计量经济学的各种检验
计量经济学的各种检验

主分量回归是将具有多重相关的变量集综合得出少数几个互不相关的主分量.两步:(1)找出自变量集的主分量,建立y与互不相关的前几个主分量的回归式.(2)将回归式还原为原自变量结果.详见,<<实用多元统计分析>>,方开泰;
主分量回归结果
Obs _MODEL_ _TYPE_ _DEPVAR_ _PCOMIT_ _RMSE_ Intercept x1 x2 x3 y 1 MODEL1 PARMS y 0.48887 -10.1280 -0.05140 0.58695 0.28685 –1 2 MODEL1 IPCVIF y 1 0.25083 1.00085 0.25038 –1 3 MODEL1 IPC y 1 0.55001 -9.1301 0.07278 0.60922 0.10626 –14 MODEL1 IPCVIF y 2 0.24956 0.00095 0.24971 -15 MODEL1 IPC y 2 1.05206 -7.7458 0.07381 0.08269 0.10735 -1
多重共线性检验方法(3)样本相关系数检验法
FG test results
fg=20.488013401 p=0.0001344625;拒绝零假设,认为存在多重共线性。具体那些变量之间存在多重共线性,除了上面提到的辅助回归的方法外,还有以下提到的条件数检验和方差膨胀因子法。
多重共线性检验方法:(4)特征值分析法所用的检验统计指标
补救措施
增加样本;岭回归或主分量回归;至少去掉一个具有多重共线性的变量;对具有多重共线性的变量进行变换.对所有变量做滞后差分变换(一般是一阶差分),问题是损失观测值,可能有自相关.采用人均形式的变量(例如在生产函数估计中)在缺乏有效信息时,对系数关系进行限制,变为有约束回归(Klein,Goldberger,1955),可以降低样本方差和估计系数的标准差,但不一定是无偏的(除非这种限制是正确的).对具有多重共线性的变量,设法找出其因果关系,并建立模型和原方程构成联立方程组.
所有计量经济学检验方法

所有计量经济学检验方法
1、回归分析:回归分析是用来确定两个变量之间相关关系的一种统计方法,它能够推断出一个变量对另一个变量的影响程度。
常用的回归检验包括偏直斜率检验、R平方检验、Durbin-Watson检验、自相关检验、Box-Cox检验等。
2、主成分分析:主成分分析(PCA)是一种统计分析方法,用于消除随机变量之间的相关性,从而简化数据分析过程。
常用的方法有二元主成分分析(BPCA)、多元主成分分析(MPCA)
3、因子分析:因子分析是一种统计学方法,用于确定从多个离散观测变量中提取的隐含变量。
常用的因子分析检验包括KMO检验、Bartlett 统计量检验、条件双侧门限统计量检验等。
4、多元分析:多元分析是一种统计学方法,用于探索随机变量之间的关系,常用的多元分析检验包括多元弹性网络(MANOVA)、多元回归(MR)以及结构方程模型(SEM)。
5、聚类分析:聚类分析是一种用于探索研究数据中的结构和特征的统计学方法。
它主要是将数据集分组,以便对数据集中的每组信息单独进行分析。
常用的聚类分析检验有K均值聚类、层次聚类、嵌套聚类等。
6、特征选择:特征选择是一种数据分析技术,用于从大量可能的特征中,选择有效的特征变量。
计量经济学的统计检验

统计检验
区间估计
• ������2
•R • 调整���ത���2
拟合优度
显著性检验
• 方程的显著性检验 • 参数的显著性检验
拟合优度
