我们经常需要对模型中的误差项进行假设检验。
误差项是指模型中未能被解释的变异部分,它们可能包含一些结构性偏差或者随机误差。
这些误差项对于我们准确度量经济变量之间的关系至关重要,因此需要进行假设检验以确认我们的模型是否准确和可靠。
本文将就计量经济学试题中的误差项假设检验进行讨论。
一、误差项的常见假设在计量经济学中,误差项通常被假设满足一些基本条件,包括:1. 零均值假设:误差项的平均值应该为零,即E(ε) = 0。
2. 同方差假设:误差项的方差应该是常数,即Var(ε) = σ^2。
3. 独立性假设:误差项之间应该是相互独立的,即Cov(ε_i, ε_j) = 0(i ≠ j)。
4. 正态性假设:误差项应该服从正态分布,即ε ~ N(0, σ^2)。
保证这些假设成立非常重要,因为它们是许多计量经济学方法和模型的基础。
接下来,我们将对这些假设进行具体的假设检验。
二、误差项假设检验方法1. 零均值检验零均值检验用于检验误差项的均值是否为零。
常见的假设检验方法包括t检验和F检验。
在t检验中,我们假设:H0:E(ε) = 0Ha:E(ε) ≠ 0通过计算误差项的平均值的t统计量,然后与t分布进行比较,可以得出是否拒绝零均值的结论。
在F检验中,我们假设:H0:E(ε) = 0Ha:E(ε) ≠ 0通过计算误差项平方和的F统计量,然后与F分布进行比较,可以得出是否拒绝零均值的结论。
2. 同方差检验同方差检验用于检验误差项的方差是否是常数。
常见的假设检验方法包括BP检验和Goldfeld-Quandt检验。
在BP检验中,我们假设:H0:Var(ε) = σ^2Ha:Var(ε) ≠ σ^2通过计算残差平方和的BP统计量,然后与卡方分布进行比较,可以得出是否拒绝同方差的结论。
在Goldfeld-Quandt检验中,我们假设:H0:Var(ε) = σ^2Ha:Var(ε) ≠ σ^2通过计算不同组别间残差平方和的比值,然后与F分布进行比较,可以得出是否拒绝同方差的结论。
计量经济学----.区间估计和假设检验

即
P[ 2 t se( 2 ) 2 2 t se( 2 )] 1
2 2
8
^
^
^
^
假设检验
检验某一给定的观测是否与虚拟假设(原假设)相符, 若相符,则接受假设,反之拒绝。 当我们拒绝虚拟假设时,我们说该统计量是统计上显 著的,反之则不是统计上显著的。
的临界值 t 2 (n 2) ,则有
ˆ ˆ P{[YF t 2 SE (eF )] YF [YF t 2 SE (eF )]} 1
1 因此,一元回归时 Y 的个别值的置信度为 的 预测区间上下限为 1 ( X F X )2 ˆ ˆ YF YF t 2 1 n xi2
给定,查t分布表得t (n 2) 2 ( )若t -t 2 (n 2), 或t t 2 (n 2),则拒绝原假设 1 H 0: 2 0,接受备择假设H1: 2 0; (2)若 - t 2 (n 2) t t 2 (n 2), 则接受原假设。
30
^
^
应变量Y 区间预测的特点
1、Y 平均值的预测值与真实平均值有误差,主要是 受抽样波动影响
YF Y F t 2
^ ^
1 ( X F X )2 n xi2
Y 个别值的预测值与真实个别值的差异,不仅受抽
样波动影响,而且还受随机扰动项的影响
1 ( X F X )2 ˆ ˆ YF YF t 2 1 n xi2
^
1 ( X F X )2 ˆ SE (YF ) n xi2
Y F 服从正态分布,将其标准化,
^
当
2
2 ei2 (n 2) 代替,这时有 未知时,只得用 ˆ ˆ YF E (YF X F ) t ~ t (n 2) 1 ( X F X )2 ˆ n xi2
stata中级计量经济学 假设检验

2015/7/31
1
主要内容
• 线性假设检验
– Wald检验:单系数t和一般性线性检验 – 基于约束最小二乘的检验(LR检验) – LM检验
• 非线性假设检验 • 结构突变的建模和检验:邹检验 • 设定性检验和模型选择
– 主要参考鲍姆第4章和Greene第5、6、7章部分内容
2015/7/31 2
2015/7/31
每一行都有许多0.
