(完整版)北师大版七年级下三角形测试题

合集下载

北师大版七年级下册数学第四章 三角形含答案(综合题)

北师大版七年级下册数学第四章 三角形含答案(综合题)

北师大版七年级下册数学第四章三角形含答案一、单选题(共15题,共计45分)1、如图,一定全等的两个三角形是()A.①与②B.①与③C.②与③D.以上答案都不对2、如图所示,一扇窗户打开后,用窗钩AB即可固定,这里所用的几何原理是()A.两点之间线段最短B.垂线段最短.C.两定确定一条直线D.三角形具有稳定性3、如图,△ABC≌△AED,点 E 在线段 BC 上,∠1=48º,则∠AED 的度数是()A.66°B.65°C.62°D.60°4、下列命题中,真命题是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等腰直角三角形都全等5、如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=;②四边形CGMH是矩形;③△EGM≌△MHA;④S△ABC +S△CDE≥S△ACE;⑤图中的相似三角形有10对.正确结论是()A.①②③④B.①②③⑤C.①③④D.①③⑤6、下列条件中,不能判定△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.∠A ∠B= ∠CC.∠B=50°,∠C=40°D.a=5,b=12,c=137、以下列各组线段长为边,能组成三角形的是( )A.1cm,2cm,3cmB.2cm,3cm,8cmC.5cm,12cm,6cm D.4cm,6cm,9cm8、如图,在等边中,,点在上,且,点是上一动点,连结,将线段绕点逆时针旋转得到线段.要使点恰好落在上,则的长是()A. B. C. D.9、若△ABC∽△A'B'C',∠A=30°,∠C=110°,则∠B'的度数为()A.30°B.50°C.40°D.70°10、如图,中,于D,下列条件中:① ;②;③ ;④ ;⑤,⑥ ,一定能确定为直角三角形的条件的个数是()A.1B.2C.3D.411、如图,,,,,则A.27°B.54°C.30°D.55°12、如图,在△ABC中,∠C=40 ° ,按图中虚线将∠C剪去后,∠1+∠2等于().A.140°B.210°C.220°D.320°13、已知m是整数,以4m+5、2m-1、20-m这三个数作为同一个三角形三边的长,则满足条件的三角形个数有()A.0个B.1个C.2个D.无数个14、如图,矩形ABCD中,AB=3,AD=9,点E在边AD上,AE=1,过E、D两点的圆的圆心O在边AD的上方,直线BO交AD于点F,作DG⊥BO,垂足为G.当△ABF与△DFG全等时,⊙O的半径为()A. B. C. D.15、如图所示,在中,,于,,则线段的长是()A.3B.4C.8D.1二、填空题(共10题,共计30分)16、下列关于两个三角形全等的说法:①面积相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和其中一个角的对边对应相等的两个三角形全等;④有两边和一个角对应相等的两个三角形全等;⑤腰相等的两个等腰三角形一定全等.其中说法正确的是________.(填写序号)17、如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠ADE=________°.18、如图,AB=AC,AD=AE,∠BAC=∠DAE,点D在线段BE上.若,∠2=30°,∠3=55°则∠1=________.19、已知等腰三角形的周长为20,腰长为x,则x的取值范围是________ .20、如图,中有6个条形方格图,图上由实线围成的图形是全等形的有哪几对________21、如图,△ABD与△AEC都是等边三角形,AB≠AC.下列结论中,正确的是________.①BE=CD;②∠BOD=60º;③△BOD∽△COE.22、已知,如图,AC=AE,∠1=∠2,AB=AD,若∠D=25°,则∠B的度数为________.23、若等腰三角形的两边长为3cm和7cm,则该等腰三角形的周长为________ cm.24、如图,在△ABC中,已知D,E,F分别为边BC,AD,CE的中点,且,则阴影部分的面积为________ cm2.25、三角形的一边是5,另一边是1,第三边如果是整数,则第三边是________.三、解答题(共5题,共计25分)26、如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.27、如图,△ABC中,∠ACB=90°,AC=6,BC=8。

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)1.下列各组长度的三条线段能组成三角形的是()A.1,2,3B.1,1,2C.1,2,2D.1,5,72.在△ABC中作AB边上的高,下图中不正确的是()A.B.C.D.3.若AD是△ABC的中线,则下列结论正确的是()A.AD⊥BC B.BD=CD C.∠BAD=∠CAD D.AD=BC 4.下列说法正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形5.如图,用尺规作已知角平分线,其根据是构造两个三角形全等,它所用到的判别方法是()A.SAS B.ASA C.AAS D.SSS6.如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是()A.SAS B.ASA C.AAS D.SSS7.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于点E,与CD相交于点F,DH⊥BC于H,交BE于G,有下列结论:①BH=DH;②BD=CD;③AD+CF=BD;④CE=BF.其中正确的是()A.①②B.①③C.①②③D.①②③④8.如图,在△ABC中,E、F分别是AD、CE边的中点,且S△BEF=2cm2,则S△ABC为()A.4 cm2B.6 cm2C.8 cm2D.10 cm29.如图所示,BE=3EC,D是线段AC的中点,BD和AE交于点F,已知△ABC的面积是7,求四边形DCEF的面积()A.1B.C.D.210.如图将一副三角板拼成如图所示的图形(∠D=30°,∠ABC=90°,∠DCE=90°,∠A=45°),BC交DE于点F,则∠DFC的度数是()A.75°B.105°C.135°D.125°11.下列说法中正确的是()A.两个面积相等的图形,一定是全等图形B.两个等边三角形是全等图形C.两个全等图形的面积一定相等D.若两个图形周长相等,则它们一定是全等图形12.如图,已知:在△AFD和△CEB,点A、E、F、C在同一直线上,在给出的下列条件中,①AE=CF,②∠D=∠B,③AD=CB,④DF∥BE,选出三个条件可以证明△AFD ≌△CEB的有()组.A.4B.3C.2D.113.如图,△ABC的两条中线AD、CE交于点G,联结BG并延长,交边AC于点F,那么下列结论不正确的是()A.AF=FC B.GF=BG C.AG=2GD D.EG=CE 14.如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=30°,则∠2的度数为()A.140°B.130°C.120°D.110°15.如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,添加下列条件,不能判定△EAB≌△BCD的是()A.EB=BD B.∠E+∠D=90°C.AC=AE+CD D.∠EBD=60°16.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF17.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=8,则四边形ABCD的面积为()A.32B.24C.40D.3618.如图,△ABC的中线BD、CE相交于点O,OF⊥BC,垂足为F,且AB=6,BC=5,AC=3,OF=2,则四边形ADOE的面积是()A.9B.6C.5D.319.要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加根木条才能固定.20.(1)线段AD是△ABC的角平分线,那么∠BAD=∠=∠.(2)线段AE是△ABC的中线,那么BE==BC.21.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE ⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.22.如图,BE平分∠ABC,CE平分∠ACD,∠A=60°,则∠E=.23.如图,已知∠1=∠2、AD=AB,若再增加一个条件不一定能使结论△ADE≌△ABC成立,则这个条件是.24.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法是利用了全等三角形对应角相等,图中判断三角形全等的依据是.25.如图,要测量河两岸相对两点A、B间的距离,先在过点B的AB的垂线上取两点C、D,使CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC 的理由是.26.如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:(1)Rt△ABF≌Rt△DCE;(2)OE=OF.27.如图,点B、F、C、E在同一条直线上,∠B=∠E,∠A=∠D,BF=CE.