拟合优度(Goodness of Fit)是指回归直线对观测值的拟合程度。 度量拟合优度的统计量是可决系数(亦称判定系数)������2。 拟合优度是样本回归线对数据的拟合有多么好的一个度量。 ������2是双变量情形下的表示,������2是多变量情况下的表示。 维恩图: (a) ������2=0 (f) ������2=1
如例子中一样,置信水平一般用百分比表示,因此置信水平0.95 上的置信区间也可以表达为:95%置信区间。置信区间的两端被 称为置信极限。对一个给定情形的估计来说,置信水平越高, 所对应的置信区间就会越大。
缩小置信区间
由于置信区间一定程度地给出了样本参数估计值与总体参数真 值的“接近”程度,因此置信区间越小越好。 要缩小置信区间,需 1. 增大样本容量n,因为在同样的样本容量下,n越大,t分布表
k
1)
F与���ത���2同方向变化,���ത���2=0时,F=0,F越大,���ത���2越大,���ത���2=1时,F为 无穷大。
F检验是检验回归方程总显著性的,也是检验���ത���2的显著性的。
➢通过F值的取值范围算出���ത���2的取值范围,与实值比较,满足取值范 围说明模型在该置信水平下成立。
������2
������2 公式
������2 性质
R2 =
ESS TSS
= (Y^ i - Y)2 (Yi - Y)2
=
y^i2 yi2
R 2 ESS 1 RSS
TSS
期末精华:计量经济学针对三种误差检验方法

2、近似共线性下普通最小二乘法参数估计量 非有效
在一般共线性(或称近似共线性)下,虽然可以得 到OLS法参数估计量,但是由参数估计量方差的表达 式为
Cov(ˆ ) 2 (XX)1
RESET 检验是 Regression Specification Error Test (回归设定误差检验)的简写。
设 y x β zc ε 设定误差检验是检验上式中 c 是否为零。 但关键哪些变量应该进入 z 呢? (1)在缺失变量的情况下,那些缺失变量将构成 z。 (2)在方程设定有误时,应如何处理呢?
第五章 计量经济学检验 ——违背基本假设的情况
❖ 一方面,建立一个计量经济学模型要经过四 重检验,其中经济意义检验、统计检验、预 测检验已讲,这一章主要讲计量经济学检验 的范畴。
❖ 另一方面,前面讨论了最小二乘估计的优良 性质,但都是基于经典假设。如果这些假设 不满足,会出现什么问题呢?这一章对其进 行分析。
(3) 用F检验比较两个方程的拟合情况(类似于上一章中 联合假设检验采用的方法),如果两方程总体拟合情况 显著不同,则我们得出原方程可能存在误设定的结论。 使用的检验统计量为:
F (RSSM RSS ) / M RSS /(n k 1)
其中:RSSM为第一步中回归(有约束回归)的残差 平方和,RSS为第二步中回归(无约束回归)的残差 平方和,M为约束条件的个数,这里是M=3。
四、 解决解释变量误设定问题的原则
在模型设定中的一般原则是尽量不漏掉有关的解 释变量。因为估计量有偏比增大误差更严重。但如 果方差很大,得到的无偏估计量也就没有多大意义 了,因此也不宜随意乱增加解释变量。
在回归实践中,有时要对某个变量是否应该作为 解释变量包括在方程中作出准确的判断确实不是一 件容易的事,因为目前还没有行之有效的方法可供 使用。尽管如此,还是有一些有助于我们进行判断 的准则可用,它们是:
所有计量经济学检验方法(全)

所有计量经济学检验方法(全)计量经济学所有检验方法一、拟合优度检验 可决系数TSSRSSTSS ESS R -==12 TSS 为总离差平方和,ESS为回归平方和,RSS 为残差平方和该统计量用来测量样本回归线对样本观测值的拟合优度。