15
约束R = q 的例子
1.一个系数为0, j 0, R 0 0 ... 1 0 ...0 , q 0 2.两个系数相等, k j R 0 0 1 ... -1 ...0 , q 0 3.一组系数和为1, 2 3 4 1 R 0 1 1 1 0 ... , q 1 4.系数的一个子集为0,1 0, 2 0, 3 0 1 0 0 0 ... 0 0 , q 0 R 0 1 0 0 ... 0 0 0 0 1 0 ... 0 5.几个线性约束, 2 3 1, 4 6 0, 5 6 0 0 1 1 0 0 0 1 , q 0 R 0 0 0 1 0 1 2015/7/31 0 0 0 0 1 1 0
庭的犹太人,反对这种限制,他的建议是让狗儿自由的跑,看它会不会有不
良表现。 Rao 则看到过Calutta街上许多令人讨厌的流浪狗,不喜欢任由它们 跑来跑去,建议将狗儿一直关在笼子里,观察它在里面抓挠笼子的程度。如
果咆哮抓挠的太厉害,说明还需要进一步训练。那天晚上当 Rao 回到在剑桥
的公寓,他突然意识到 Neyman 和 Wald 的建议与Neyman-Pearson LR 检验与
计量经济学 第3章 双变量模型:假设检验

假设检验的前提是什么?
本章框图 一、古典假设
回归结果好坏? 三、高斯马尔科夫定理
二、估计量的分布问题
四、 假设 检验
七、正态性检验
方法 统计量 显著性
结论
五、拟合优度 六、预测
一、OLS估计需要的基本假设有哪些?
一、OLS估计需要的基本假设有哪些?
一、OLS估计需要的基本假设有哪些
一、OLS估计需要的基本假设有哪些?
十三、案例2股票价格和利率
理论和假说 变量选择 数据6-13 散点图 估计和结果 结论的经济意义
十四、案例3房价和贷款利率
理论和假说 变量选择 数据6-6 散点图 估计和结果 结论的经济意义
十五、案例4古董和拍卖价格
理论和假说 变量选择 数据6-14 散点图 估计和结果 结论的经济意义
第3章 双变量模型:模型检验
引子、样本回归参数的估计问题
引子、样本回归参数的估计问题
结论:
样本回归系数随样本变化。 样本回归系数是随机变量,如何描述? 样本回归系数和总体回归参数是什么关系 基于什么条件下,利用最小二乘估计的得
到的样本回归系数可以用来作为总体回归 参数的估计? 根据什么说明:总体回归函数的模型设定 是正确的。
习题讨论
习题讨论
习题讨论
习题讨论
习题讨论
习题讨论
习题讨论
五、显著性检验方法的原理是什么
五、显著性检验方法的原理是什么
五、显著性检验方法的原理是什么
五、显著性检验方法的原理是什么
六、样本回归函数拟合数据好坏的标准是什么?
六、样本回归函数拟合数据好坏的标准是什么?
六、样本回归函数拟合数据好坏的标准是什么?
七、判决系数的性质有哪些?