求证:△ABC≌△DEF.28.如图,在△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H,AE=BE.试说明:(1)△AEH≌△BEC.(2)AH=2BD.29.如图,△ABC中,BD是∠ABC的平分线,DE∥BC交AB于E,∠A=60°,∠BDC =100°.求∠BDE的度数.30.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,AB ∥DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.31.如图所示,已知△ABC中,∠B=∠C,AB=4厘米,BC=3厘米,点D为AB的中点.如果点P在线段BC上以每秒1厘米的速度由点B向点C运动,同时,点Q在线段CA上以每秒a厘米的速度由点C向点A运动,设运动时间为t(秒)(0≤t≤3).(1)用含t的式子表示PC的长度是;(2)若点P,Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P,Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?参考答案1.解:A.1+2=3,不能构成三角形,不合题意;B.1+1=2,不能构成三角形,不合题意;C..1+2>2,能构成三角形,符合题意;D.1+5<7,不能构成三角形,不合题意.故选:C.2.解:由题可得,过点C作AB的垂线段,垂足为H,则CH是BC边上的高,∴A、B、D选项正确,C选项错误.故选:C.3.解:∵AD是△ABC的中线,∴BD=DC,故选:B.4.解:A、一个钝角三角形不一定不是等腰三角形,一定不是等边三角形,故本选项错误;B、一个等腰三角形不一定是锐角三角形,或直角三角形,故本选项错误;C、一个直角三角形不一定不是等腰三角形,一定不是等边三角形,故本选项错误;D、一个等边三角形一定不是钝角三角形,也不是直角三角形,故本选项正确;故选:D.5.解:由画法得OC=OD,PC=PD,而OP=OP,所以△OCP≌△ODP(SSS),所以∠COP=∠DOP,即OP平分∠AOB.故选:D.6.解:如图,∠A、AB、∠B都可以测量,即他的依据是ASA.故选:B.7.解:∵DH⊥BC,∠ABC=45°,∴△BDH为等腰直角三角形,∴BH=DH,故①正确,∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故②正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC(ASA).∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故③正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=AC.又由(1)可知:BF=AC,∴CE=AC=BF;故④正确;故选:D.8.解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC,∴S△BCE=S△ABC,∵点F是CE的中点,∴S△BEF=S△BCE.∴S△ABC=8cm2故选:C.9.解:∵AD=DC,BE=3EC,∴可以假设S△ADF=S△DFC=x,S△EFC=y,则S△EFB=3y,则有,解得,∴四边形DCEF的面积=x+y=,故选:B.10.解:由题意得,∠ACB=45°,∠DEC=60°,∵∠DFC是△CFE的一个外角,∴∠DFC=∠ACB+∠DEC=105°,故选:B.11.解:全等的两个图形的面积、周长均相等,但是周长、面积相等的两个图形不一定全等.故选:C.12.解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵DF∥BE,∴∠DF A=∠BEC,∴若①②③为条件,不能证明△AFD≌△CEB,若①②④为条件,能证明△AFD≌△CEB(AAS),若①③④为条件,不能证明△AFD≌△CEB,若②③④为条件,能证明△AFD≌△CEB(AAS),故选:C.13.解:如图连接DE.∵△ABC的两条中线AD、CE交于点G,∴点G是△ABC的重心,∴DF也是△ABC的中线,∴AF=FC,故A不符合题意,∵BE=AE,BD=CD,∴DE∥AC,DE=AC,∴===,∴AG=2DG,EG=CE,故C,D不符合题意,故选:B.14.解:如图:∵m∥n,∠1=30°,∴∠3=∠1=30°.∵∠ACB=90°,∴∠4=∠ACB﹣∠3=90°﹣30°=60°,∴∠2=180°﹣∠4=180°﹣60°=120°.故选:C.15.解:∵∠A=∠C=90°,AB=CD,∴当添加EB=BD时,则可根据“HL”判定△EAB≌△BCD;当添加AE=BC,即AC=AE+CD,则可根据“SAS”判定△EAB≌△BCD;当添加∠ABE=∠D时,此时∠D+∠E=90°,∠EBD=90°,则可根据“SAS”判定△EAB≌△BCD,故选:D.16.解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.17.解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°,∵∠BAD=90°,∴∠BAM=∠DAN,在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN;∴△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;设AM=a,由勾股定理得:AC2=AM2+MC2,而AC=8;∴2a2=64,a2=32,故选:A.18.解:∵BD、CE均是△ABC的中线,∴S△BCD=S△ACE=S△ABC,∴S四边形ADOE+S△COD=S△BOC+S△COD,∴S四边形ADOE=S△BOC=5×2÷2=5.故选:C.19.解:如图,,要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加3根木条才能固定.故答案为:3.20.解:(1)线段AD是△ABC的角平分线,那么∠BAD=∠CAD=∠BAC.故答案为:CAD,BAC;(2)线段AE是△ABC的中线,那么BE=CE=BC.故答案为:CE,.21.解:∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.22.解:∵∠ACD=∠A+∠ABC,∴∠ECD=(∠A+∠ABC).又∵∠ECD=∠E+∠EBC,∴∠E+∠EBC=(∠A+∠ABC).∵BE平分∠ABC,∴∠EBC=∠ABC,∴∠ABC+∠E=(∠A+∠ABC),∴∠E=∠A,∵∠A=60°,∴∠E=30°.故答案为30°.23.解:增加的条件为DE=BC,理由:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,∵AD=AB,DE=BC,∴△ADE≌△ABC不一定成立,故答案为:DE=BC.24.解:由图可知,CM=CN,又OM=ON,∵在△MCO和△NCO中,∴△COM≌△CON(SSS),∴∠AOC=∠BOC,即OC是∠AOB的平分线.故答案为:SSS.25.解:∵AB⊥BD,ED⊥BD,∴∠ABD=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA).故答案为:ASA.26.证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形,在Rt△ABF和Rt△DCE中,,∴Rt△ABF≌Rt△DCE(HL);(2)∵Rt△ABF≌Rt△DCE(已证),∴∠AFB=∠DEC,∴OE=OF.27.证明:∵BF=EC∴BF+CF=EC+CF,∴BC=EF,∵∠B=∠E,∠A=∠D,∴180°﹣∠B﹣∠A=180°﹣∠E﹣∠D,即∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).28.解:(1)∵AD⊥BC,∴∠DAC+∠C=90°,∵BE⊥AC,∴∠EBC+∠C=90°,∴∠DAC=∠EBC,在△AEH与△BEC中,,∴△AEH≌△BEC(ASA);(2)∵△AEH≌△BEC,∴AH=BC,∵AB=AC,AD⊥BC,∴BC=2BD,∴AH=2BD.29.解:如图,∵∠BDC=∠A+∠ABD,∴∠ABD=∠BDC﹣∠A=100°﹣60°=40°∵BD平分∠ABC,∴∠DBC=∠ABD=40°,又∵DE∥BC,∴∠BDE=∠DBC=40°.30.(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中,∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.31.解:(1)PC=3﹣t.(2)△CPQ≌△BDP,理由如下:∵P、Q的运动速度相等,∴1秒后,CQ=BP=1,CP=BC﹣BP=3﹣1=2,∵D为AB的中点,∴BD=,∴CP=BD,在△CPQ和△BDP中,,∴△CPQ≌△BDP(SAS).(3)解:由(1)知,PC=3﹣t,BP=t,CQ=at,BD=2,∵∠C=∠B∵△BPD与△CQP全等,①当△CPQ≌△BDP时,BP=CQ,t=at,∵t≠0,∴a=1与P、Q的运动速度不相等矛盾,故舍去.②当△CPQ≌△BPD时,BP=CP,CQ=BD,∴t=3﹣t,at=2,t=a=.即点P、Q的运动速度不相等时,点Q的运动速度a为时,能够使△BPD与△CQP 全等。

