七年级数学《平行线及其判定》学案
七年级数学下册《平行线的判定》教案、教学设计

1.提高观察能力,学会从几何图形中发现规律,总结性质。
2.培养逻辑思维能力,学会运用已知条件推导出结论。
3.学会运用画图、列表等方法整理、分析问题,提高解决问题的策略。
4.学会与同学合作交流,分享学习心得,提高合作能力。
(三)情感态度与价值观
1.培养学生严谨、认真的学习态度,对待数学问题要有耐心和毅力。
1.必做题:
a.请从生活中找到三个平行线的例子,并简要说明其应用。
b.根ቤተ መጻሕፍቲ ባይዱ平行线的判定方法,完成以下练习题:
-判断以下直线是否平行,并说明理由:
① a ∥ b, b ∥ c,求证:a ∥ c。
②在ΔABC中,AB ∥ CD,求证:∠BAC = ∠DCE。
-填空题:
①如果两条直线上的同位角相等,那么这两条直线()。
3.作业完成后,请认真检查,确保答案正确,提高作业质量。
4.作业提交时间:下节课前。
三、教学重难点和教学设想
(一)教学重点
1.理解并掌握平行线的定义及判定方法,包括同位角相等、内错角相等、同旁内角互补。
2.能够运用直尺、圆规等工具准确画出平行线。
3.熟练运用平行线的性质解决实际问题。
(二)教学难点
1.对平行线判定方法的灵活运用,尤其是同位角、内错角、同旁内角在实际问题中的应用。
2.画平行线时,学生对工具的使用不够熟练,需要加强实践操作。
1.设计具有层次性的练习题,让学生运用平行线的判定方法解题。
2.练习题包括:
a.判断题:判断哪些直线是平行线,并说明理由。
b.填空题:补充完整平行线的判定条件。
c.应用题:运用平行线性质解决实际问题。
3.学生独立完成练习题,教师巡回指导,解答学生疑问。
第9课时 《平行线及其判定》复习学案

第9课时《平行线及其判定》复习学案1、平行线:在同一平面内,的两条直线叫做平行线。
2、在同一平面内,两条直线的位关系: .3、判断正误并改错:①、两条直线不相交就平行,不平行就相交;②、在同一平面内,两条线段不相交就平行;③、两条直线的位置关系有:相交、垂直、平行.4、平行公理:经过直线有且只有与这条直线平行。
推论:如果两条直线都和平行,那么这两条直线。
简写为:5、同位角的图形特征,可用字母“”来体现;内错角的图形特征,可用字母“”来体现;同旁内角的图形特征,可用字母“”来体现;指出下图中所有的同位角、内错角、同旁内角。
同位角有:内错角有:同旁内角有:6、平行线的判定公理及定理(1),两直线平行;格式:(2),两直线平行;格式:(3),两直线平行;格式:(4),两直线平行;格式:(5),两直线平行;格式:解题指导第2、3题,要想到“在同一平面内”与“空间内”两种情况下直线的位置关系图形特征必须熟记,在复杂图形中时要学会分离出题中涉及到的角、直线等,从而得到最基本的简单图形格式要与公理或定理相一致。
AB C DEA 、1个B 、2个C 、3个D 、4个 7、如图,判断DE ∥AC 的条件有哪些?依据是什么?解:由 = ,可得DE ∥AC ,理由是: 由 = ,可得DE ∥AC ,理由是:由 + =1800,可得DE ∥AC , 理由是:由 + =1800,可得DE ∥AC , 理由是:8、如图,下列推理中正确的有〔 〕① ∵∠1=∠2,∴BC ∥AD ;② ∵∠2=∠3,∴AB ∥CD ;③ ∵∠BCD+∠ADC=1800,∴BC ∥AD ;④∵∠BCD+∠ADC=1800,∴A B ∥CD.9、如图,已知AC ⊥AE,BD ⊥BF, ∠1=∠2,AE 与BF 平行吗?为什么?首先分解出DE 、AC ,这是两条平行线,要判定两线平行,再分解出一条与它们相交的线,从而找出相对应的同位角、内错角、同旁内角。
七年级数学下册《平行线的判断》教案、教学设计

4.教师进一步提问:“除了铁轨,你们还在生活中见过哪些平行线的例子?”引导学生关注平行线在生活中的应用,激发学生的学习兴趣。
(二)讲授新知,500字
1.教师通过几何画板或实物展示,向学生介绍平行线的判定方法,如同位角相等、内错角相等、同旁内角互补等。
2.教师引导学生通过观察和验证,理解这些判定方法的原理。
3.教师举例说明平பைடு நூலகம்线在实际问题中的应用,如楼梯扶手、书桌抽屉等,帮助学生建立平行线与生活的联系。
4.教师讲解平行线的性质,如平行线之间的距离处处相等,并引导学生通过实际操作,验证这些性质。
(三)学生小组讨论,500字