中级计量经济学讲义_第六章带有线性约束的多元线性回归模型及其假设检验

第六章 带有线性约束的多元线性回归模型及其假设检验在本章中,继续讨论第五章的模型,但新的模型中,参数β满足J 个线性约束集,R β=q ,矩阵R 有和β相一致的K 列和总共J 个约束的J 行,且R 是行满秩的,我们考虑不是过度约束的情况,因此,J <K 。
带有线性约束的参数的假设检验,我们可以用两种方法来处理。
第一个方法,我们按照无约束条件求出一组参数估计后,然后我们对求出的这组参数是否满足假设所暗示的约束,进行检验,我们在本章的第一节中讨论。
第二个方法是我们把参数所满足的线性约束和模型一起考虑,求出参数的最小二乘解,尔后再作检验,后者就是参数带有约束的最小二乘估计方法,我们在本章的第二节中讨论。
第一节 线性约束的检验 从线性回归模型开始,εβ+=X y (1)我们考虑具有如下形式的一组线性约束,JK JK J J K K K K q r r r q r r r q r r r =+++=+++=+++βββββββββ22112222212*********这些可以用矩阵改写成一个方程q R =β (2)作为我们的假设条件0H 。
R 中每一行都是一个约束中的系数。
矩阵R 有和β相一致的K 列和总共J 个约束的J 行,且R 是行满秩的。
因此,J 一定要小于或等于K 。
R 的各行必须是线性无关的,虽然J =K 的情况并不违反条件,但其唯一决定了β,这样的约束没有意义,我们不考虑这种情况。
给定最小二乘估计量b ,我们的兴趣集中于“差异”向量d=Rb -q 。
d 精确等于0是不可能的事件(因为其概率是0),统计问题是d 对0的离差是否可归因于抽样误差或它是否是显著的。
由于b 是多元正态分布的,且d 是b 的一个线性函数,所以d 也是多元正态分布的,若原假设为真,d 的均值为0,方差为R X X R R b Var R q Rb Var d Var ''='=-=-12)(])[(][][σ (3)对H 0的检验我们可以将其基于沃尔德(Wald )准则:d d Var d J W 12])[()(-'==χ=)(])([)(112q Rb R X X R q Rb -'''---σ (4)在假设正确时将服从自由度为J 的2χ分布(为什么?)。
计量经济学第6章假设检验
i1
n
或直接取自输出结果2.2.1中的方差分析部分“回归分析(行) F(列)”(399.09999)。(见表2.4.4)
有时S(回归系数的标准差,有时也记为 S e )也可不写;t统计 量右上角*的表示显著性水平的大小,**一般表示在显著性水平 1%下显著,*一般表示在显著性水平5%下显著,无*表示5%下 不显著。
b1
L xx L yy
n
( x x ) ( y y ) 其 中 x y
i 1
L
n
L xx
L
yy
n
i 1
( xi x )2
i 1
( yi y )2
为x与y的简单线性相关系数,简称相关系数。它表示x和y的线 性相 关关系的密切程度。其取值范围为|r| 1,即-1 r 1。 当r=-1时,表示x与y之间完全负相关; 当r=1时,表示x与y之间完全正相关; 当r=0时,表示x与y之间无线性相关关系,即说明x与y可 能无相关关系或x与y之间存在非线性相关关系。 5、四种检验的关系 前面介绍了t检验、拟合优度( )检验、 F检验和相关 R 2 系数(r)检验,对于一元线性回归方程来说,可以证 明,这四种检验:
第二步:计算F统计量 因为ESS=1602708.6 (计算过程见表2.4.3) 或直接取自输出结果 2.2.1中的方差分析部分“回归分析(行) SS(列)”(1602708.6)。
ˆ= RSS ( yi y )2 40158.071 (计算过程见计算表2.3.3) 或直接取
计量经济学的三种检验
38
从模型中删除不重要的解释变量
• 对待严重的多重共线性问题,最简单的 解决方法就是删除一个或多个共线性变 量。
– 导致“模型设定误差”,参数估计量可能是 有偏的。 – 建议不要仅仅因为共线性很严重就从一个经 济上可行的模型中删除变量。所选模型是否 符合经济理论是一个重要的问题。
39
获取额外的数据或者新的样本
42
消费支出对于收入和财富的回归方程
• • • •
40个观察值: Y=2.0907+0.7299 X1 +0.0605 X2 t= (0.8713) (6.0014) (2.0641) R2 =0.9672
43
重新考虑模型
• 模型的不恰当设定可能是回归模型存在共 线性的原因。
– 省略一些重要的变量 – 没有正确选择模型的函数形式
计量经济学检验
一、多重共线性 二、异方差 三、自相关
1
一:多重共线性
• • • • •
多重共线性的性质 多重共线性的原因 多重共线性的后果 多重共线性的诊断 多重共线性的补救措施
2
回顾多元线性回归模型的若干假定
• • • • •
零均值假定 同方差假定 无自相关假定 随机项与自变量不相关 非多重共线性
24
例:消费函数
• Y 只对收入回归:
– Y = 24.45 + 0.51X1 (3.81) (14.24) R2= 0.96
– 收入变量是高度显著的,但是在前一个模型中 是不显著的
25
例:消费函数
• Y 只对财富回归:
– Y = 24.41 + 0.05X2 – t (3.55) (13.29) R2 = 0.96