北师大版数学七年级下册第4章《三角形》单元测试试题 附答案解析

北师大版数学七年级下册第4章《三角形》单元测试试题  附答案解析

北师大版七年级下册第4章《三角形》单元测试题(满分120分)班级:________姓名:________座位:________成绩:________一.选择题(共10小题,满分30分)1.一个三角形的两边长分别是2和4,则第三边的长可能是()A.1B.2C.4D.72.在△ABC中,作BC边上的高,以下作图正确的是()A.B.C.D.3.如图,已知BD=CD,则AD一定是△ABC的()A.角平分线B.高线C.中线D.无法确定4.如图,在△ABC中,点D在BC的延长线上,若∠A=60°,∠B=40°,则∠ACD的度数是()A.140°B.120°C.110°D.100°5.如图,在△ABC中,CD平分∠ACB,DE∥BC.已知∠A=74°,∠B=46°,则∠BDC 的度数为()A.104°B.106°C.134°D.136°6.如图,AB=AC,若要使△ABE≌△ACD.则添加的一个条件不能是()A.∠B=∠C B.∠ADC=∠AEB C.BD=CE D.BE=CD7.如图,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,如图所示的这种方法,是利用了三角形全等中的()A.SSS B.ASA C.AAS D.SAS8.小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等.其中正确的结论个数是()A.1B.2C.3D.49.如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD =42°,则∠BFD=()A.45°B.54°C.56°D.66°10.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()个.A.4B.5C.6D.7二.填空题(共6小题,满分24分)11.下列4个图形中,属于全等的2个图形是.(填序号)12.如图,某人将一块三角形玻璃打碎成两块,带块(填序号)能到玻璃店配一块完全一样的玻璃,用到的数学道理是.13.如图,Rt△ABC中,∠C=90°,∠B=25°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD 的度数是.14.如图,在△ABC中,AC=BC,过点A,B分别作过点C的直线的垂线AE,BF.若AE =CF=3,BF=4.5,则EF=.15.边长为整数、周长为20的三角形的个数为.16.如图,Rt△ABC中,∠BAC=90°,AB=6,AC=3,G是△ABC重心,则S△AGC=.三.解答题(共8小题,满分66分)17.如图,在一个三角形的一条边上取四个点,把这些点与这条边所对的顶点连接起来.问图中共有多少个三角形.请你通过与数线段或数角的问题进行类比来思考.18.如图,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.19.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.20.如图,已知B,D在线段AC上,且AD=CB,BF=DE,∠AED=∠CFB=90°求证:(1)△AED≌△CFB;(2)BE∥DF.21.如图,已知锐角△ABC,AB>BC.(1)尺规作图:求作△ABC的角平分线BD;(保留作图痕迹,不写作法)(2)点E在AB边上,当BE满足什么条件时?∠BED=∠C.并说明理由.22.如图,△ABC中,∠ACB=90°,D为AB上一点,过D点作AB垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.23.如图1,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO 和∠ABO的角平分线,BC延长线交OM于点G.(1)若∠MON=60°,则∠ACG=°;若∠MON=90°,则∠ACG=°;(2)若∠MON=n°.请求出∠ACG的度数;(用含n的代数式表示)(3)如图2,若∠MON=n°,过C作直线与AB交F.若CF∥OA时,求∠BGO﹣∠ACF的度数.(用含n的代数式表示)24.如图1所示,在Rt△ABC中,∠C=90°,点D是线段CA延长线上一点,且AD=AB,点F是线段AB上一点,连接DF,以DF为斜边作等腰Rt△DFE,连接EA,EA满足条件EA⊥AB.(1)若∠AEF=20°,∠ADE=50°,BC=2,求AB的长度;(2)求证:AE=AF+BC;(3)如图2,点F是线段BA延长线上一点,探究AE、AF、BC之间的数量关系,并证明你的结论.参考答案一.选择题(共10小题)1.【解答】解:设第三边的长为x,由题意得:4﹣2<x<4+2,2<x<6,故选:C.2.【解答】解:BC边上的高应从点A向BC引垂线,只有选项D符合条件,故选:D.3.【解答】解:由于BD=CD,则点D是边BC的中点,所以AD一定是△ABC的一条中线.故选:C.4.【解答】解:∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=100°,故选:D.5.【解答】解:∵∠A=74°,∠B=46°,∴∠ACB=60°,CD平分∠ACB,∴∠BCD=∠ACD=∠ACB=×60°=30°,∴∠BDC=180°﹣∠B﹣∠BCD=104°,故选:A.6.【解答】解:A、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;C、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;D、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;故选:D.7.【解答】解:观察图形发现:AC=DC,BC=BC,∠ACB=∠DCB,所以利用了三角形全等中的SAS,故选:D.8.【解答】解:①全等三角形的形状相同、大小相等,正确;②全等三角形的对应边相等、对应角相等,正确;③面积相等的两个三角形是全等图形,错误;④全等三角形的周长相等,正确.故选:C.9.【解答】解:∵AD是△ABC的高,∴∠ADB=90°,∵∠BAD=42°,∴∠ABD=180°﹣∠ADB﹣∠BAD=48°,∵BE是△ABC的角平分线,∴∠ABF=∠ABD=24°,∴∠BFD=∠BAD+∠ABF=42°+24°=66°,故选:D.10.【解答】解:∵△ABC的周长为22,△ABM的周长比△ACM的周长大2,∴2<BC<22﹣BC,解得2<BC<11,又∵△ABC的三边长均为整数,△ABM的周长比△ACM的周长大2,∴AC=为整数,∴BC边长为偶数,∴BC=4,6,8,10,故选:A.二.填空题(共6小题)11.【解答】解:根据全等三角形的判定(SAS)可知属于全等的2个图形是①③,故答案为:①③.12.【解答】解:第①块只保留了原三角形的一个角和部分边,根据这两块中的任一块不能配一块与原来完全一样的;第②块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带②去.故答案为:②,ASA.13.【解答】解:∵Rt△ABC中,∠C=90°,∠B=25°,∴∠CAB=90°﹣∠B=90°﹣25°=65°,由作图过程可知:MN是AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=25°,∴∠CAD=∠CAB﹣∠DAB=65°﹣25°=40°.答:∠CAD的度数是40°.故答案为:40°.14.【解答】解:∵过点A,B分别作过点C的直线的垂线AE,BF,∴∠AEC=∠CFB=90°,在Rt△AEC和Rt△CFB中,,∴Rt△AEC≌Rt△CFB(HL),∴EC=BF=4.5,∴EF=EC+CF=4.5+3=7.5,故答案为:7.5.15.【解答】解:边长为整数、周长为20的三角形分别是:(9,9,2)(8,8,4)(7,7,6)(6,6,8)(9,6,5)(9,7,4)(9,8,3)(8,7,5),共8个.故答案为:8.16.【解答】解:延长AG交BC于E.∵∠BAC=90°,AB=6,AC=3,∴S△ABC=•AB•AC=9,∵G是△ABC的重心,∴AG=2GE,BE=EC,∴S△AEC=×9=4.5,∴S△AGC=×S△AEC=3,故答案为3三.解答题(共8小题)17.【解答】解:如图所示,图中三角形的个数有△ABC,△ACD,△ADE,△AEF,△AFG,△ABD,△ABE,△ABF,△ABG,△ACE,△ACF,△ACG,△ADF,△ADG,△AEG.18.【解答】解:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF(SSS).19.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=2×3=6cm,BE=7×2=14cm,∵△ADC≌△CEB,∴EC=AD=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.20.【解答】证明(1)∵∠AED=∠CFB=90°,在Rt△AED和Rt△CFB中,∴Rt△AED≌Rt△CFB(HL).(2)∵△AED≌△CFB,∴∠BDE=∠DBF,在△DBE和△BDF中,∴△DBE≌△BDF(SAS),∴∠DBE=∠BDF,∴BE∥DF.21.【解答】解:(1)如图,线段BD即为所求.(2)结论:BE=BC.理由:∵BD平分∠ABC,∵BE=BC,BD=BD,∴△BDE≌△BDC(SAS),∴∠BED=∠C.22.【解答】解:(1))∠1与∠B相等,理由:∵,△ABC中,∠ACB=90°,∴∠1+∠F=90°,∵FD⊥AB,∴∠B+∠F=90°,∴∠1=∠B;(2)若BC=BD,AB与FB相等,理由:∵△ABC中,∠ACB=90°,DF⊥AB,∴∠ACB=∠FDB=90°,在△ACB和△FDB中,,∴△ACB≌△FDB(AAS),∴AB=FB.23.【解答】解:(1)∵∠MON=60°,∴∠OBA+∠OAB=120°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×120°=60°,∴∠ACB=180°﹣60°=120°,∴∠ACG=60°;∵∠MON=90°,∴∠OBA+∠OAB=90°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×90°=45°,∴∠ACB=180°﹣45°=135°;故答案为:60,45;(2)在△AOB中,∠OBA+∠OAB=180°﹣∠AOB=180°﹣n°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=(∠OBA+∠OAB)=(180°﹣n°),即∠ABC+∠BAC=90°﹣n°,∴∠ACB=180°﹣(∠ABC+∠BAC)=180°﹣(90°﹣n°)=90°+n°,∴∠ACG=180°﹣(90°+n°)=90°﹣n°;(3)∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠ABC=ABO,∠BAC=∠OAC=,∵CF∥AO,∴∠ACF=∠CAG,∵∠BGO=∠BAG+∠ABG,∴∠BGO﹣∠ACF=∠BAG+∠ABG﹣∠ACF=2∠BAC+∠ABG﹣∠BAC=∠ABG+∠BAC=90°﹣n°.24.【解答】解:(1)在等腰直角三角形DEF中,∠DEF=90°,∵∠1=20°,∴∠2=∠DEF﹣∠1=70°,∵∠EDA+∠2+∠3=180°,∴∠3=60°,∵EA⊥AB,∴∠EAB=90°,∵∠3+∠EAB+∠A=180°,∴∠4=30°,∵∠C=90°,∴AB=2BC=4;(2)如图1,过D作DM⊥AE于M,在△DEM中,∠2+∠5=90°,∵∠2+∠1=90°,∵DE=FE,在△DEM与△EF A中,,∴△DEM≌△EF A,∴AF=EM,∵∠4+∠B=90°,∵∠3+∠EAB+∠4=180°,∴∠3+∠4=90°,∴∠3=∠B,在△DAM与△ABC中,,∴△DAM≌△ABC,∴BC=AM,∴AE=EM+AM=AF+BC;(3)如图2,过D作DM⊥AE交AE的延长线于M,∵∠C=90°,∴∠1+∠B=90°,∵∠2+∠MAB+∠1=180°,∠MAB=90°,∴∠2+∠1=90°,∠2=∠B,在△ADM与△BAC中,,∴△ADM≌△BAC,∵EF=DE,∠DEF=90°,∵∠3+∠DEF+∠4=180°,∴∠3+∠4=90°,∵∠3+∠5=90°,∴∠4=∠5,在△MED与△AFE中,,∴△MED≌△AFE,∴ME=AF,∴AE+AF=AE+ME=AM=BC,即AE+AF=BC.。