1.教师将学生分成若干小组,每组发放一张任务卡,上面有关于平行线判定方法和性质的探究问题。
3.小组合作任务:
以小组为单位,完成以下任务:
(1)讨论平行线判定方法在实际问题中的应用,给出至少三个例子;
(2)分析平行线性质在生活中的应用,并以图文并茂的形式展示;
(3)总结本节课的学习心得,为下一节课做好准备。
作业要求:
1.认真完成作业,书写工整,保持作业整洁;
2.对于选做题,可根据自己的兴趣和能力选择完成;
七年级数学下册《平行线的判断》教案、教学设计
一、教学目标
(一)知识与技能
1.理解平行线的定义,掌握平行线的基本性质,如:同位角相等、内错角相等、同旁内角互补等;
2.学会使用直尺和圆规画出平行线,掌握平行线的判定方法,如:同位角相等、内错角相等、同旁内角互补的定理;
3.能够运用平行线的性质和判定方法解决实际问题,提高解决问题的能力;
三、教学重难点和教学设想
初一数学平行线及其判定教案

教案初一数学平行线及其判定教学目标:1. 让学生理解平行线的概念和性质。
2. 学生能够运用平行线的判定方法来判断两条直线是否平行。
3. 培养学生的观察力、思考力和推理能力。
教学重点:1. 平行线的概念和性质。
2. 平行线的判定方法。
教学难点:1. 平行线的判定方法的理解和应用。
教学准备:1. 教学课件或黑板。
2. 直尺、圆规等绘图工具。
3. 练习题。
教学过程:一、导入1. 引导学生观察教室里的直线,如黑板边缘、窗户边缘等,让学生发现平行线的存在。
二、新课导入1. 通过课件或黑板,展示平行线的性质,如同位角相等、内错角相等、同旁内角互补等。
2. 通过实例,让学生理解平行线的性质,并引导学生运用这些性质来解决实际问题。
三、平行线的判定1. 教师讲解平行线的判定方法,如同位角相等、内错角相等、同旁内角互补等。
2. 通过实例,让学生运用判定方法来判断两条直线是否平行。
3. 学生练习,教师巡回指导,解答学生的疑问。
四、巩固练习1. 教师出示练习题,让学生独立完成。
2. 教师选取部分学生的答案进行讲解,解答学生的疑问。
五、课堂小结2. 学生分享自己的学习心得和收获。
六、作业布置1. 教师布置适量的作业,让学生巩固所学知识。
2. 鼓励学生运用所学知识解决实际问题。
教学反思:本节课通过观察、讲解、练习等方式,让学生掌握了平行线的概念、性质和判定方法。
在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习效果。
同时,要注重培养学生的观察力、思考力和推理能力,提高学生的数学素养。
教案初一数学因式分解教案教学目标:1. 让学生理解因式分解的概念和意义。
2. 学生能够运用因式分解的方法来解决实际问题。
3. 培养学生的观察力、思考力和推理能力。
教学重点:1. 因式分解的概念和意义。
2. 因式分解的方法。
教学难点:1. 因式分解的方法的理解和应用。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入1. 引导学生回顾整式的乘法,让学生发现乘法和因式分解的关系。
七年级数学下册第章相交线与平行线平行线及其判定平行线的判定导学案新人教

5.2.2平行线的判定德育目标:观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,在独立思考和小组交流中学习。
学习目标:1.知道用同旁内角互补来判定两直线平行2.能运用三种判定方法对两条直线的位置关系进行判定学习重点:同旁内角互补,两直线平行学习难点:如何运用各种判定方法对两条直线的位置关系进行判定学习过程: 一、课堂引入:(知识复习) 如果∠2+∠4=180°,能得出a ∥b 吗?为什么? 二、自学教材 学生自学课本P13判定方法31.平行线的判定方法3是 , 简单说成: 。
试用几何语言表示判定方法3∵∴2.自学课本P14探究还能利用其它方法说明b ∥c 吗?辅导教师:帮助没有想到的同学,引导他分析3.到目前为止,判定两直线平行的方法有哪几种?① ;② ;③ ;④ ;⑤ ;三、自学例题例、在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?四、当堂练习。