• 假设在过去估计过的对《wideget》需求函 数中,收入系数为0.9,并且是统计显著的。 如果收入系数的过去值没有多少改变的话, 我们可以重新估计方程 • 需求量=b0+b1*价格+b2*收入+u = b0+b1*价格+0.9*收入+u • 需求量- 0.9*收入= b0+b1*价格+u
《计量经济学》复习 参数假设检验
2. 未知方差σ2, 检验假设μ = μ0
上面的讨论表明参数的假设检验中的检验统计量应 该满足:1)其值通过样本观察值计算出来;2)其 概率分布应该是完全确定的。
如果X的方差σ2未知,则统计量
Z X 0 ~ N (0, 1) n
不再符合要求。处理的方法是将Z的表达式中的σ2 用其样本方差代替。于是得到新的统计量
假设总体X服从正态分布,但总体方差σ2未知。设 X1, X2, …, Xn是X的一组样本。则要检验总体的均值 是否为µ0, 可以通过t检验进行。即对于给定的显著
性水平α,可以查t临界值表,得到临界值 t 2 。当
检验统计量T的值满足
| T | t 2
拒绝原假设,否则接受原假设。
若拒绝原假设,意味着有
T X 0 ~ t(n 1)
Sn
对于一个充分小的α(显著性水平),我们可以找
到一个临界值 t 2 使得
P{| T | t 2}
记将样本数据代入T统计量的表达式中计算的结果
为t,则若
| t | t 2
则表示出现了小概率事件 {| T | t 2}。这可能性
非常小,但竟然发生了。因此我们怀疑H0的真实 性,因此拒绝H0。
时拒绝原假设H0,否则接受H0。
α /2的 拒绝域
tα/2
而临界值 k t 2 的意义就是:k使得
P{| T | t 2}
设由样本数据计算得到t (t > 0)值,则随机变量T位 于t外侧的概率为P{T > t} = 1 – P{T t}
tα/2
-t
t
概率密度函数曲线下方去掉阴影部分后,剩下部分
得到
x 116.71
则我们将接受H0,但实际上电池的平均寿命为
计量经济学普通最小二乘法假设检验
并基于样本来判断 1 0是否为真。 问题2:为什么[, za/2)并不是拒绝域?
问题3:为什么拒绝域是 [za , ) ?
zsq.zjgsu
思考题:
在假设体系: H0 : 1 H1 : 1
下,计量软件包计算出为正的统计量值z,而 且P值为0.120【注:计量软件包默认的P值是 双尾的概率,当z为正时,它计算的是
ˆ1 ta/2se(ˆ1), ˆ1 ta/2se(ˆ1) 被称为 1 的区
间估计量,而1-a是置信水平。
zsq.zjgsu
区间预测
假定真实模型是:y 0 1x ,模型满足经典
线性模型假定。以作为对yf的预测。此时预测误 差是: e1 y f yˆ f (0 ˆ0 ) (1 ˆ1)x f f
3 普通最小二乘法假设检验
zsq.zjgsu
模型检验内容
经济意义的检验
统计检验
计量经济学检验 预测检验
本节主要讲述统计检验的内容
方程显著性检验及变量显著性检验
zsq.zjgsu
必要的数理统计知识(1)
1. normal distribution : z ~ N (, 2 ), 密度函数为
1
( x )2
i 1
因此,在置信水平a下,对的区间预测是:
[ta/2Se(e2 ) yˆ f ,ta/2Se(e2 ) yˆ f ] zsq.zjgsu
F检验
现在我们把简单线性回归模型扩展为多元线 性模型,例如模型是:
yi 0 1x1i 2x2i 3x3i i
如果我们对原假设 H0:1 w1;2 w2
i
~
N
(0,
2
)
仅仅参数估计(点估计),假设1-6足矣。要进行假设检 验,就必须对ε的概率分布作出假定。假设误差项服从 正态分布的合理性在于,误差项是由很多因素构成的, 当这些因素是独立同分布时,依照中心极限定理,那么 这些因素之和应该近似服从正态分布。除少数情形(如 Cauchy分布)外,随着样本容量的增加,该假设都会得 到满足。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.843752345
P值=2(1-0.843752345)=0.312495
P值远远大于,故不拒绝H0
总体均值的检验( 2 未知)(例题分析)
【例】一种机床加工的零件尺寸 50个零件尺寸的误差数据 (mm) 绝对平均误差允许值为1.35mm。 1.26 1.19 1.31 0.97 1.81 生产厂家现采用一种新的机床进行 1.13 0.96 1.06 1.00 0.94 加工以期进一步降低误差。为检验 新机床加工的零件平均误差与旧机 0.98 1.10 1.12 1.03 1.16 床相比是否有显著降低,从某天生 1.12 1.12 0.95 1.02 1.13 产的零件中随机抽取50个进行检验。1.23 0.74 1.50 0.50 0.59 利用这些样本数据,检验新机床加 0.99 1.45 1.24 1.01 2.03
sn
总体均值的检验( 2 已知)(例题分析)
【例】一种罐装饮料采用自动生
产线生产,每罐的容量是255ml,
标准差为5ml。为检验每罐容量
双侧检验
是否符合要求,质检人员在某天
生产的饮料中随机抽取了40罐进
行检验,测得每罐平均容量为
255.8ml。取显著性水平=0.05 ,
检验该天生产的饮料容量是否符 合标准要求?