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)1.如果∠A=∠B﹣∠C,那么△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定2.下列各组线段能组成一个三角形的是()A.2cm,3cm,6cm B.6cm,8cm,10cmC.5cm,5cm,10cm D.4cm,6cm,10cm3.画△ABC的边BC上的高,正确的是()A.B.C.D.4.已知在△ABC和△A′B′C′中,AB=A′B′,AC=A′C′,下列条件中,不一定能得到△ABC≌△A′B′C′的是()A.BC=B'C' B.∠A=∠A′C.∠C=∠C′D.∠B=∠B′=90°5.如图,△ABC中,AB=15,BC=9,BD是AC边上的中线,若△ABD的周长为30,则△BCD的周长是()A.20B.24C.26D.286.如图,∠1=140°,∠2=100°,则∠3=()A.100°B.120°C.130°D.140°7.如图,点F,C在BE上,AC=DF,BF=EC,AB=DE,AC与DF相交于点G,则与2∠DFE相等的是()A.∠A+∠D B.3∠B C.180°﹣∠FGC D.∠ACE+∠B 8.如图,△ABC的高CD、BE相交于点O,如果∠A=60°,那么∠BOC的大小为()A.60°B.100°C.120°D.130°9.如图,点C,F,B,E在同一直线上,∠C=∠DFE=90°,添加下列条件,仍不能判定△ACB与△DFE全等的是()A.∠A=∠D,AB=DE B.AC=DF,CF=BEC.AB=DE,BC=EF D.∠A=∠D,∠ABC=∠E10.如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=58°,∠2=24°,则∠A的度数为()A.56°B.34°C.36°D.24°11.如图,点A,F,C,D在同一条直线上,BC∥EF,AC=FD,请你添加一个条件,使得△ABC≌△DEF.12.如图,在△ABC中,已知点D、点E分别为BC、AD的中点,且△BDE的面积为3,则△ABC的面积是.13.如图,E为△ABC的BC边上一点,点D在BA的延长线上,DE交AC于点F,∠B=46°,∠C=30°,∠EFC=70°,则∠D=.14.如图,∠ABC与∠ACB的平分线交于I点,若∠ABC+∠ACB=100°,则∠BIC =;若∠A=50°,则∠BIC=.15.如图,△ABC的两条高BD,CE相交于点O,若∠A=75°,则∠ABD=,∠ACE=,∠BOC=.16.如图,三角形ABC的面积为1,分别延长AB、BC、CA至M、N、P,使得BM=2AB,CN=3BC,AP=4CA,则三角形MNP面积是.17.将一副三角板如图所示摆放,若∠BAE=125°,则∠CAD的度数是.18.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=15°,∠ACP=50°,则∠P=°.19.设a、b、c是△ABC的三边,化简:|a+b﹣c|﹣|b﹣c﹣a|=.20.如图所示,在△ABC中,AD平分∠BAC,BE是高线,∠BAC=50°,∠EBC=20°,则∠ADC的度数为.21.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,下列结论正确的是.A.∠1=∠2;B.BE=CF;C.△CAN≌△ABM;D.CD=DN.22.如图,在△ABC中,点E为边BC的中点,连接AE,点D为线段AE上的一点(不与A,E重合),连接BD、CD,若BD=CD,求证:∠ADB=∠ADC.23.已知:如图,在△ABC和△DEF中,点B、E、C、F四点在一条直线上,且BE=CF,AB=DE,∠B=∠DEF.求证:△ABC≌△DEF.24.如图,△ABC中,点D、E在边BC上,∠ADC=∠AEB,CD=BE.求证:∠BAD=∠CAE.25.风筝起源于中国,至今已有2300多年的历史,如图,在小明设计的“风筝”图案中,已知AB=AD.∠B=∠D,∠BAE=∠DAC.求证:AC=AE.26.如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD =BE.(1)求证:△ABD≌△ECB.(2)若∠BDC=70°.求∠ADB的度数.27.如图,点A,B,C,D在同一条直线上,AB=CD,∠A=∠D,AE=DF.(1)求证:△ACE≌△DBF.(2)若BF⊥CE于点H,求∠HBC的度数.28.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A 之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.参考答案1.解:因为∠A+∠B+C=180°,且∠A=∠B﹣∠C,所以∠B﹣∠C+∠B+C=180°,所以∠B=90°,所以△ABC是直角三角形.故选:C.2.解:A、2+3<6,不能组成三角形,不符合题意;B、6+8=14>10,能组成三角形,符合题意;C、5+5=10,不能组成三角形,不符合题意;D、4+6=10,不能组成三角形,不符合题意;故选:B.3.解:A.此图形中AD是BC边上的高,符合题意;B.此图形中CD不是BC边上的高,不符合题意;C.此图形中CD是AB边上的高,不符合题意;D.此图形中AD是AB边上的高,不符合题意;故选:A.4.解:A、由AB=A′B′,AC=A′C′,BC=B'C'可以判定△ABC≌△A′B′C′(SSS),不符合题意.B、由AB=A′B′,AC=A′C′,∠A=∠A′可以判定△ABC≌△A′B′C′(SAS),不符合题意.C、由AB=A′B′,AC=A′C′,∠C=∠C′不可以判定△ABC≌△A′B′C′(SSA),符合题意.D、由AB=A′B′,AC=A′C′,∠B=∠B′=90°可以判定Rt△ABC≌Rt△A′B′C′(HL),不符合题意.故选:C.5.解:∵BD是AC边上的中线,∴AD=CD.∵△ABD的周长为30,∴AB+BD+AD=30.∴BD+AD=30﹣AB=30﹣15=15.∴△BCD的周长为BC+CD+BD=BC+AD+BD=9+15=24.故选:B.6.解:∵∠1=140°,∠2=100°,∴∠3=360°﹣140°﹣100°=120°,故选:B.7.解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠ACB=∠DFE,∴2∠DFE=180°﹣∠FGC,故选:C.8.解:如图,∵CD、BE均为△ABC的高,∴∠BEC=∠ADC=90°,∵∠A=60°,∴∠OCE=180°﹣∠ADC﹣∠A=180°﹣90°﹣60°=30°,则∠BOC=∠BEC+∠OCE=90°+30°=120°.故选:C.9.解:A、∵∠A=∠D,AB=DE,∠C=∠DFE=90°,根据AAS判定△ACB与△DFE 全等,不符合题意;B、∵CF=BE,可得,BC=EF,AC=DF,BC=EF,∠C=∠DFE=90°,根据SAS判定△ACB与△DFE全等,不符合题意;C、∵AB=DE,BC=EF,∠C=∠DFE=90°,根据HL判断Rt△ACB与Rt△DFE全等,不符合题意;D、∵∠A=∠D,∠ABC=∠E,∠C=∠DFE=90°,由AAA不能判定△ACB与△DFE全等,符合题意;故选:D.10.解:如图,∵∠1=54°,a∥b,∴∠3=∠1=58°.∵∠2=24°,∠A=∠3﹣∠2,∴∠A=58°﹣24°=34°.故选:B.11.解:∵BC∥EF,∴∠BCA=∠EFD,若添加BC=EF,且AC=FD,由“SAS”可证△ABC≌△DEF;若添加∠B=∠E,且AC=FD,由“AAS”可证△ABC≌△DEF;若添加∠A=∠D,且AC=FD,由“ASA”可证△ABC≌△DEF;故答案为:BC=EF或∠B=∠E或∠A=∠D(答案不唯一).12.解:∵点E为AD的中点,△BDE的面积为3,∴△ABD的面积为3×2=6,∵点D为BC的中点,∴△ABC的面积为6×2=12.故答案为:12.13.解:∵∠B=46°,∠C=30°,∴∠DAC=∠B+∠C=76°,∵∠EFC=70°,∴∠AFD=70°,∴∠D=180°﹣∠DAC﹣∠AFD=34°,故答案为:34°.14.解:∵BI平分∠ABC,CI平分∠ACB,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=(∠ABC+∠ACB)=50°,∴∠BIC=180°﹣(∠IBC+∠ICB)=130°;当∠A=50°时,∠ABC+∠ACB=180°﹣∠A=130°,∴∠IBC+∠ICB=(∠ABC+∠ACB)=65°,∴∠BIC=180°﹣(∠IBC+∠ICB)=115°.故答案为:130°;115°.15.解:∵△ABC的两条高BD,CE相交于点O,∴∠AEC=∠ADB=90°,∵∠A=75°,∴∠ABD=180°﹣∠A﹣∠ADB=180°﹣75°﹣90°=15°,∠ACE=180°﹣∠A﹣∠AEC=180°﹣75°﹣90°=15°,在△ABC中,∠DBC+∠ECB=180°﹣∠A﹣∠ABD﹣∠ACE=180°﹣75°﹣15°﹣15°=75°,在△BOC中,∠BOC=180°﹣(∠DBC+∠ECB)=180°﹣75°=105°.故答案为:15°,15°,105°.16.解:连接MC,AN∵2AB=BM,∴S△BCM=2S△ABC,∴S△BCM=2×1=2,∵3BC=CN,∴S△MNC=3S△BCM,S△ACN=3S△ABC,∴S△MNC=3×2=6,S△ACN=3×1=3,∵4CA=AP,∴S△ANP=4S△ACN,S△AMP=4S△AMC,∴S△ANP=4×3=12,S△AMP=4×(2+1)=12,∵S△MNP=S△ABC+S△BCM+S△MNC+S△ACN+S△ANP+S△AMP,∴S△MNP=1+2+6+3+12+12=36.故答案为:36.17.解:∵∠BAE=125°,∴∠DAE=∠BAE﹣∠BAD=125°﹣90°=35°,∴∠CAD=∠CAE﹣∠DAE=90°﹣35°=55°,故答案为:55°.18.解:∵BP是△ABC中∠ABC的平分线,∠ABP=15°,∴∠CBP=∠ABP=15°,∵CP是∠ACB的外角的平分线,∠ACP=50°,∴∠PCM=∠ACP=50°,∴∠P=∠PCM﹣∠CBP=50°﹣15°=35°,故答案为:35.19.解:∵a、b、c分别为△ABC的三边长,∴a+b﹣c>0,b﹣c﹣a<0,∴|a+b﹣c|﹣|b﹣c﹣a|=a+b﹣c+b﹣c﹣a=2b﹣2c,故答案为:2b﹣2c.20.解:∵AD平分∠BAC,BE是高,∠BAC=50°,∴∠BAD=∠BAC=25°,∠ABE=40°.∵∠EBC=20°,∴∠ADC=∠ABD+∠BAD=∠ABE+∠EBC+∠BAD=40°+20°+25°=85°.故答案为:85°.21.解:如图,∵∠E=∠F=90°,∠B=∠C,AE=AF,∴Rt△ABE≌Rt△ACF(AAS),∴∠F AC=∠EAB,BE=CF,AB=AC,∴∠1=∠2,故A,B正确;又∠B=∠C,∠CAN=∠BAM,∴△ACN≌△ABM(ASA),故C错误;∵△ACN≌△ABM(ASA),∴AN=AM,∴MC=BN,而∠B=∠C,∠CDM=∠BDN,∴△DMC≌△DMB(AAS),∴DC=DB,∴DC≠DN,故D错误.故答案为:A,B;22.证明:∵点E为边BC的中点,∴BE=CE,在△BDE和△CDE中,,∴△BDE≌△CDE(SSS),∴∠BDE=∠CDE,∠DBE=∠DCE,∴∠ADB=∠ADC,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS),∴∠ADB=∠ADC.23.证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS).24.证明:∵∠ADC=∠AEB,∴AD=AE,在△ADC和△AEB中,,∴△ADC≌△AEB(SAS),∴∠BAE=∠DAC,∴∠BAD=∠CAE.25.证明:∵∠BAE=∠DAC,∴∠BAE+∠EAC=∠DAC+∠EAC,即∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(ASA),∴AC=AE.26.证明:(1)∵AD∥BC,∴∠ADB=∠CBE,在△ABD和△ECB中,,∴△ABD≌△ECB(AAS);(2)∵△ABD≌△ECB,∴BD=BC,∴∠BDC=∠BCD=70°,∴∠DBC=40°,∴∠ADB=∠CBD=40°.27.(1)证明:∵AB=CD,∴AB+BC=CD+BC.∴AC=BD.在△ABC和△EDF中,,∴△ACE≌△DBF(SAS);(2)解:由(1)知△ACE≌△DBF,∴∠ACE=∠DBF.∵BF⊥CE,∴∠BHC=90°,∴∠HBC+∠HCB=90°,∴∠HBC=∠HCB=45°.28.(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(360°﹣∠ABC﹣∠ACB)=(180°+∠A)=90°+∠A∴∠Q=180°﹣(90°+∠A)=90°﹣∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=∠A;∵∠EBQ=∠EBC+∠CBQ=∠ABC+∠MBC=(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;③∠Q=2∠E,则90°﹣∠A=∠A,解得∠A=60°;④∠E=2∠Q,则∠A=2(90°﹣∠A),解得∠A=120°.综上所述,∠A的度数是90°或60°或120°.。

