Eviews计量经济学三大检验
Eviews计量经济学三大检验讲解学习

E v i e w s计量经济学三大检验作业1我们有1978-2007年我国财政收入,国内生产总值,财政支出和商品零售价格指数的年度数据。
请用Eview 进行回归分析。
(1) 根据回归结果分析模型的经济意义(包含模型的显著性,拟合优度,系数的显著性,系数的经济意义)建立模型,做OLS 估计,得结果图一,列表如下:43283175.57898859.0003271.0558.6399X X X Y ++--=∧)0636.20)(065848.0)(012559.0)(836.2132(SE )882456.2)(65061.13)(260476.0-)(000492.3-(t =997046.02=R 996705.02=R 845.2924=F模型整体显著性较高(F 检验十分显著),可决系数2R 和调整的可决系数较大,即样本回归方程对样本观测值拟合较好。
t 检验显示2X 的系数不显著(p 值>0.05,不能拒绝β=0的原假设),3X 和4X 的系数显著(p值<0.05,拒绝β=0的原假设)。
从模型的经济意义来看,财政支出、商品零售价格指数与财政收入成正相关,国内生产总值与财政收入成负相关,不符合客观经济规律,可能与模型变量的选取有关。
考虑对模型进行对数变换,结果为图二。
432ln 128427.1ln 631090.0ln 448496.0946444.6ln X X X Y +++-=∧)610249.0)(160929.0)(141418.0)(853146.2(SE)849127.1)(921549.3)(171412.3)(434662.2(t -=987673.02=R 986251.02=R 3969.694=F对数变换后模型整体显著性较高(F 检验十分显著,p 值=0.00<<0.05),可决系数2R 和调整的可决系数略有下降,模型可解释98.63%的因变量变化。
EViews计量经济学实验报告-简单线性回归模型分析

时间地点实验题目简单线性回归模型分析一、实验目的与要求:目的:影响财政收入的因素可能有很多,比如国内生产总值,经济增长,零售物价指数,居民收入,消费等。
为研究国内生产总值对财政收入是否有影响,二者有何关系。
要求:为研究国内生产总值变动与财政收入关系,需要做具体分析。
二、实验内容根据1978-1997年中国国内生产总值X和财政收入Y数据,运用EV软件,做简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用,得出回归结果。
三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用。
(一)模型设定为研究中国国内生产总值对财政收入是否有影响,根据1978-1997年中国国内生产总值X 和财政收入Y,如图1:1978-1997年中国国内生产总值和财政收入(单位:亿元)根据以上数据,作财政收入Y 和国内生产总值X 的散点图,如图2:从散点图可以看出,财政收入Y 和国内生产总值X 大体呈现为线性关系,所以建立的计量经济模型为以下线性模型:01i i i Y X u ββ=++(二)估计参数1、双击“Eviews ”,进入主页。
输入数据:点击主菜单中的File/Open /EV Workfile —Excel —GDP.xls;2、在EV 主页界面点击“Quick ”菜单,点击“Estimate Equation ”,出现“Equation Specification ”对话框,选择OLS 估计,输入“y c x ”,点击“OK ”。
即出现回归结果图3:图3. 回归结果Dependent Variable: Y Method: Least Squares Date: 10/10/10 Time: 02:02 Sample: 1978 1997 Included observations: 20Variable Coefficient Std. Error t-Statistic Prob. C 857.8375 67.12578 12.77955 0.0000 X0.1000360.00217246.049100.0000R-squared 0.991583 Mean dependent var 3081.158 Adjusted R-squared 0.991115 S.D. dependent var 2212.591 S.E. of regression 208.5553 Akaike info criterion 13.61293 Sum squared resid 782915.7 Schwarz criterion 13.71250 Log likelihood -134.1293 F-statistic 2120.520 Durbin-Watson stat0.864032 Prob(F-statistic)0.000000参数估计结果为:i Y = 857.8375 + 0.100036i X(67.12578) (0.002172)t =(12.77955) (46.04910)2r =0.991583 F=2120.520 S.E.