该统计量越接近于1,模型的拟合优度越高。
调整的可决系数)1/()1/(12----=n TSS k n RSS R 其中:n-k-1为残差平方和的自由度,n-1为总体平方和的自由度。
将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响。
二、方程的显著性检验(F 检验)方程的显著性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立作出推断。
原假设与备择假设:H 0:β1=β2=β3=…βk =0 H 1:βj 不全为0 统计量)1/(/--=k n RSS kESS F 服从自由度为(k , n-k-1)的F分布,给定显著性水平α,可得到临界值Fα(k,n-k-1),由样本求出统计量F的数值,通过F>Fα(k,n-k-1)或F≤Fα(k,n-k-1)来拒绝或接受原假设H,以判定原方程总体上的线性关系是否显著成立。
三、变量的显著性检验(t检验)对每个解释变量进行显著性检验,以决定是否作为解释变量被保留在模型中。
原假设与备择假设:H0:βi=0 (i=1,2…k);H1:βi≠0给定显著性水平α,可得到临界值tα/2(n-k-1),由样本求出统计量t的数值,通过|t|> tα/2(n-k-1) 或|t|≤tα/2(n-k-1)来拒绝或接受原假设H0,从而判定对应的解释变量是否应包括在模型中。
四、参数的置信区间参数的置信区间用来考察:在一次抽样中所估计的参数值离参数的真实值有多“近”。
统计量)1(~1ˆˆˆ----'--=k n t k n c S t iiii iiie e βββββ在(1-α)的置信水平下βi 的置信区间是( , ) ββααββi i t s t s ii-⨯+⨯22,其中,t α/2为显著性水平为α、自由度为n-k-1的临界值。
计量经济学的三种检验

• 非完全共线性是指变量不能完全表示为 其他变量的完全线性函数。
• 违反假定:多重共线性
8
完全多重共线性
• 完全共线性(Perfect collinearity)的例子 :
– X1 X2 X3 – 10 50 52 – 15 75 75 – 18 90 97 – 24 120 129 – X1 和 X2 是完全线性相关的:
计量经济学检验
一、多重共线性 二、异方差 三、自相关
1
一:多重共线性 • 多重共线性的性质 • 多重共线性的原因 • 多重共线性的后果 • 多重共线性的诊断 • 多重共线性的补救措施
2
回顾多元线性回归模型的若干假定 • 零均值假定 • 同方差假定 • 无自相关假定 • 随机项与自变量不相关 • 非多重共线性
• X2 = 5X1
9
完全多重共线性
• 若X2 = 5X1 • 将其代入Y’=b0 ’ +b1 ’ X1+b2 ’ X2 +b3 ’ X3
Y’=b0 ’ +b1 ’ X1 +b2 ’ * 5X1 +b3 ’ X3 = b0 ’ +(b1 ’ + 5b2 ’ ) X1 +b3 ’
X3 = b0 ’ +A X1 +b3 ’ X3
• 三变量模型 • 无法从A值中得到b1 ’ 、b2’的值
10
接近完全多重共线性的情形 • 多重共线性是一个极端的情形 • 在实际中,很少遇到完全多重共线性的情
况,常常是接近或高度多重共线性。亦即 解释变量是接近线性相关的。 • 例:《widget》教科书
11
问题
• 多重共线性的性质是什么? • 多重共线性产生的原因是什么? • 多重共线性的理论后果是什么? • 多重共线性的实际后果是什么? • 在实际中,如何发现多重共线性? • 消除多重共线性的弥补措施有哪些?