(学生活动:先进行小组讨论,然后独立完成,再进行小组交流和评价)(A 组)1.在下列给出的条件中,不能判定AB ∥DF 的是( )A. ∠A+∠2=180°B. ∠A=∠3C. ∠1=∠4D. ∠1=∠A2.如图,点E 在CD 上,点F 在BA 上,G 是AD 延长线上一点.(1)若∠A=∠1,则可判断_______∥_______,因为________ (2)若∠1=∠_________,则可判断AG∥BC,因为_________ (3)若∠2+∠________=180°,则可判断CD∥AB,因为____________G F E 21D C B _G _H _4 _F _E _2 _1 _D _C _B _A _3(B 组)3.根据题意,填空: 如图,因为∠ADE=∠DEF ( 已 知 ) 所以______∥______ ( )又∠EFC+∠C=180°(已知) 所以EF ∥______ ( )所以______∥______ ( )辅导教师:帮助学生进行逻辑思维的培养,了解因果之间的关系,熟悉几何语言的应用。
2022年初中数学《平行线的判定》导学案(推荐)

5.2 平行线及其判定5.2.2 平行线的判定一、新课导入1.导入课题:上节课我们学习了平行线的概念和画法,这节课我们来研究如何判定两条直线是不是平行线〔板书课题〕.2.学习目标:〔1〕学会并记住平行线的判定方法1、2、3.〔2〕能运用平行线的判定方法进行简单的推理论证.3.学习重、难点:重点:平行线的判定方法1、2、3.难点:运用平行线的判定方法进行简单的推理论证.二、分层学习1.自学指导:〔1〕自学内容:课本P12至P13的内容.〔2〕自学时间:10分钟.〔3〕自学要求:阅读教材,重点处做好圈点,遇到疑难相互研讨.〔4〕自学参考提纲:①12“思考〞中用直尺和三角尺画平行线示意图,可以发现,在画平行线时,三角尺在移动时紧靠直尺,并且三角尺的角的大小不变,又在移动前、后,三角尺的角恰好是直线AB、CD被EF所截形成的一对同位角,这说明:如果∠DEF=∠BGF,那么AB∥CD.b.这一事实揭示的就是平行线的判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,简称为同位角相等,两直线平行.用符号语言表述是:如图1,假设∠1=∠2,那么a∥b.c.在课本图5.2-7中,你能说出木工用图中的角尺画平行线的道理吗?②a.在图1中,∠2与∠3是一对内错角.∠3=∠2,能得到直线a∥b吗?分析:假设能由∠3=∠2转化为∠1=∠2,那么由判定方法1,就可得a∥b,你能写出推理过程吗?②可得到平行线的判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简称为内错角相等,两直线平行.③a.在图1中,∠2与∠4是一对同旁内角.∠2+∠4=180°,能得到直线a∥b吗?分析:假设能由∠2+∠4=180°转化为∠1=∠2〔或∠3=∠2〕,那么由判定方法1〔或判定方法2〕,就可得a∥b,你能写出推理过程吗?②可得到平行线的判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简称为同旁内角互补,两直线平行.2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:教师巡视课堂,关注学生在自学中遇到的疑难问题.②差异指导:对个别学习有困难的学生进行点拨引导.〔2〕生助生:小组相互交流学习,纠正认知偏差.4.强化:〔1〕判定方法1、2、3及其几何表述.〔2〕练习:课本P15“复习稳固〞的第1、2题.1.自学指导:〔1〕自学内容:课本P14例题.〔2〕自学时间:4分钟.〔3〕自学要求:阅读教材,重点处做好圈点,有疑点处做上记号.〔4〕自学参考提纲:①仔细体会,揣摩例题的几何推理过程,你能仿照它用别的方法说明b∥c 吗?②本例的结论也可作为平行线的一种判定方法,简述为:在同一平面内,垂直于同一条直线的两直线平行.③如图2,BE是AB的延长线.∠CBE=∠A可以判定哪两条直线平行?根据是什么?答案:BC∥AD.根据是同位角相等,两直线平行.∠CBE=∠C可以判定哪两条直线平行?根据是什么?答案:AB∥CD.根据是内错角相等,两直线平行.④如图3,这是小明同学自己制作的英语抄写纸的一局部,其中的横线互相平行吗?你有多少种判别方法?答案:平行.理由不唯一.2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:关注学生完成自学参考提纲的进度、存在的问题及疑点.