=208.5553 DW=0.8640323、在“Equation ”框中,点击“Resids ”,出现回归结果的图形(图4):剩余值(Residual )、实际值(Actual )、拟合值(Fitted ).(三)模型检验1、 经济意义检验回归模型为:Y = 857.8375 + 0.100036*X (其中Y 为财政收入,i X 为国内生产总值;)所估计的参数2ˆ =0.100036,说明国内生产总值每增加1亿元,财政收入平均增加0.100036亿元。
计量经济学eviews基本操作及检验

实验一 EViews软件的基本操作【实验目的】了解EViews软件的基本操作对象,掌握软件的基本操作。
【实验内容】一、EViews软件的安装;二、数据的输入、编辑与序列生成;三、图形分析与描述统计分析;四、数据文件的存贮、调用与转换。
实验内容中后三步以表1-1所列出的税收收入和国内生产总值的统计资料为例进行操作。
表1-1 我国税收与GDP统计资料单位:亿元资料来源:《中国统计年鉴1999》【实验步骤】一、安装EViews软件㈠EViews对系统环境的要求⒈一台386、486奔腾或其他芯片的计算机,运行Windows3.1、Windows9X、Windows2000、WindowsNT或WindowsXP操作系统;⒉至少4MB内存;⒊VGA、Super VGA显示器;⒋鼠标、轨迹球或写字板;⒌至少10MB以上的硬盘空间。
㈡安装步骤⒈点击“网上邻居”,进入服务器;⒉在服务器上查找“计量经济软件”文件夹,双击其中的setup.exe,会出现如图1-1所示的安装界面,直接点击next按钮即可继续安装;⒊指定安装EViews软件的目录(默认为C:\EViews3,如图1-2所示),点击OK按钮后,一直点击next按钮即可;⒋安装完毕之后,将EViews的启动设置成桌面快捷方式。
图1-1 安装界面1图1-2 安装界面2二、数据的输入、编辑与序列生成㈠创建工作文件⒈菜单方式启动EViews软件之后,进入EViews主窗口(如图1-3所示)。
图1-3 EViews主窗口在主菜单上依次点击File/New/Workfile,即选择新建对象的类型为工作文件,将弹出一个对话框(如图1-4所示),由用户选择数据的时间频率(frequency)、起始期和终止期。
图1-4 工作文件对话框其中, Annual——年度 Monthly——月度Semi-annual——半年 Weekly——周Quarterly——季度 Daily——日Undated or irregular——非时序数据选择时间频率为Annual(年度),再分别点击起始期栏(Start date)和终止期栏(End date),输入相应的日前1985和1998。
eviews操作及案例-简版

■ 成本分析和预测
■ 蒙特卡罗模拟
■ 经济模型的估计和仿真 ■ 利率与外汇预测
EViews 引入了流行的对象概念,操作灵活简便,可采用多种操作方式进行各种计量分
析和统计分析,数据管理简单方便。其主要功能有:
(1)采用统一的方式管理数据,通过对象、视图和过程实现对数据的各种操作;
(2)输入、扩展和修改时间序列数据或截面数据,依据已有序列按任意复杂的公式生
实验七 ___________________________________________________________67
1
FuRretAlphlreorridrguehctpesrdordewsuitectrhivopenedrpbrmyioshEsiicbooitnneoodfmtewhtitreihccosoutIpynprsiteirgthumttiesosiowfonnSe.r.WUFE.
第一部分 EViews 基本操作
第一章 预 备 知识
一、什么是 EViews
EViews (Econometric Views)软件是 QMS(Quantitative Micro Software)公司开发的、基
于 Windows 平台下的应用软件,其前身是 DOS 操作系统下的 TSP 软件。EViews 具有现代
自 结合课程论文,自拟上机内容(不低于 定 10 学时上机)。
FuRretAlphlreorridrguehctpesrdordewsuitectrhivopenedrpbrmyioshEsiicbooitnneoodfmtewhtitreihccosoutIpynprsiteirgthumttiesosiowfonnSe.r.WUFE.