北师大版七年级数学下册 第四章 三角形 单元测试训练卷(word版 含解析)

北师大版七年级数学下册 第四章 三角形 单元测试训练卷(word版 含解析)

北师大版七年级数学下册第四章 三角形单元测试训练卷一、单选题(共10小题,每小题4分,共40分)1.下列各组数为边,能构成三角形的是( )A .1,2,3B .2,3,4C .4,4,8D .3,5,9 2.如图,65A ∠=︒,45B ∠=︒,则ACD ∠=( )A .65°B .60°C .45°D .110° 3.如图,12,AC AD ∠=∠=,要使ABC AED ≌△△,还需添加一个条件,那么在以下条件中不能选择的是( )A .AB AE = B .BC ED = C .C D ∠=∠ D .BE ∠=∠ 4.若△ABC 的一个外角等于其中一个内角,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90° 5.如果一个三角形的两边长分别为3和7,则第三边长可能是( ). A .3 B .4 C .7 D .10 6.如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带( )去最省事.A.△B.△C.△D.△△7.已知:如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,点P 以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒()秒时.△ABP和△DCE全等.A.1B.1或3C.1或7D.3或78.如图,△CAB=△DBA,再添加一个条件,不一定能判定△ABC△△BAD的是()A.AC=BD B.△1=△2C.△C=△D D.AD=BC 9.如图,在△ABC中,△BAC=90°,AB=AC,AD是经过A点的一条直线,且B、C在AD的两侧,BD△AD于D,CE△AD于E,交AB于点F,CE=10,BD=4,则DE的长为()A.6B.5C.4D.810.如图,在ABC中,△ACB=45°,AD△BC,BE△AC,AD与BE相交下点F,连接并延长CF交AB于点G,△AEB的平分线交CG的延长线于点H,连接AH.则下列结论:△△EBD=45°;△AH=HF;△ABD△CFD;△CH=AB+AH;△BD=CD﹣AF.其中正确的有()个.A .5B .4C .3D .2二、填空题(共6小题,每小题4分,共24分)11.用木棒钉成一个三角架,两根小棒长分别是7cm 和10cm,第三根小棒长为x cm,则x 的取值范围是___.12.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带________去玻璃店.13.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,添加一个条件能判断△ABE △△ACD 的是____.14.如图,A E ∠=∠,AC BE ⊥,AB EF =,25BE =,8=CF ,则AC =_______.15.在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,则S △ABE =_____.16.如图,ABC 和ADE 均为等边三角形,D ,E 分别在边AB ,AC 上,连接BE ,CD ,若15ACD =︒∠,则CBE =∠__________.三、解答题(共6小题, 56分)17.如图,在ABC ∆中,AD BC ⊥,垂足为D ,BE AC ⊥,垂足为E ,AE BE =,AD 与BE 相交于点F .(1)请说明AEF BEC ∆∆≌的理由.(2)如果2AF BD =,试说明AD 平分BAC ∠的理由.18.如图,△ABC中,D为BC上一点,△C=△BAD,△ABC的角平分线BE交AD于点F.(1)求证:△AEF=△AFE;(2)G为BC上一点且FE平分△AFG.求证:AB=GB19.如图,已知AE△AB,AF△AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC△BF.20.探索归纳:(1)如图1,已知ABC 为直角三角形,90A ∠=︒,若沿图中虚线剪去A ∠,则12∠+∠=________︒.(2)如图2,已知ABC 中,40A ∠=︒,剪去A ∠后成四边形,则12∠+∠=__________︒.(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想12∠+∠与A ∠的关系是___________.(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究12∠+∠与A ∠的关系并说明理由.21.在△BAC中,△BAC=90°,AB=AC,AE是过A的一条直线,BD△AE于点D,CE△AE于E.(1)如图(1)所示,若B,C在AE的异侧,易得BD与DE,CE的关系是DE=;(2)若直线AE绕点A旋转到图(2)位置时,(BD<CE),其余条件不变,问BD与DE,CE 的关系如何?请予以证明;(3)若直线AE绕点A旋转,(BD>CE),问BD与DE,CE的关系如何?请直接写出结果,不需证明.22.如图,AB=12cm,AC△AB,BD△AB,AC=BD=9cm,点P在线段AB上以3cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动;设点P的运动时间为t秒.(1) PB=________ cm.(用含t的代数式表示)(2)如图1,若点Q的运动速度与点P的运动速度相等,当运动时间t=1秒时,△ACP与△BPQ是否全等?并说明理由.(3)如图2,将“AC△AB,BD△AB”改为“△CAB=△DBA”,其余条件不变;设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.参考答案:1.B【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.【详解】解:A. 1+2=3 ,不能构成三角形,故该选项不符合题意;B. 2+3>4,能构成三角形,故该选项符合题意;C. 4+4=8,不能构成三角形,故该选项不符合题意;D. 3+5<9,不能构成三角形,故该选项不符合题意;故选B【点睛】本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.2.D【解析】【分析】根据三角形外角的性质求解即可.【详解】解:△65A ∠=︒,45B ∠=︒,△110ACD A B ∠=∠+∠=︒,故选:D .【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.3.B【解析】【分析】由△1=△2,可得∠BAC=∠EAD ,又AC=AD ,可知在△ABC 和△AED 中,已知一角及其临边对应相等,要证两三角形全等,任意再找一对角对应相等,或者找已知角的另一边对应相等,由此可得答案.解:△△1=△2,△∠BAC=∠EAD ,当AB=AE 时,根据SAS 可得ABC AED ≌△△;当C D ∠=∠时,根据ASA 可得ABC AED ≌△△;当B E ∠=∠时,根据AAS 可得ABC AED ≌△△;当BC=ED 时,SSA 不能判定两个三角形全等,故答案为:B【点睛】本题考查三角形全等的判定,角的和差是常考的判定已知角相等的方法,熟知三角形全等的判定定理是解题的关键.4.D【解析】【分析】根据三角形的外角性质、邻补角的概念计算即可.【详解】解:△三角形的一个外角大于和它不相邻的任何一个内角,△△ABC 的一个外角等于其中一个内角时,这个外角等于它的邻补角,△这个三角形必有一个内角等于90°,故选:D .【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.5.C【解析】【分析】根据三角形三边之间的关系即可判定.【详解】解:设第三边长为x ,则4<x <10,所以选项中符合条件的整数只有7.故选:C .本题考查了三角形三边关系,三角形中,任意两边之差小于第三边,任意两边之和大于第三边.6.C【解析】【分析】根据全等三角形的判定方法“角边角”可以判定应当带△去.【详解】解:由图形可知,△有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形, 所以,最省事的做法是带△去.故选:C.【点睛】本题考查了全等三角形的判定方法,正确理解“角边角”的内容是解题的关键.7.C【解析】【分析】分P点在线段BC上和P点在线段AD上两种情况讨论,当P点在线段BC上时得到△ABP=△DCE=90°,BP=CE=2进而求解;当P点在线段AD上时得到△BAP=△DCE=90°,AP=CE=2进而求解.【详解】解:由题意可知:AB=CD,当P点在线段BC上时:△ABP=△DCE=90°,BP=CE=2,此时△ABP△△DCE(SAS),由题意得:BP=2t=2,△t=1;当P点在线段AD上时:△BAP=△DCE=90°,AP=CE=2,此时△BAP△△DCE(SAS),由题意得:AP=16-2t=2,△t=7.△当t的值为1或7秒时.△ABP和△DCE全等.故答案为:C.【点睛】本题考查了三角形全等的判定方法,注意要分类讨论,熟练掌握三角形全等判定方法是解题的关键.8.D【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【详解】解答:解:A.△AC=BD,△CAB=△DBA,AB=AB,△根据SAS能推出△ABC△△BAD,故本选项错误;B.△△CAB=△DBA,AB=AB,△1=△2,△根据ASA能推出△ABC△△BAD,故本选项错误;C.△△C=△D,△CAB=△DBA,AB=AB,△根据AAS能推出△ABC△△BAD,故本选项错误;D.根据AD=BC和已知不能推出△ABC△△BAD,故本选项正确;故选:D.【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.9.A【解析】【分析】根据△BAC=90°得到△BAD+△CAD=90°,由于CE△AD于E,于是得到△ACE+△CAE=90°,根据余角的性质得到△BAD=△ACE,推出△ABD△△CAE,根据全等三角形的性质即可得到结论.【详解】解:△△BAC=90°,△△BAD+△CAD=90°,△CE△AD于E,△△ACE+△CAE=90°,△△BAD=△ACE,在△ABD 与△CAE 中,90D AEC BAD ACE AB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, △△ABD △△CAE (AAS ),△AE =BD =4,AD =CE =10,△DE =AD ﹣AE =6.故选:A .【点睛】本题考查全等三角形的判定与性质,解题的关键是利用余角的性质得到△BAD =△ACE . 10.A【解析】【分析】△利用三角形内角和定理即可说明其正确;△利用垂直平分线的性质即可说明其正确;△利用SAS 判定全等即可;△利用△中的结论结合等量代换和等式的性质即可得出结论;△利用△中的结论结合等量代换和等式的性质即可得出结论.【详解】如图所示,设EH 与AD 交于点M ,△△ACB =45°,BE △AC ,△△EBD =90°﹣△ACD =45°,故△正确;△AD △BC ,△EBD =45°,△△BFD =45°,△△AFE =△BFD =45°,△BE △AC ,△△F AE =△AFE =45°,△△AEF 为等腰直角三角形,△EM 是△AEF 的平分线,△EM △AF ,AM =MF ,即EH 为AF 的垂直平分线,△AH =HF ,△△正确;△AD △BC ,△ACD =45°,△△ADC 是等腰直角三角形,△AD =CD ,同理,BD =DF ,在△ABD 和△CFD 中,90AD CD ADB CDF BD FD =⎧⎪∠=∠=︒⎨⎪=⎩, △△ABD △△CFD (SAS ),△△正确;△△ABD △△CFD ,△CF =AB ,△CH =CF +HF ,由△知:HF =AH ,△CH =AB +AH ,△△正确;△BD =DF ,CD =AD ,又△DF =AD ﹣AF ,△BD =CD ﹣AF ,△△正确,综上,正确结论的个数为5个.故选:A .【点睛】本题考查了直角三角形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,垂直平分线的判定与性质等相关知识,综合性较强,难度较大,做题时要分清角的关系与边的关系.11.3<x<17【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,确定出第三边的取值范围即可得出答案.【详解】解:设第三根小棒的长为x cm,根据三角形的三边关系可得:10-7<x<10+7,即3<x<17,故答案为3<x<17.