①原假设H0为真 ②点估计量的抽样分布
标准化的检验统计量
标准化检验统计量
点估计量 — 假设值 点估计量的抽样标准差
2)显著性水平和拒绝域(双侧检验 )
H0 : = 0H1 : ≠0
抽样分布
拒绝H0
/2
1 -
置信水平 拒绝H0
/2
0 临界值
样本统计量 临界值
3)显著性水平和拒绝域(左侧检验 )
H0 : 0H1 : < 0
双侧检验与单侧检验(假设的形式)
注:研究者感兴趣的是备择假设,单侧假设的方 向是按备侧假设的方向来说的。
假设 原假设
双侧检验
单侧检验 左侧检验 右侧检验
H0 : = 0 H0 : 0 H0 : 0
备择假设 H1 : ≠0 H1 : < 0 H1 : > 0
2、两类错误和显著性水平
1. 第Ⅰ类错误(弃真错误)
1. 是一个概率值 2. 原假设为真时,拒绝原假设的概率
被称为抽样分布的拒绝域
3. 表示为 (alpha) 常用的 值有0.01, 0.05, 0.10
4. 由研究者事先确定
3、检验统计量与拒绝域
1)根据样本观测结果计算得到的,并据以对
原假设和备择假设作出决策的某个样本统 计量
2)对样本估计量的标准化,标准化依据:
抽样分布
置信水平
拒绝H0
1 -
临界值 0
样本统计量
3)显著性水平和拒绝域(右侧检验 )
H0 : 0H1 : > 0
抽样分布
置信水平
1 -
拒绝H0
0
样本统计量
临界值
总结 决策规则
1. 给定显著性水平,查表得出相应的临 界值z或z/2, t或t/2
2. 将检验统计量的值与 水平的临界值进 行比较
3. 作出决策
研究者想收集证据予以支持的假设 也称“研究假设” 总是有符号 , 或 表示为 H1
H1 : <某一数值,或 某一数值 例如, H1 : < 10cm,或 10cm
提出假设(例题分析)
【例】一种零件的生产标准是直径应为10cm,为对 生产过程进行控制,质量监测人员定期对一台加工机 床检查,确定这台机床生产的零件是否符合标准要求。 如果零件的平均直径大于或小于10cm,则表明生产 过程不正常,必须进行调整。试陈述用来检验生产过 程是否正常的原假设和被择假设
第三讲 假设检验
一、假设检验的基本问题 二、一个总体参数的假设检验 三、两个总体参数的假设检验
教学要求: ① 理解假设检验的基本思想,掌握假设检验的基本步 骤,了解假设检验可能产生的两类错误。 ② 掌握一个总体参数(总体均值、总体比例、总体方 差)的检验
一、假设检验的基本问题
1.假设检验的思想、含义和一般表述 2.两类错误和显著性水平 3.检验统计量与拒绝域 4.利用P值进行决策
z x 0 n
z 检验
z x 0 sn
z 检验
z x 0 n
t 检验
t x 0 sn
1)总体均值的检验(大样本)
① 假定条件
正态总体或非正态总体大样本(n30)
② 使用z检验统计量 2 已知: z x 0 ~ N (0,1) n
2 未知: z x 0 ~ N (0,1)
二、一个总体参数的假设检验
1.总体均值的假设检验 2.总体比例的假设检验 3.总体方差的假设检验
一个总体参数的检验
一个总体
均值
比例
方差
z 检验
(单尾和双尾)
t 检验
(单尾和双尾)
z 检验
(单尾和双尾)
2检验
(单尾和双尾)
1.总体均值的检验(作出判断)
大
样本容量n
小
是
否
是否已
知
是
否
是否已
知
z 检验
抽取随机样本
☺均x =值50☺
原假设 (null hypothesis)
1. 研究者想收集证据予以反对的假设
又称“0假设”
总是有符号 , 或
表示为 H0
H0 : = 某一数值
指定为符号 =, 或
例如, H0 : 10cm
立场 (主观色彩)