计量经济学经典eviews定义和诊断检验

计量经济学经典eviews 定义和诊断检验本章描述的每一检验过程包括假设检验的原假设定义。
检验指令输出包括一个或多个检验统计量样本值和它们的联合概率值(p 值)。
p 值说明在原假设为真的情况下,样本统计量绝对值的检验统计量大于或等于临界值的概率。
这样,低的p 值就拒绝原假设。
对每一检验都有不同假设和分布结果。
方程对象菜单的View 中给出三种检验类型选择来检验方程定义。
包括系数检验、残差检验和稳定性检验。
其他检验,如单位根检验(13章)、Granger 因果检验(8章)和Johansen 协整检验(19章)。
§15.1 系数检验一、Wald 检验——系数约束条件检验Wald 检验没有把原假设定义的系数限制加入回归,通过估计这一无限制回归来计算检验统计量。
Wald 统计量计算无约束估计量如何满足原假设下的约束。
如果约束为真,无约束估计量应接近于满足约束条件。
考虑一个线性回归模型:εβ+=X y 和一个线性约束:0:0=-r R H β,R 是一个已知的k q ⨯阶矩阵,r 是q 维向量。
Wald 统计量在0H 下服从渐近分布)(2q χ,可简写为: )())(()(112r Rb R X X R s r Rb W -'''-=--进一步假设误差ε独立同时服从正态分布,我们就有一确定的、有限的样本F-统计量q W k T u u q u u u u F /)/(/)~~(=-''-'= u~是约束回归的残差向量。
F 统计量比较有约束和没有约束计算出的残差平方和。
如果约束有效,这两个残差平方和差异很小,F 统计量值也应很小。
EViews 显示2χ和F 统计量以及相应的p 值。
假设Cobb-Douglas 生产函数估计形式如下:εβα+++=K L A Q log log log (1)Q 为产出增加量,K 为资本投入,L 为劳动力投入。
系数假设检验时,加入约束1=+βα。
计量经济模型建立和检验eviews操作技巧

1 做散点图 Quick/Graph 输入两个变量点击OK 选择Scatter做拟合优度图输出结果窗口点击Resids2 检验相关性从主菜单选择 Quick/Group Statistics/Correlations之后会弹出个对话框,在对话框选择你的目标序列如 y x1 x2 x3 输出结果如表格所示Y X1 X2Y 1.000000 0.964428 0.776150X1 0.964428 1.000000 0.754522X2 0.776150 0.754522 1.000000[size=+0][size=+0]3 [size=+0]F检验[size=+0][size=+0]ESS的自由度是k-1,RSS的自由度是n-k,其中n是样本容量,k是变量个数;[size=+0] 检验回归方程的F值与F(K-1,n-k)在显著性水平下(通常取0.05)的大小;[size=+0]若 F>F(K-1,K-n)则认为回归方程显著4 自相关(Residual test)[size=+0][size=+0] 残差散点图法可通过excel作图(从eviews resid中复制数据) [size=+0]如主要点分布在一三象限,说明存在正相关;如主要分布在二四象限,说明存在负相关。
[size=+0] [size=+0]解决办法:广义差分法 1)对原模型进行回归,求出如其等于0.6 2)生成新序列,即Genr y1=y-(1-0.6)/2*y(-1) Genr x1=x-(1-0.6)/2*x(-1) (-1)表示滞后一期 3)对新数列进行回归柯克兰内-奥长特两段法点击 quick/ estimate equation 在分析输出窗口中输入Y C X AR(1)5 [size=+0][size=+0]异方差性[size=+0]怀特法:在输出结果窗口点击view/residual tests/heter text 若TR的平方大于,则认为存在异方差,q为解释变量的个数。
Eviews检验小结

各种检验总结1、偏度:①序列的分布是对称的,S值为0;②正的S值意味着序列分布有长的右拖尾;③负的S值意味着序列分布有长的左拖尾。