【点睛】本题考查了三角形的三边关系.三角形的三边关系:第三边大于两边之差而小于两边之和.12.△【解析】【分析】观察每块玻璃形状特征,利用ASA判定三角形全等可得出答案.【详解】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带△去.故答案为:△.【点睛】本题属于利用ASA判定三角形全等的实际应用,难度不大,但形式较颖,要善于将所学知识与实际问题相结合.13.AD=AE(答案不唯一)【解析】【分析】根据全等三角形的判定定理添加条件可以,添加AD =AE ,根据SAS 证明△ABE △△ACD 即可.【详解】解:添加的条件是AD =AE ,理由是:在△ABE 和△ACD 中,AE AD A A AB AC =⎧⎪∠=∠⎨⎪=⎩,△△ABE △△ACD (SAS ),故答案为:AD =AE (答案不唯一).【点睛】本题考查了全等三角形的判定定理,熟练掌握全等三角形的判定定理是解题的关键. 14.17【解析】【分析】由“AAS ”可证ABC EFC ∆≅∆,可得AC CE =,9BC CF ==,即可求解.【详解】解:AC BE ⊥,90ACB ECF ∴∠=∠=︒,在ABC ∆和EFC ∆中,A E ACB ECF AB EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABC EFC AAS ∴∆≅∆,AC CE ∴=,8BC CF ==,25817AC CE BE BC ∴==-=-=,故答案为:17.【点睛】本题考查了全等三角形的判定和性质,解题的关键是证明三角形全等.15.1cm 2【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形的性质分析,即可得到答案.【详解】∵D 是BC 的中点,S △ABC =4cm 2∴S △ABD =12S △ABC =12×4=2cm 2∵E 是AD 的中点,∴S △ABE =12S △ABD =12×2=1cm 2故答案为:1cm 2.【点睛】本题考查了三角形中线的知识;解题的关键是熟练掌握三角形中线的性质,从而完成求解. 16.45︒##45度【解析】【分析】根据题意利用全等三角形的判定与性质得出()BD C S ED E SA ≅和15EBD ACD ︒∠=∠=,进而依据CBE =∠ABC EBD ∠-∠进行计算即可.【详解】解:△ABC 和ADE 均为等边三角形,△,,AB AC AE AD EC DB ===,△60,120,AED ADE ABC DEC EDB ︒︒∠=∠=∠=∠=∠=在CED 和BDE 中, EC DB DEC EDB ED ED =⎧⎪∠=∠⎨⎪=⎩, △()BD C S ED E SA ≅,△15EBD ACD ︒∠=∠=,△CBE =∠601545ABC EBD ︒︒︒∠-∠=-=.故答案为:45︒.【点睛】本题考查全等三角形的判定与性质以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.17.(1)见解析(2)见解析【解析】【分析】(1)由余角的性质可证DAC EBC ∠=∠,根据“ASA”可证结论成立;(2)由AEF BEC ∆∆≌可得AF BC =,结合2AF BD =可知BD CD =,然后根据“SAS”证明△ABD △△ACD 可证结论成立.(1)证明:AD BC ⊥,BE AC ⊥,90ADC ∴∠=,△AEB =△CEB =90°,90DAC C +∠=∴∠,△EBC +△C =90°,DAC EBC =∠∴∠,在AEF ∆与BEC ∆中,EAF EBC AEF BEC AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ΔΔASA AEF BEC ∴≌.(2)解:由(1)知,AF BC =,2AF BD =,2BC BD ∴=,D ∴是BC 的中点,BD CD ∴=,在△ABD 和△ACD 中AD AD ADB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩, △△ABD △△ACD ,△BAD CAD ∠=∠,AD ∴平分BAC ∠.【点睛】本题考查了全等三角形的判定和性质,余角的性质,角平分线的定义,熟练掌握全等三角形的判定和性质是解题的关键.18.(1)证明见解析(2)证明见解析【解析】【分析】(1)先根据角平分线的定义得到△1=△2,再由三角形外角的性质得到△AEF=△2+△C,△AFE=△1+△BAD,由△C=△BAD,即可推出△AEF=△AFE;(2)根据角平分线的定义得到△AFE=△GFE,再由△AFB+△AFE=180°,△BFG+△GFE=180°,得到△AFB=△BFG,然后证明△ABF△△GBF即可得到AB=GB.(1)解:△BE是△ABC的角平分线,△△1=△2,△△AEF、△AFE分别是△BCE、△ABF的外角,△△AEF=△2+△C,△AFE=△1+△BAD,又△△C=△BAD,△△AEF=△AFE;(2)解:△FE平分△AFG,△△AFE=△GFE,△△AFB+△AFE=180°,△BFG+△GFE=180°,△△AFB=△BFG,在△ABF和△GBF中12AFB BFG BF BF∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ABF △△GBF (ASA )△AB =GB .【点睛】本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形外角的性质,熟知相关知识是解题的关键.19.(1)见解析(2)见解析【解析】【分析】(1)先求出△EAC =△BAF ,然后利用“边角边”证明△ABF 和△AEC 全等,根据全等三角形对应边相等即可证明;(2)根据全等三角形对应角相等可得△AEC =△ABF ,设AB 、CE 相交于点D ,根据△AEC +△ADE =90°可得△ABF +△ADM =90°,再根据三角形内角和定理推出△BMD =90°,从而得证.(1)△AE △AB ,AF △AC ,△△BAE =△CAF =90°,△△BAE +△BAC =△CAF +△BAC ,即△EAC =△BAF ,在△ABF 和△AEC 中,AE AB EAC BAF AF AC =⎧⎪∠=∠⎨⎪=⎩, △△ABF △△AEC (SAS ),△EC =BF ;(2)如图,设AB 交CE 于D根据(1),△ABF△△AEC,△△AEC=△ABF,△AE△AB,△△BAE=90°,△△AEC+△ADE=90°,△△ADE=△BDM(对顶角相等),△△ABF+△BDM=90°,在△BDM中,△BMD=180°-△ABF-△BDM=180°-90°=90°,所以EC△BF.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会利用“8字型”证明角相等.20.(1)270(2)220∠+∠=︒+∠(3)12180A(4)122A∠+∠=∠,理由见解析【解析】【分析】(1)利用三角形的外角定理及直角三角形的性质求解;(2)利用三角形的外角等于与它不相邻的两个内角和求解;(3)根据(1)、(2)中思路即可求解;∠=︒-∠, (4)根据折叠对应角相等,得到AFE PFE∠=∠,AEF PEF∠=∠,进而求出11802AFE∠+∠=︒-∠即可求解.AFE AEF A∠=︒-∠,最后利用18021802AEF(1)解:如下图所示:在△AEF中,由外角性质可知:△1=△A+△EF A=90°+△EF A,△2=△A+△AEF=90°+△AEF,△△1+△2=(90°+△EF A)+( 90°+△AEF)=180°+△EF A+△AEF,△△ABC为直角三角形,△△A=90°,△EF A+△AEF=180°-△A=90°,△△1+△2=180°+90°=270°.(2)解:如下图所示:在△AEF中,由外角性质可知:△1=△A+△EF A,△2=△A+△AEF,△△1+△2=(△A+△EF A)+( △A+△AEF)=(△A +△EF A+△AEF)+∠A=180°+40°=220°.(3)解:由(1)、(2)中思路,由三角形外角性质可知:△1=△A +△EF A ,△2=△A +△AEF ,△△1+△2=(△A +△EF A )+( △A +△AEF )=(△A +△EF A +△AEF)+∠A =180°+∠A ,△12∠+∠与A ∠的关系是:△1+△2=180°+∠A .(4)解:12∠+∠与A ∠的关系为:122A ∠+∠=∠,理由如下:如图,△EFP △是由EFA △折叠得到的,△AFE PFE ∠=∠,AEF PEF ∠=∠,△11802AFE ∠=︒-∠,21802AEF ∠=︒-∠,△()12(1802)(1802)3602AFE AEF AFE AEF ∠+∠=︒-∠+︒-∠=︒-∠+∠,又△180AFE AEF A ∠+∠=︒-∠,△()1236021802A A ∠+∠=︒-︒-∠=∠,△12∠+∠与A ∠的关系122A ∠+∠=∠.【点睛】主要考查了折叠的性质及三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和、三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.21.(1)BD ﹣EC(2)BD =DE ﹣CE .见解析(3)当B ,C 在AE 的同侧时,BD =DE ﹣CE ;当B ,C 在AE 的异侧时,BD =DE +CE .【解析】【分析】(1)通过互余关系可得△ABD =△CAE ,进而证明△ABD △△ACE (AAS ),即可求得BD =AE ,AD =EC ,进而即可求得关系式;(2)方法同(1)证明△ABD △△CAE (AAS ),进而得出结论;(3)综合(1)(2)结论,分当B ,C 在AE 的同侧或异侧时,写出结论即可.(1)结论:DE =BD ﹣EC .理由:如图1中,△BD △AE ,CE △AE ,△△ADB =△CEA =90°,△△ABD +△BAD =90°,又△△BAC =90°,△△EAC +△BAD =90°,△△ABD =△CAE ,在△ABD 与△ACE 中,ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△BAD △△ACE (AAS ),△BD =AE ,AD =EC ,△BD =DE +CE ,即DE =BD ﹣EC .故答案为:BD ﹣EC ;(2)结论:BD =DE ﹣CE .理由:如图2中,△BD △AE ,CE △AE ,△△ADB =△CEA =90°,△△ABD +△BAD =90°,又△△BAC =90°,△△EAC +△BAD =90°,△△ABD =△CAE ,在△ABD 与△CAE 中,ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△ABD △△CAE (AAS ),△BD =AE ,AD =EC ,△BD =DE ﹣CE ;(3)归纳:由(1)(2)可知:当B ,C 在AE 的同侧时,BD =DE ﹣CE ;当B ,C 在AE 的异侧时,BD =DE +CE .【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键. 22.(1)(12-3t )(2)△CAP △△PBQ ,理由见解析(3)满足条件的点Q 的速度为3或92cm /s . 【解析】【分析】(1)求出AP ,再根据题意写出PB 的值即可;(2)求出AP ,PB ,BQ 的值,根据SAS 证明△CAP △△PBQ (SAS )即可;(3)分两种情形分别求解:△由(1)可知,Q 的速度为3cm /s 时,△ACP △△BPQ ,这种情形符合题意.△当P A =PB ,AC =BQ 时,△APC △△BPQ (SAS ),首先确定运动时间,再求出点Q 的运动速度即可.(1)解:由题意:P A =3t (cm ),△AB =12cm ,△PB =AB -AP =12-3t (cm ),故答案为:(12-3t );(2)解:△CAP△△PBQ,理由如下:由题意:t=1(s)时,P A=BQ=3(cm),△AB=12cm,△PB=AB-AP=12-3=9(cm),△AC=9cm,△AC=BP,△△CAP=△PBQ=90°,P A=BQ,△△CAP△△PBQ(SAS);(3)解:△由(2)可知,Q的速度为3cm/s时,△ACP△△BPQ,这种情形符合题意.△当P A=PB,AC=BQ时,△APC△△BPQ(SAS),△t=63=2(s),△点Q的运动速度为92cm/s.△满足条件的点Q的速度为3或92cm/s.【点睛】本题考查的是全等三角形的判定与性质,掌握全等三角形的判定定理和性质定理、注意分类讨论思想的灵活运用是解题的关键.。