备择假设 (alternative hypothesis)
抽样分布
置信水平
1 -
拒绝H0
P值
0 临界值
计算出的样本统计量
5、统计显著性与实际的显著性
(统计上显著不一定有实际意义)
1. 当原假设被拒绝时,我们称样本结果在统 计 上 是 显 著 的 (statistically significant),当不拒绝原假设时,我们 称样本结果在统计上是不显著的
2. P值越小,表明结果越显著。但检验结果究
竟是“显著的”、“中度显著的”还是
“高度显著的”,需要由研究者自己根据P
值大小和实际问题来决定
2.在“显著”和“不显著”之间没有清楚的 界限,只是在P值越来越小时,我们就有 越来越强的证据,检验的结果也就越来越 显著
3.一个在统计上显著的结论在实际中却不见 得很重要,也不意味着就有实际意义。因 为P值不仅和样本的大小密切相关,也和 总体参数的真值有关
解:研究者想收集证据予以证明的假设 应该是“生产过程不正常”。建立的原 假设和备择假设为
H0 : 10cm H1 : 10cm
提出假设(例题分析)
【例】某品牌洗涤剂在它的产品说明书中声称:平 均净含量不少于500克。从消费者的利益出发,有 关研究人员要通过抽检其中的一批产品来验证该产 品制造商的说明是否属实。试陈述用于检验的原假 设与备择假设
原假设为真时拒绝原假设
第Ⅰ类错误的概率记为
被称为显著性水平
2. 第Ⅱ类错误(纳伪错误)
原假设为假时未拒绝原假设
第 Ⅱ 类 错 误 的 概 率 记 为
(Beta)
依据
错误和 错误的关系
和 的关系就像 翘翘板,小 就 大, 大 就小
同时减少两类 错误惟一办法 增加样本容量!
显著性水平 (significant level)
3. 被称为观察到的(或实测的)显著性水平
4. 决策规则:若p值<, 拒绝 H0
双侧检验的P 值
/2
拒绝H0
1/2 P 值
/2
拒绝H0
1/2 P 值
临界值 0
临界值
Z
计算出的样本统计量
计算出的样本统计量
左侧检验的P 值
抽样分布
拒绝H0
P值
置信水平
1 -
临界值
0
计算出的样本统计量
样本统计量
右侧检验的P 值
双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0
4、利用 P值 进行决策
1. 在原假设为真的条件下,检验统计量的观察值 大于或等于其计算值的概率
双侧检验为分布中两侧面积的总和
2. 反映实际观测到的数据与原假设H0之间不一致 的程度
假设检验步骤的总结
1. 陈述原假设和备择假设 2. 从所研究的总体中抽出一个随机样本 3. 确定一个适当的检验统计量,并利用样本数据
算出其具体数值 4. 确定一个适当的显著性水平,并计算出其临界
值,指定拒绝域 5. 将统计量的值与临界值进行比较,作出决策
统计量的值落在拒绝域,拒绝H0,否则不拒绝H0 也可以直接利用P值作出决策
解:研究者抽检的意图是倾向于证实这 种洗涤剂的平均净含量并不符合说明书 中的陈述 。建立的原假设和备择假设为
H0 : 500 H1 : < 500
500g
提出假设(例题分析)
【例】一家研究机构估计,某城市中家庭 拥有汽车的比例超过30%。为验证这一估 计是否正确,该研究机构随机抽取了一个 样本进行检验。试陈述用于检验的原假设 与备择假设
绿色 健康饮品
255
绿色 健康饮品
255
解:作假设
H0 : = 255 H1 : 255 = 0.05
n = 40 临界值(c):
பைடு நூலகம்
拒绝 H0
拒绝 H0
0.025
0.025
-1.96 0 1.96 z
检验统计量:
z x 0 255.8 255 1.01 n 5 40
决策:
不拒绝H0