2、峰度:①如果K 值大于3,分布的凸起程度大于正态分布;②如果K值小于3,序列分布相对于正态分布是平坦的。
3、正态性检验:Q-Q图:看QQ图上的点是否近似地在一条直线附近, 是的话近似于正态分布。
Jarque-Bera 检验:①如果P值很小,则拒绝原假设,X不服从正态分布;②如果P值大于0.05(0.1)接受原假设, X 服从正态分布。
输入数据用鼠标单击“Quick”,出现下拉菜单,单击“Empty Group”,出现“Group”窗口。
在数据表的第一列中键入y的数据,并将该序列名取为y;在第二、第三列中分别键入x1 和x2的数据,并分别取名为x1和x2。
回归分析用鼠标单击“Quick”,出现下拉菜单,单击“Estimate Equation”,在弹出对话框中键入y c x1 x2;在“Estimation Settings”栏中选择“Least Squares”(最小二乘法);点击“OK”,屏幕显示回归分析结果如表3-16所示。
回归检验1、拟合优度检验:R2 =0.864267说明,回归方程即上述样本需求函数的解释能力为86.4%,即所有解释变量能对该被解释变量变动的86.4%作出解释。
回归方程的拟合优度较好。
2、回归模型的总体显著性检验:从全部因素的总体影响看,α表示显著性水平(一般取5%,也可取10%根据题目而定)假设在5%显著性水平上,若F检验的P值小于0.05,说明所有解释变量对被解释变量的共同影响显著。
3、单个回归系数的显著性检验:从单个因素的影响看,在5%显著性水平上,查看各个解释变量的T检验值若大于2,一般表示该解释变量对被解释变量有显著影响。
但是,最主要是看解释变量的P检验值,若P值小于0.05则表示该解释变量对被解释变量有显著影响。
异方差检验:(1)判断1.图示法——残差的图示检验通过resid 与x的散布图判断,图形成喇叭状。
计量经济学EViews自相关检验及修正实验报告

自相关问题的检验与修正【实验目的与要求】熟练使用EViews软件进行计量分析,理解自相关的检验和估计的基本方法【实验准备】1.自相关的基本概念:若Cov(u i,u j)=E(u i uj)=0(i≠j)不成立,即线性回归模型扰动项的方差—协方差矩阵的非主对角线元素不全为零,则称为扰动项自相关,或序列相关(serial correlation)2.自相关的后果:(1)在扰动项自相关的情况下,尽管OLS估计量仍为无偏估计量,但不再具有最小方差的性质,即不是BLUE。
(2)OLS估计量的标准误差不再是真实标准误差的无偏估计量,使得在自相关的情况下,无法再信赖回归参数的置信区间或假设检验的结果。
3.检验自相关的基本方法:残差检验、D.W检验、Q检验4.自相关的修正方法:广义差分法。
【实验内容】1.利用实验数据建立实际有效汇率REER对名义有效汇率NEER的一元回归模型,根据残差检验、D.W 检验、Q检验判别是否存在自相关。
2.利用实验数据,建立中国出口EX对中国进口IM的一元回归模型,根据残差检验、D.W检验、Q 检验判别是否存在自相关。
3.如果检验结果为存在自相关,根据残差检验和D.W检验估计一阶自相关系数。
4.根据估计出的一阶自相关系数,利用广义差分法估计模型。
5.对利用广义差分法估计得到的模型,根据残差检验、D.W检验、Q检验判别是否存在自相关。
6.对实际有效汇率REER对名义有效汇率NEER和中国出口EX对中国进口IM的一元回归模型,根据残差检验和Q检验判别是否存在高阶自相关。
7.如果检验结果为存在高阶自相关,根据残差检验估计高阶自相关系数。
8.根据估计出的高阶自相关系数,利用广义差分法估计模型。
9.对利用广义差分法估计得到的模型,根据残差检验和Q检验判别是否存在高阶自相关。
10.对在同样数据基础上得到的不同模型进行比较分析。
以下实验数据为1980-2003年人民币名义有效汇率(NEER)和实际有效汇率(REER)的数据(来源于国际货币基金组织出版的国际金融统计(IFS))和1982-2002年中国出口(EX)和进口(IM)(单位:亿美元)的数据(来源于中国商务部网站)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业1