②差异指导:对个别学习有困难或认知缺乏的学生进行点拨引导.〔2〕生助生:小组内学生相互交流,取长补短.4.强化:〔1〕判断两条直线平行的方法:①平行公理的推论:如果两条直线都与第三条直线平行,这两条直线也互相平行.②平行线判定方法1,即同位角相等,两直线平行.③平行线判定方法2,即内错角相等,两直线平行.④平行线判定方法3,即同旁内角互补,两直线平行.⑤在同一平面内,垂直于同一条直线的两条直线互相平行.〔2〕练习:课本P14“练习〞第2题.三、评价1.学生学习的自我评价:各小组针对学习收获和存在的困惑进行总结交流.2.教师对学生的评价:〔1〕表现性评价:对学生在学习过程中的态度、方法和成效进行点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:本节课通过“问题情境—合作探究—建立模型—求解—应用〞的根本过程,使学生体会到了数学知识之间的内在联系;通过对问题的探究,获得了一些研究问题的方法和经验;开展了思维能力,加深了对相关知识的理解,通过获得成功的体验和克服困难的经历,增强了学生学习数学、应用数学的自信心.(时间:12分钟总分值:100分)一、根底稳固〔70分〕1.〔20分〕如图,直线a,b,c被直线l所截,量得∠1=∠2=∠3.〔1〕假设∠1=∠2,那么a∥b,理由是同位角相等,两直线平行.〔2〕假设∠1=∠3,那么a∥c,理由是内错角相等,两直线平行.〔3〕直线a,b,c互相平行吗?为什么?解:平行,∵b∥a,c∥a,∴b∥c,∴a∥b∥c.第1题图第2题图第3题图第4题图2.(10分)如图,根据图中所给条件:〔1〕互相平行的直线有a∥b,c∥d;〔2〕互相垂直的直线有e⊥b,e⊥a.3.〔10分〕如图,如果∠3=∠7或∠4=∠8或∠2=∠6或∠1=∠5,那么a∥b,理由是同位角相等,两直线平行;如果∠5=∠3或∠2=∠8,那么a∥b,理由是内错角相等,两直线平行;如果∠2+∠5=180°或∠3+∠8=180°,那么a∥b,理由是同旁内角互补,两直线平行.4.〔10分〕如图,如果∠2=∠6,那么AD∥BC,如果∠3+∠4+∠5+∠6=180°, 那么AD∥BC;如果∠9 =∠DAB,那么AD∥BC;如果∠9=∠3+∠4,那么AB∥CD.5.〔20分〕如图,直线a,b被直线c所截,现给出以下四个条件:①∠1=∠5;②∠1=∠7;③∠4=∠7;④∠2+∠3=180°.其中能说明a∥b的条件序号为(A)A.①②B.①③C.①④D.③④二、综合应用〔20分〕6.如图,当∠1=∠3时,直线a,b平行吗?当∠2+∠3=180°时,直线a,b 平行吗?为什么?解:∵∠1=∠3,∠3=∠4,∴∠1=∠4,∴a∥b〔同位角相等,两直线平行〕.∵∠3=∠4,∠2=∠5,∠2+∠3=180°,∴∠4+∠5=180°,∴a∥b〔同旁内角互补,两直线平行〕.三、拓展延伸〔10分〕7.如下列图,直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,那么a与c平行吗?为什么?解:∵∠1=∠2,∴a∥b〔内错角相等,两直线平行〕.∵∠3+∠4=180°,∴b∥c〔同旁内角互补,两直线平行〕.又∵a∥b,∴a∥c〔如果两条直线都与第三条直线平行,那么这两条直线也互相平行〕.5.3.1 平行线的性质一、新课导入1.导入课题:利用同位角、内错角、同旁内角之间的关系可以判定两条直线平行.你还记得这些判定方法分别是如何表达的吗?反过来,如果两条直线平行,那么同位角、内错角、同旁内角又各有什么关系呢?这就是本节课我们所要研究的内容.〔板书课题〕2.学习目标:〔1〕能表达平行线的三条性质.〔2〕能运用平行线的三条性质进行简单的推理和计算.3.学习重、难点:重点:对平行线性质的理解及它们与平行线的判定之间的关系.难点:性质2和性质3的推理过程的逻辑表述.二、分层学习1.自学指导:〔1〕自学内容:课本P18的内容.〔2〕自学时间:8分钟.〔3〕自学要求:正确画图、测量、验证、归纳.〔4〕探究提纲:①画图:画两条平行线a∥b,再画一条截线c与直线a、b相交〔如图1所示〕.②测量:测量这些角的度数,把结果填入表内.③分析:∠1~∠8中,哪些是同位角?它们的度数之间有什么关系?答案:同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8,相等.