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)一.选择题1.下列各组中的两个图形属于全等图形的是()A.B.C.D.2.画△ABC的边BC上的高,正确的是()A.B.C.D.3.将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是锐角三角形B.都是直角三角形C.都是钝角三角形D.是一个锐角三角形和一个钝角三角形4.如图,已知在△ABC中,∠A=90°,∠1+∠2的度数是()A.180°B.270°C.360°D.无法确定5.打碎的一块三角形玻璃如图所示,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()A.带①②去B.带②③去C.带③④去D.带②④去6.如图,点A,D在线段BC的同一侧,AC与BD相交于点E,连接AB,CD,已知∠1=∠2,现添加以下哪个条件仍不能判定△ABC≌△DCB的是()A.∠A=∠D B.AC=DB C.∠ABC=∠DCB D.AB=DC7.如图,在△ABC中,∠A=45°,△ABC的外角∠CBD=75°,则∠C的度数是()A.30°B.45°C.60°D.75°8.如图,已知AB=AC,AD是△ABC的高,下列结论不一定正确的是()A.∠B=60°B.∠B=∠C C.∠BAD=∠CAD D.BD=CD二.填空题9.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是.10.如图,点A,F,C,D在同一条直线上,BC∥EF,AC=FD,请你添加一个条件,使得△ABC≌△DEF.11.如图所示,要测量河两岸相对的两点A、B的距离,在AB的垂线段BF上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,若测得DE的长为20米,则河宽AB长为米.12.在△ABC中,∠A:∠B:∠C=4:5:9,若按角分类,△ABC是三角形.13.如图,∠1=115°,∠2=50°,那么∠3=.14.如图,在△ABC中,∠C=90°,DE⊥AB于D,交AC于点E,若BC=BD,AC=6cm,BC=8cm,AB=10cm,则△ADE的周长是.三.解答题15.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).16.如图,已知△EFG,利用尺规作FG边上的高EH.(不写作法,保留作图痕迹)17.某中学八年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.某同学设计了如下测量方案:先取一个可直接到达池塘的两端的点A,B 的点E,连接AE,BE,分别延长AE至点D,BE至点C,使得ED=AE,EC=BE.再测出CD的长度即可知道AB之间的距离.他的方案可行吗?请说明理由.18.已知:如图,在△ABC中,∠DAE=10°,AD⊥BC于点D,AE平分∠BAC,∠B=60°,求∠C的度数.19.如图,在四边形ABCD中,∠B=∠D=90°,点B,F分别在AB,AD上,AE=AF,CE=CF,求证:CB=CD.20.如图,在△ABC中,CD是AB边上的高,AE平分∠BAC,AE、CD相交于点F,若∠BAC=∠DCB.求证:∠CFE=∠CEF.21.如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD =BE.(1)求证:△ABD≌△ECB.(2)若∠BDC=70°.求∠ADB的度数.22.直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O重合),点B在射线OM上运动(点B不与点O重合).(1)如图1,MN⊥PQ,若∠BAO=30°,∠BAO与∠ABO的角平分线相交于点E,∠AEB的度数为,(2)如图2,MN⊥PQ,∠BAP与∠ABM的角平分线相交于点E,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(3)如图3,若∠MOQ<90°,∠BAO与∠BOQ的角平分线相交于点E,延长BA至点G,∠OAG的角平分线与射线EO相交于点F,点A、B在运动的过程中,试探索∠F与∠ABO之间的等量关系,并证明你的结论.参考答案一.选择题1.解:A、两个图形不能完全重合,故本选项错误;B、两个图形能够完全重合,故本选项正确;C、两个图形不能完全重合,故本选项错误;D、两个图形不能完全重合,故本选项错误;故选:B.2.解:A.此图形中AD是BC边上的高,符合题意;B.此图形中CD不是BC边上的高,不符合题意;C.此图形中CD是AB边上的高,不符合题意;D.此图形中AD是AB边上的高,不符合题意;故选:A.3.解:如图,沿三角形一边上的高剪开即可得到两个直角三角形.如图,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图,锐角三角形沿虚线剪开即可得到一个锐角三角形和一个钝角三角形.因为剪开的边上的两个角是邻补角,不可能都是锐角,故这两个三角形不可能都是锐角三角形.综上所述,将一个三角形剪成两三角形,这两个三角形不可能都是锐角三角形.故选:A.4.解:在△ABC中,∠A=90°,所以∠ACB+∠ABC=90°,又因为∠1+∠ACB=180°,∠2+∠ABC=180°,所以∠1+∠2=270°,故选:B.5.解:A、带①②去,符合ASA判定,选项符合题意;B、带②③去,仅保留了原三角形的一个角和部分边,不符合任何判定方法,选项不符合题意;C、带③④去,仅保留了原三角形的一个角和部分边,不符合任何判定方法,选项不符合题意;D、带②④去,仅保留了原三角形的两个角和部分边,不符合任何判定方法,选项不符合题意;故选:A.6.解:∵BC=CB,∠1=∠2,A、如添加∠A=∠D,利用AAS即可证明△ABC≌△DCB;B、如添加AC=BD,利用SAS即可证明△ABC≌△DCB.C、如添加∠ABC=∠DCB,利用ASA即可证明△ABC≌△DCB;D、如添加AB=DC,因为SSA,不能证明△ABC≌△DCB,所以此选项不能作为添加的条件;故选:D.7.解:∵∠A=45°,△ABC的外角∠CBD=75°,∴∠C=∠CBD﹣∠A=75°﹣45°=30°,故选:A.8.解:∵AB=AC,∴∠B=∠C,∵AD是△ABC的高,∴AD平分∠BAC,BC=2BD=2CD,∴∠BAD=∠CAD,BD=CD,∴B、C、D都是正确的,故选:A.二.填空题9.解:给凳子加了两根木条之后形成了三角形,所以“这样凳子就比较牢固了”的数学原理是:三角形的稳定性,故答案为:三角形的稳定性.10.解:∵BC∥EF,∴∠BCA=∠EFD,若添加BC=EF,且AC=FD,由“SAS”可证△ABC≌△DEF;若添加∠B=∠E,且AC=FD,由“AAS”可证△ABC≌△DEF;若添加∠A=∠D,且AC=FD,由“ASA”可证△ABC≌△DEF;故答案为:BC=EF或∠B=∠E或∠A=∠D(答案不唯一).11.解:在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=DE=20米.故答案为:20.12.解:∵∠A:∠B:∠C=4:5:9,且∠A+∠B+∠C=180°,∴∠C=180°×=90°,∴△ABC是直角三角形,故答案为:直角.13.解:∵∠1=115°,∠2=50°,∴∠3=∠1+∠2=165°,故答案为:165°.14.解:连接BE,∵∠C=90°,DE⊥AB于D,∴∠C=∠BDE=90°,在Rt△BCE与Rt△BDE中,,∴Rt△BCE≌Rt△BDE(HL),∴DE=CE,∵AB=10cm,BC=8cm,AC=6cm,∴△ADE的周长=DE+AE+AD=CE+AE+AB﹣BD=AC+AB﹣BC=6+10﹣8=8(cm),故答案为:8cm.三.解答题15.解:如图所示:.16.解:如图,EH为所作.17.解:在△AEB和△DEC中,,∴△AEB≌△DEC(SAS);∴AB=CD.18.解:∵AD⊥BC,∠B=60°,∴在△ABD中,∠BAD=90°﹣60°=30°,又∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=30°+10°=40°,又∵AE平分∠BAC,∴∠BAC=2∠BAE=80°,∴在△ABC中,∠C=180°﹣∠BAC﹣∠B=180°﹣80°﹣60°=40°.答:∠C的度数是40°.19.证明:如图,连接AC,在△ACE和△ACF中,,∴△ACE≌△ACF(SSS),∴∠EAC=∠F AC,在△ACB和△ACD中,,∴△ACB≌△ACD(AAS),∴CB=CD.20.证明:在△ABC中,CD是高,∠BAC=∠DCB,∴∠CDA=90°,∠BAC+∠ACD=90°,∴∠DCB+∠ACD=90°,∴∠ACB=90°;∵AE是角平分线,∴∠CAE=∠BAE,∵∠FDA=90°,∠ACE=90°,∴∠DAF+∠AFD=90°,∠CAE+∠CEA=90°,∴∠AFD=∠CEA,∵∠AFD=∠CFE,∴∠CFE=∠CEA,即∠CFE=∠CEF.21.证明:(1)∵AD∥BC,∴∠ADB=∠CBE,在△ABD和△ECB中,,∴△ABD≌△ECB(AAS);(2)∵△ABD≌△ECB,∴BD=BC,∴∠BDC=∠BCD=70°,∴∠DBC=40°,∴∠ADB=∠CBD=40°.22.解:(1)∵MN⊥PQ,∴∠AOB=90°,∵∠BAO=30°,∴∠ABO=60°,∵AE、BE分别是∠BAO和∠ABO的角平分线,∴∠ABE=∠ABO=30°,∠BAE=∠BAO=15°,∴∠AEB=180°﹣∠ABE﹣∠BAE=135°.故答案为:135°.(2)不会发生变化.∵∠BAP与∠ABM的角平分线相交于点E,∴∠EAB=∠P AB,∠EBA=∠MBA,∵MN⊥PQ,∴∠AOB=90°,∵∠P AB=∠ABO+∠AOB=90°+∠ABO,∠MBA=∠BAO+∠AOB=90°+∠BAO,∴∠EAB+∠EBA=(90°+∠ABO+90°+∠BAO)=90°+(∠ABO+∠BAO),∵∠ABO+∠BAO=90°,∴∠EAB+∠EBA=90°+45°=135°,∴∠AEB=180°﹣135°=45°.(3)∠ABO+∠F=90°.如图:∵∠BAO与∠BOQ的角平分线相交于点E,∴∠1=∠BAO,∠2=∠BOQ,由外角的性质可得:∠ABO=∠BOQ﹣∠BAO,∠E=∠2﹣∠1,∴∠E=∠ABO.∵AE平分∠BAO,AF平分∠GAO,∴∠EAF=90°,∴∠E+∠F=90°,即∠ABO+∠F=90°。