我们有1978-2007年我国财政收入,国内生产总值,财政支出和商品零售价格指数的年度数据。
请用Eview 进行回归分析。
(1) 根据回归结果分析模型的经济意义(包含模型的显着性,拟合优度,系数
的显着性,系数的经济意义) 建立模型,做OLS 估计,得结果图一,列表如下:
4
3283175.57898859.0003271.0558.6399X X X Y ++--=∧
)0636.20)(065848.0)(012559.0)(836.2132(SE )882456.2)(65061.13)(260476.0-)(000492.3-(t =
997046.02=R 996705.02=R 845.2924=F
模型整体显着性较高(F 检验十分显着),可决系数2
R 和调整的可决系数较大,即样本回归方程对样本观测值拟合较好。
t 检验显示2X 的系数不显着(p 值>,不能拒绝β=0的原假设),3
X 和4X 的系数显着(p 值<,拒
绝β=0的原假设)。
从模型的经济意义来看,财政支出、商品零售价格指数与财政收入成正相关,国内生产总值与财政收入成负相关,不符合客观经济规律,可能与模型变量的选取有关。
考虑对模型进行对数变换,结果为图二。
432ln 128427.1ln 631090.0ln 448496.0946444.6ln X X X Y +++-=∧
)610249.0)(160929.0)(141418.0)(853146.2(SE
)849127.1)(921549.3)(171412.3)(434662.2(t -=
987673.02=R 986251.02=R 3969.694=F
对数变换后模型整体显着性较高(F 检验十分显着,p 值=<<),可决系数2
R
和调整的可决系数略有下降,模型可解释%的因变量变化。
t 检验显示4ln X 的系数不显着(p 值=>,不能拒绝β=0的原假设),2ln X 和3
ln X 的系数显
着(p 值<,拒绝β=0的原假设)。
从模型的经济意义来看,国内生产总值、财政支出、商品零售价格指数与财政收入均成正相关,符合客观经济规律。
在其他条件不变的情况下,国内生产总值每增加1%,财政收入平均增加%;在其他条件不变的情况下,财政支出每增加1%,财政收入平均增加%。
(2) 分别用F 检验,Wald, LR, LM 检验检验: “财政收入和商品零售价格指
数的边际效应之合为1”是否成立。
(要求:清将必要的Eviews 输出结果放在作业中,并做必要的解释) Wald 检验:
在限制条件中输入c(3)+c(4)=1,得出的结果图三,t 检验F 检验卡方检验p 值均小于,拒绝原假设,即认为财政支出与商品零售价格指数之和为一不成立。
F 检验:
受限条件为143=+ββ,回归模型为4433221X X X y ββββ+++=∧
可得受限模型为)
(4332214--X X X X y βββ++=∧
对受限模型进行OLS 估计,结果见表4.可得14599615=R RSS ,而无约束模型的11076606=U RSS ,又4,30,1===k n q ,代入F 检验统计量:
26952.8)
/(q
/)(=--=
k n RSS RSS RSS F U U R
37.3)26,2(05.0=>F F ,拒绝原假设,即认为财政支出与商品零售价格指数之
和为一不成立。
似然比LR 检验:
受限模型-238.9978likelihood log =,无约束模型8554.234-ood loglikelih =,代入2848.89978.2388554.234-2=+=)(LR
LR 统计量服从卡方分布,查表得841.31205
.0=)(χ,因此拒绝原假设,认为财政支出与商品零售价格指数之和为一不成立。
拉格朗日乘数LM 检验:
检验统计量2n R LM =,服从卡方分布。
将受限模型残差与所有自变量做回归,结果如图五。
241308.02=R
则841.3)1(23924.7241308.0*302
05.0=>==χLM ,拒绝原假设,
认为财政支出与商品零售价格指数之和为一不成立。
附录
图一
图二
图三
图四
图五。