④猜想:两条平行线被第三条直线截得的同位角有什么关系?⑤验证:如果改变截线的位置,你的猜想还成立吗?⑥归纳:a.你能用文字语言表述你发现的结论吗?b.你还能用符号语言表述该结论吗?2.自学:学生按探究提纲进行研讨式学习.3.助学:〔1〕师助生:①明了学情:了解学生围绕探究提纲进行学习的情况及存在的困惑.②差异指导:对个别学生在学法和认知有偏差时进行点拨引导.〔2〕生助生:小组内学生之间相互交流,展示成果,查找并纠正不正确的认识或结论.4.强化:〔1〕平行线的性质1及其几何表述.〔2〕经历平行线的性质1的探究过程,体会研究几何图形的一般方法.1.自学指导:〔1〕自学内容:课本P19的内容.〔2〕自学时间:8分钟.〔3〕自学要求:阅读教材,重要的局部做好圈点,疑点处做好记号.〔4〕自学参考提纲:①与平行线的判定类似,你能由性质1推出两条平行线被第三条直线截得的内错角之间的关系吗?a.结合图2,你能写出推理过程吗?b.类比性质1,你能用文字语言表述上面的结论吗?答案:两直线平行,内错角相等.c.你还能用几何语言表述该结论吗?②a.类似地,可以推出平行线关于同旁内角的性质3:两直线平行,同旁内角互补,如图2,用几何语言表述为:∵a∥b,∴∠2+∠4=180°.b.试写出用性质1推出性质3的推理过程.c.试写出用性质2推出性质3的推理过程.③如图3,平行线AB、CD被直线AE所截.∠1=110°,可以知道∠2是多少度吗?为什么?答案:∠2=110°.两直线平行,内错角相等.∠1=110°,可以知道∠3是多少度吗?为什么?答案:∠3=110°.两直线平行,同位角相等.∠1=110°,可以知道∠4是多少度吗?为什么?答案:∠4=70°.两直线平行,同旁内角互补.④如图4,AB∥CD,AE∥CF,∠A=39°,∠C是多少度?为什么?答案:∠C=39°.∵AB∥CD,∴∠C=∠FGB,又∵AE∥CF,∴∠A=∠FGB,∴∠A=∠C=39°.2.自学:同学们可参照自学参考提纲进行自学.3.助学:〔1〕师助生:①明了学情:教师深入课堂巡视了解学生的自学情况,尤其是性质2和性质3的推理过程,看学生能否写出来.②差异指导:对局部感到困难的学生进行点拨引导.〔2〕生助生:小组内相互交流、研讨、订正.4.强化:〔1〕平行线的性质1、2、3及其几何表述.〔2〕判定与性质的区别:从角的关系得到两直线平行,就是判定;从直线平行得到角相等或互补,就是性质.〔3〕练习:课本P20“练习〞第1题和第2题.三、评价1.学生学习的自我评价:各小组组长对本组的学习成果和困惑进行总结交流.2.教师对学生的评价:〔1〕表现性评价:对学生在学习中的态度、方法、成效及缺乏进行点评.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:这节课比较成功的地方是:①对教学的方式进行了一定的尝试,注重学生的分析能力,启发学生用不同方法解决问题.②尽量锻炼学生使用标准性的几何语言.缺乏的是师生之间的互动配合和默契程度有待加强.(时间:12分钟总分值:100分)一、根底稳固〔60分〕1.〔10分〕如图,由AB∥CD可以得到〔C〕A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4第1题图第2题图2.〔10分〕如图,如果AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=〔C〕A.180°B.270°C.360°D.540°3.〔10分〕如图,一条公路两次转弯后,和原来的方向相同,那么如果第一次拐的角是76°,那么第二次拐的角是76度,根据是两直线平行,内错角相等.4.〔10分〕如图,要在公路的两侧铺设平行管道,如果公路一侧铺设的管道与纵向联通管道的角度为120°,那么,为了使管道对接,另一侧应以60°角度铺设纵向联通管道,根据是两直线平行,同旁内角互补.第3题图第4题图第5题图5.〔20分〕如图,a∥b,c、d是截线,假设∠1=80°,∠5=70°,求∠2、∠3、∠4各是多少度?为什么?解:∵a∥b,∴∠2=∠1=80°〔两直线平行,内错角相等〕,∠3=180°-∠5=110°(两直线平行,同旁内角互补).∵∠4=∠3(两直线平行,同位角相等),∴∠4=110°.二、综合运用〔20分〕6.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,∠1=45°,∠2=122°,求图中其他角的度数.