常用显著性检验

常用显著性检验1.t检验适用于计量资料、正态分布、方差具有齐性的两组间小样本比拟。
包括配对资料间、样本与均数间、两样本均数间比拟三种,三者的计算公式不能混淆。
2.t'检验应用条件与t检验大致一样,但t′检验用于两组间方差不齐时,t′检验的计算公式实际上是方差不齐时t检验的校正公式。
3.U检验应用条件与t检验根本一致,只是当大样本时用U检验,而小样本时那么用t检验,t检验可以代替U检验。
4.方差分析用于正态分布、方差齐性的多组间计量比拟。
常见的有单因素分组的多样本均数比拟与双因素分组的多个样本均数的比拟,方差分析首先是比拟各组间总的差异,如总差异有显著性,再进展组间的两两比拟,组间比拟用q检验或LST检验等。
5.X2检验是计数资料主要的显著性检验方法。
用于两个或多个百分比(率)的比拟。
常见以下几种情况:四格表资料、配对资料、多于2行*2列资料与组分组X2检验。
6.零反响检验用于计数资料。
是当实验组或对照组中出现概率为0或100%时,X2检验的一种特殊形式。
属于直接概率计算法。
7.符号检验、秩和检验和Ridit检验三者均属非参数统计方法,共同特点是简便、快捷、实用。
可用于各种非正态分布的资料、未知分布资料与半定量资料的分析。
其主要缺点是容易丢失数据中包含的信息。
所以但凡正态分布或可通过数据转换成正态分布者尽量不用这些方法。
8.Hotelling检验用于计量资料、正态分布、两组间多项指标的综合差异显著性检验。
计量经济学检验方法讨论计量经济学中的检验方法多种多样,而且在不同的假设前提之下,使用的检验统计量不同,在这里我论述几种比拟常见的方法。
在讨论不同的检验之前,我们必须知道为什么要检验,到底检验什么?如果这个问题都不知道,那么我觉得我们很荒谬或者说是很模式化。
检验的含义是要确实因果关系,计量经济学的核心是要说因果关系是怎么样的。
那么如果两个东西之间没有什么因果联系,那么我们寻找的原因就不对。
那么这样的结果是没有什么意义的,或者说是意义不大的。
所有计量经济学检验方法

所有计量经济学检验方法1. OLS回归分析:OLS(Ordinary Least Squares)是一种常用的回归分析方法,它通过最小二乘估计来计算自变量对因变量的影响。
OLS回归分析可用于检验两个或多个变量之间的关系。
2.t检验:t检验用于检验样本均值与总体均值之间的差异是否显著。
在计量经济学中,常常用t检验来检测回归系数的显著性,即判断自变量对因变量的影响是否显著。
3.F检验:F检验用于检验回归模型的整体显著性。
通过F检验可以判断回归模型中自变量的组合对因变量的影响是否显著。
4.残差分析:残差分析用于检验回归模型的拟合优度。
它通过对回归模型的残差进行统计分析,判断残差是否符合正态分布、是否存在异方差等,并据此评估回归模型的合理性。
5.雅克-贝拉检验:雅克-贝拉检验用于检验时间序列数据的自相关性。
自相关性是指时间序列数据中的随机误差项之间存在相关性,为了使回归模型的估计结果有效,需要排除自相关性的影响。
6. ARIMA模型:ARIMA(Autoregressive Integrated Moving Average)模型是一种常用的时间序列分析模型,用于分析和预测时间序列数据。
ARIMA模型可以用于检验时间序列数据的平稳性和趋势。
7. Granger因果检验:Granger因果检验用于检验两个时间序列变量之间的因果关系。
通过检验一个变量的过去值对另一个变量的当前值的预测能力,可以判断两个变量之间是否存在因果关系。
8.卡方检验:卡方检验用于检验两个或多个分类变量之间是否存在显著差异。
在计量经济学中,卡方检验常用于检验变量之间的相关性和拟合优度。
9.随机效应模型和固定效应模型:随机效应模型和固定效应模型是面板数据分析中常用的方法。
它们通过考虑个体特征对经济现象的影响,帮助研究人员解决面板数据中存在的个体特征和时间特征之间的内生性问题。
10.引导变量法:引导变量法用于解决因果关系中的内生性问题。
通过引入其他变量作为工具变量,可以将内生性引起的估计偏误消除或减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Variance Variable DF Estimate |t| Inflation Intercept 1 -10.12799 <.0001 0 x1 1 -0.05140 0.4883 185.99747 x2 1 0.58695 0.0004 1.01891 x3 1 0.28685 0.0263 186.11002
FG test results
fg=20.488013401 p=0.0001344625; 拒绝零假设,认为存在多重共线性。 具体那些变量之间存在多重共线性,除了 上面提到的辅助回归的方法外,还有以下 提到的条件数检验和方差膨胀因子法。
多重共线性检验方法: (4)特征值分析法所用的检验统计指标
如果样本的可决系数R-square 比较大,且回归 系数几乎没有统计上的显著性,则可认为存在 多重共线性。 Theil 提出了一个指标:多重共线性效应系数
Theil 指标 R 2 (R 2 R 2 ); j
j 1 p
R 2 去掉x j 后的回归方程的可决系数; j 若该系数接近于0,则认为不存在多重共线性; 接近于1,存在多重共线性。
为第k各自变量和其 余自变量回归的可决系数. VIF>10,有多 重共线性;TOL=1/VIF; 条件指数: C i i
VIFk (1 R )
2 k
1
;
R
2 k
min
条件数:
C
max min
;C>20,共线性严重.
多重共线性的检验和补救
Sas 程序
data ex01; input x1 x2 x3 y@@; label x1="国内生产总值"; label x2="存储量";; label x3="消费量"; label y="进口总额"; cards; 149.3 4.2 108.1 15.9 161.2 4.1 114.8 16.4 171.5 3.1 123.2 19.0 175.5 3.1 126.9 19.1 180.8 1.1 132.1 18.8 190.7 2.2 137.7 20.4 202.1 2.1 146 22.7 212.4 5.6 154.1 26.5 226.1 5.0 162.3 28.1 231.9 5.1 164.3 27.6 239.0 0.7 167.6 26.3 ; run;
主分量回归结果
Obs _MODEL_ _TYPE_ _DEPVAR_ _PCOMIT_ _RMSE_ Intercept x3 y 1 MODEL1 PARMS y 10.1280 -0.05140 0.58695 0.28685 –1 2 MODEL1 IPCVIF y 0.25083 1.00085 0.25038 –1 3 MODEL1 IPC y 9.1301 0.07278 0.60922 0.10626 –1 4 MODEL1 IPCVIF y 0.24956 0.00095 0.24971 -1 5 MODEL1 IPC y -7.7458 0.07381 0.08269 0.10735 -1 x1 x2 0.48887 1 1 2 2 1.05206 0.55001 -
ห้องสมุดไป่ตู้
Sas 程序
/*theil test*/; proc reg data=ex01; equation3:model y=x1 x2; equation2:model y=x1 x3; equation1:model y=x2 x3; run;/*r-.9473;r3s=0.9828*/; data theil; rsq=0.9919;r1s=0.9913;r2s= 0.9473;r3s=0.9828; theil=rsq-(3*rsq(r1s+r2s+r3s));put theil=; run; /*辅助回归检验法*/; proc reg data=ex01; equation3:model x3=x1 x2; equation2:model x2=x1 x3; equation1:model x1=x2 x3; run;
例一:进口总额和三个自变量之间回归; Sas 结果如下:Pearson Correlation Coefficients, N = 11 Prob > |r| under H0: Rho=0 x1 x2 x3 x1 1.00000 0.02585 0.99726 GDP 0.9399 <.0001 x2 0.02585 1.00000 0.03567 存蓄量 0.9399 0.9171 x3 0.99726 0.03567 1.00000 总消费 <.0001 0.9171
从上面可以看出x1和x3线性相关严重.
多重共线性的检验和补救
(2)回归结果:
Parameter Estimates Parameter Error 1.21216 0.07028 0.09462 0.10221 Standard t Value -8.36 -0.73 6.20 2.81 Pr >
rank( X X ) k
多重共线性的后果
1.存在完全多重共线性时,参数的估计值 无法确定,而且估计值的方差变为无穷大. 2.存在不完全多重共线性时,可以估计参 数值,但是数值不稳定,而且方差很大. 3.多重共线性会降低预测的精度,甚至失 效,增大零假设接受的可能性(t值变小).