解:由题意得:∠3=∠1=45°,∠1+∠7=180°,∴∠7=180°-∠1=135°.∴∠8=∠7=135°.又∠4=∠2=122°,∠2+∠5=180°,∴∠5=180°-∠2=58°.∴∠6=∠5=58°.三、拓展延伸〔20分〕7.如图,直线DE经过点A,DE∥BC,∠B=44°,∠C=57°.〔1〕∠DAB等于多少度?为什么?〔2〕∠EAC等于多少度?为什么?〔3〕∠BAC等于多少度?〔4〕由〔1〕、〔2〕、〔3〕的结果,你能说明为什么三角形的内角和是180°吗?解:〔1〕∵DE∥BC,∴∠DAB=∠B=44°〔两直线平行,内错角相等〕.〔2〕∵DE∥BC,∴∠EAC=∠C=57°(两直线平行,内错角相等).〔3〕∵∠DAB+∠BAC+∠EAC=180°,∴∠BAC=180°-∠DAB-∠EAC=180°-44°-57°=79°.。
七年级数学上册《平行线的判定》教案、教学设计

2.实践应用:
(1)观察生活中有哪些平行线的例子,用手机或相机拍照,并简要说明其中的平行线判定方法。
(2)结合实际情境,设计一道平行线相关的问题,并给出解答。
3.小组合作:
以小组为单位,共同完成以下任务:
(1)讨论平行线在实际生活中的应用,形成一份调查报告。
1.注重学生的认知规律,从简单到复杂,由易到难,逐步引导学生掌握平行线的判定方法。
2.考虑到学生的个体差异,因材施教,给予不同层次的学生适当的关注和指导。
3.激发学生的学习兴趣,通过生动有趣的生活实例,提高学生参与课堂的积极性和主动性。
4.培养学生的合作意识,组织学生进行小组讨论,使学生在互动交流中共同提高。
四、教学内容与过程
(一)导入新课
1.教学活动设计
利用多媒体展示生活中常见的平行线现象,如铁轨、电线、书本的边缘等,引导学生观察并思考这些现象背后的数学原理。
2.提出问题
提问:“同学们,你们在生活中还见到过哪些平行线的例子?这些平行线有什么共同的特点?”通过问题引导学生关注平行线的概念。
3.引入新课
在学生回答问题的基础上,教师总结:“平行线在我们的生活中无处不在,今天我们就来学习如何判定两条直线是否平行。”
作业评价:
1.作业完成情况将作为学生课堂表现评价的一部分,鼓励学生认真完成作业,提高自身能力。
2.教师将对作业进行批改,并及时给予反馈,帮助学生查漏补缺,提高学习效果。
3.对于表现优秀的学生,教师将给予表扬和奖励,激发学生的学习积极性。
请同学们认真对待本次作业,通过作业的完成,提高自己的数学素养,为今后的学习打下坚实基础。
人教版七年级数学教案:5.2平行线及其判定

在今天的课堂中,我尝试了多种教学方法,希望让学生更好地理解和掌握平行线及其判定的知识。首先,通过日常生活中的实例导入新课,我发现同学们对此产生了浓厚的兴趣,这为后续的学习奠定了良好的基础。但在讲授过程中,我也发角、内错角等概念上存在一定的困惑。
此外,在学生小组讨论环节,我注意到有些小组在讨论主题上稍显偏离,没有完全聚焦在平行线的实际应用上。在今后的教学中,我应更加注重引导学生围绕主题展开讨论,提高讨论的针对性和实效性。
在总结回顾环节,我发现同学们对本节课的知识点有了较为全面的掌握,但仍有个别同学存在疑问。为此,我计划在课后进行个别辅导,帮助他们消除困惑,确保每个人都能跟上教学进度。
2.教学难点
a.平行线判定方法的推理过程;
-对于同位角相等、内错角相等、同旁内角互补等判定方法,学生可能难以理解其中的逻辑关系,需要教师通过具体实例和图示进行详细讲解。
b.画平行线的实际操作;
-在实际操作过程中,学生可能会出现画线不准确、方法不熟练等问题,需要教师耐心指导,反复练习,帮助学生掌握正确的方法。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的基本概念、判定方法和在实际中的应用。通过实践活动和小组讨论,我们加深了对平行线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调平行线的判定方法和画法这两个重点。对于难点部分,如同位角、内错角等概念,我会通过图示和实际操作来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线及其判定
一、实际应用型
例1 一个合格的弯形流水管道,经过两次拐弯后保持平行,但水流方向相反,问这两次拐弯的弯角有何关系?
【分析】本题对我们来说,难在没有给出图形,但这
是一道来原于生活的题,根据题意我们可以想象出如图1
所示的图形。
解:由题意可知要使AB ∥CD ,
所以应满足 ∠B 与∠C 互补,(同旁内角互补,两直线平行,)
所以 两次拐弯的拐角互补。
例2(烟台市中考试题)如图2,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A 是1200,第二次拐的角∠B 是1500,第三次
拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路
平行,则∠C 是( )
A .1200;
B .1300;
C .1400;
D .1500.
解析:设公路上第一次拐弯之前的道路起点为E ,第三次拐弯之后的道路终点为F ,过点B 作BD//AE.则∠DBA =∠A =1200,∠DBC = ∠ABC -
∠DBA = 1500- 1200 =300.
又因为AE//CF ,所以CF//BD ,则∠C = 1800 - ∠DBC = 1800 -300 =1500.
故选D .
二、探索开放型
例3(浙江省台州市中考题)如图3,直线a ,b 均与c 相交,
形成∠1,∠2…,∠8共八个角,请填上你认为适当的一个条
件: ,使得a ∥b .
【分析】本题的结论已经给定,需要我们补充条件,使结论
成立,运用的是“执果索因”的逆向思维模式。
解:运用平行线的判定定理,可以得到很多种填法。
利用“同位角相等,两直线平行”可知,所填条件可以是∠1=∠5,或∠2=∠6,或∠3=∠7,或∠4=∠8;利用“内错角相等,两直线平行”可知,所填条件可以是∠3=∠6,或∠4=∠5;利用“同旁内角互补,两直线平行”,所填条件可以是∠3+∠5=1800,或∠4+∠6=1800;结 A B C D 图 1 图3
E
A
合“对顶角相等”等性质可知,所填条件还可以∠1=∠8,或∠2=∠7,或∠3=∠6,或∠4=∠5;或∠3+∠8=1800,或∠4+∠7=1800;或∠2+∠8=1800,或∠1+∠7=1800
;等等。
三、动手操作型
例4 如图4,有一张不规则的纸,你能不用任何工具,在纸
上折出两条平行的折痕吗?若能,请说出你的方法及理由。
解析:可以。
如图5,先将纸折一次①,再将纸沿折痕对折
②,再沿着折痕对折一次③,即可得到平行的折痕AB ∥CD 。
理由:在同一平面内,如果两条直线都垂直于同一直线,那么这两直线平行。
四、学科渗透型
例5 如图6所示,潜望镜的两个镜子是平行放置的,光线经过镜子反射后,有∠1=∠3,∠4=∠6,请你解释为什么进入潜望镜的光线和离开潜望
镜的光线是平行的?
【分析】本题先从平行线的性质:“两直线平行,内错角
相等”出发,利用已知条件可得出∠2=∠5,再利用平行线
的判定:“内错角相等,两直线平行”即可。
解:因为镜子是平行的,所以可以看作是两条平行线,根据
两直线平行,内错角相等,所以∠4=∠3,又因为∠1=∠3,∠4=∠6,所以∠1=∠3=∠4=∠6,所以∠2=180°-∠1-∠3=180°-∠4-∠6=∠5,根据内错角相等,两直线平行,所以进入潜望镜的光线和离开潜望镜的光线是平行的。
图
4。