多重共线性的检测方法 (1)样本可决系数法
辅助回归检验结果
Sas 结果:
F1 739 .99( prob 0.01); R12 0.9946 ; F2 0.0186 ( prob 0.9278 ); R12 0.0186 ; F3 740 .44( prob 0.01); R32 0.9946 ;
Klein经验法则:若存在一个i,使得 R(i)-square>R-square,则认为多重共线 性严重;本例中x1,x3有多重共线性。
多重共线性检验方法 (3)样本相关系数检验法
两个变量xi 和x j 之间的相关系数 rij , 如果rij 较大,则认为存在多重共线性; 进一步,rij R 2 , 共线性严重。 H 0 : det(R ) 1; H a det(R ) 1; 1 检验统计量:FG (T 1 ( 2 p 5) log(det(R )); 6 FG 2 (0.5 p ( p 1)); 如果拒绝H 0,则认为有多重共线性; 否则不存在;
若存在多重共线性,则至少有一个解释变量可精确或 近似地表示为其余皆是变量的线性组合。 相应的检验统计量为:
2 i
R /( p 1) Fi F ( p 1, T p) 2 (1 Ri ) /(T p) R 为第i个自变量对其余解释变量的回归
2 i
的可决系数; 若显著则存在多重共线性; 则可认为xi 是造成多重共线性的原因;
Theil test results
Sas 结果:
R 0.9919 ; R 0.9913;
2 2 1
R 0.9473; R 0.9828
2 2 2 3
theil effects coefficien t 0.9376 1
结果表明有多重共线性。
多重共线性检测方法 (2)辅助回归检验法
主分量回归结果
由输出结果看到在删去第三个主分量 (pcomit=1)后的主分量回归方程:
Y=-9.1301+0.07278x1+0.60922x2+0.10626x3;
该方程的系数都有意义,且回归系数的方差膨 胀因子均小于1.1;主分量回归方程的均方根 误差(_RMSE=0.55) 比普通OLS方程的均方根 误差(_RMSE=0.48887) 有所增大但不多。
proc corr data=ex01; var x1-x3; run; *岭回归*; proc reg data=ex01 outest=ex012 graphics outvif; model y=x1-x3/ridge=0.0 to 0.1 by 0.01; plot/ridgeplot; run; proc print data=ex012;run; *主分量回归法*; proc reg data=ex01 outest=ex103; model y=x1-x3/pcomit=1,2 outvif;*pcomit表示删去最后面的1或 2个主分量,用前面m-1或 m-2各主分量进 行回归*; run; proc print data=ex103;run;
岭回归
岭回归估计: b(k ) ( X X kI) 1 X Y K=0, b(k)=b即为OLSE; K的选取: min [(b(k ) )(b(k ) )] k 即使b(k)的均方误差比b的均方误差小.
岭迹图
岭回归结果
Obs _MODEL_ _TYPE_ _DEPVAR_ _RIDGE_k _PCOMIT_ _RMSE_ Intercept y 1 MODEL1 PARMS y -0.051 0.58695 0.287 -1 2 MODEL1 RIDGEVIF y 0.00 185.997 1.01891 186.110 –1 3 MODEL1 RIDGE y 0.00 -0.051 0.58695 0.287 –1 4 MODEL1 RIDGEVIF y 0.01 8.599 0.98192 8.604 -1 5 MODEL1 RIDGE y 0.01 9.1805 0.046 0.59886 0.144 –1 6 MODEL1 RIDGEVIF y 0.02 2.858 0.96219 2.859 -1 7 MODEL1 RIDGE y 0.02 0.057 0.59542 0.127 -1 8 MODEL1 RIDGEVIF y 0.03 1.502 0.94345 1.502 -1 9 MODEL1 RIDGE y 0.03 8.7337 0.061 0.59080 0.120 -1 10 MODEL1 RIDGEVIF y 0.04 0.979 0.92532 0.979 -1 11 MODEL1 RIDGE y 0.04 0.064 0.58591 0.116 -1 x1 x2 0.48887 方差膨胀因子 0.48887 -10.1280 x3 -10.1280