北师大版七年级数学下册第四章三角形同步测试题

北师大版七年级数学下册第四章三角形同步测试题

北师大版七年级数学测试卷(考试题)第4章三角形一、选择题1.下列说法正确的是()A. 全等三角形是指形状相同的三角形B. 全等三角形是指面积相等的两个三角形C. 全等三角形的周长和面积相等D. 所有等边三角形是全等三角形2.已知某三角形的两边长是6和4,则此三角形的第三边长的取值可以是()A. 2B. 9C. 10D. 113.下列各组图形中,一定是全等图形的是()A. 两个周长相等的等腰三角形B. 两个面积相等的长方形C. 两个斜边相等的直角三角形D. 两个周长相等的圆4.下列各组长度的三条线段能组成三角形的是()A. 1cm,2cm,3cmB. 1cm,1cm,2cmC. 1cm,2cm,2cmD. 1cm,3cm,5cm5.画△ABC的边AB上的高,下列画法中,正确的是()A. B.C. D.6.有长为2cm、3cm、4cm、6cm的四根木棒,选其中的3根作为三角形的边,可以围成的三角形的个数是A. 1个B. 2个C. 3个D. 4个7.在如图所示的长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C的个数是()A. 2B. 3C. 4D. 58.如图所示,∠1+∠2+∠3+∠4的度数为()A. 100°B. 180°C. 360°D. 无法确定9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是()A. ∠A=∠1+∠2B. 2∠A=∠1+∠2C. 3∠A=2∠1+∠2D. 3∠A=2(∠1+∠2)10.将一副直角三角尺按如图所示摆放,则图中锐角∠α的度数是()A. 45°B. 60°C. 70°D. 75°11.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A. B. C. D.12.我国的纸伞工艺十分巧妙。

(完整word版)北师大版数学七年级下三角形练习题含答案

(完整word版)北师大版数学七年级下三角形练习题含答案

全等三角形001(总分:171.0 考试时间:132分钟)一、判断题:1、如图, △ABC中AB>AC, AD是角平分线, P为AD上任意一点. 则: AB-AC>PB-PC. ( )2、角平分线上的点到角两边的距离相等 ( )3、如果△ABC≌△A'B'C',D在BC上, D'在B'C'上,∠BAD=∠B'A'D',那么一定有AD=A'D' ( )4、已知: 如图分别以△ABC的每一条边, 在三角形外作等边三角形, △ABD、△BCE、△ACF,则CD=AE=BF. ( )5、如图, 已知: △ABC中, D是BC的中点, DE∥AB,且交AC于E, DF∥AC,且交AB于F,则DE=BF, DF=CE. ( )二、单选题:6、若△ABC和△A'B'C'的三边对应比值为 1 , 则不正确的结论是[ ]A.△ABC≌△A'B'C' B.三边对应相等C.三对角对应相等D.△ABC与△A'B'C'不全等7、若三角形中一角的平分线是它对边的中线 , 则这个三角形一定是______三角形.[ ]A.等腰B.直角C.等边D.等腰直角8、已知:如图 , △ABC是等边三角形 , D、E、F分别是三边上的中点 , 则和△ABD全等的三角形有_______个(除去△ABD)[ ]A.3 B.4 C.5 D.69、下列条件:①已知两腰;②已知底边和顶角;③已知顶角与底角;④已知底边和底边上的高, 能确定一个等腰三角形的是[ ]A.①和②B.③和④C.②和④D.①和④10、如图,已知:EA⊥AB,BC⊥AB,D为AB的中点,BD=BC,EA=AB,则下面结论错误的是[ ]A.AC=EDB.AC⊥EDC.∠C+∠E=90°D.∠D+∠C=90°11、在△ABC和△A'B'C'中, 若∠A∶∠B∶∠C=∠A'∶∠B'∶∠C' , 且AB=A'B'下面的结论不成立的是[ ]A.△ABC≌△A'B'C' B.∠A=∠A ', ∠B=∠B' , ∠C=∠C'C.AC≠A'C' D.AC=A'C', BC=B'C'.12、如图等边△AEB和等边△BDC在线段AC的同侧, 则下列式子中错误的式子是[ ]A.△ABD≌△EBCB.△NBC≌△MBDC.NBE≌△MBAD.△ABE≌△BCD13、已知:如图,在等边三角形AB,AD=BE=CF,D,E,F不是各边的中点,AE,BF,CD分别交于P,M,N在每一组全等三角形中,有三个三角形全等,在图中全等三角形的组数是[ ]A.5 B.4 C.3 D.214、若△ABC中, 有AB∶BC∶CA=2∶3∶4 , △A'B'C'中必有A'B'∶B'C'∶C'A'=2∶3∶4且周长不同, 则下面结论成立的是[ ]A.AB=A'B' , AC=A'C' , BC=B'C'B.∠A=∠A' , AB=A'B' , AC=A'C'C.△ABC≌△A'B'C'D.△ABC不全等于△A'B'C'15、已知:如图, AC=CD , ∠B=∠E=90° , AC⊥CD , 则不正确的结论是[ ]A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CEDD.∠1=∠2三、填空题:16、如图, 已知:AB=AC , D是BC边的中点, 则∠1+∠C=_________度.17、已知:如图,AB=DE,AC=DF,要证△ABC≌△DEF,所缺一个条件是__________或__________.18、有一边相等的两个等边三角形_________________________.19、在括号里加注理由.已知:△ABC中, AB=AC , BD=DC , B、D、C在同一条直线上.求证:AD⊥BC.证:在△ABD和△ACD中20、三角形全等的四种判定方法是:①________②_______③________④_________.21、已知:如图,△ABC≌△FED,且BC=DE.则∠A=__________,AD=_______.22、已知:如图,△ABC≌△DEF,BC∥ EF,∠A=∠D,BC=EF,则另外两组对应边是______,另外两组对应角是_____.23、能够完全重合的两个图形叫做_________.24、完成下面的证明.已知:如图AB=CD , BE=CF , AF=DE.求证:△ABE≌△DCF证明:∵AF=DE(已知)∴AF-EF=DE-EF( ) 即AE=DF在△ABE和△DCF中∵AB=CD , BE=CF( )AE=DF( )∴△ABE≌△DCF( )25、被等腰直角三角形斜边上的高分成的两个等腰直角三角形___________.26、已知:如图,AB=BE,∠1=∠2,∠ADE=120°,AE、BD相交于F,求∠3的度数为______.27、已知:如图, AC⊥BC于C , DE⊥AC于E , AD⊥AB于A , BC=AE.若AB=5 , 则AD=___________.29、30、等腰三角形两腰上的高_______________.四、证明题:31、已知:如图,点A、B、C、D在同一条直线上,AC=DB,AE=DF,EA⊥AD,FD⊥AD,垂足分别是A、D.求证:BE∥CF32、求证:全等三角形的对应角平分线相等.33、已知:如图,AB⊥CD,垂足为D,AD=BD.求证:AC=BC.34、已知:四边形ABCD中, AC、BD交于O点, AO=OC , BA⊥AC , DC⊥AC.垂足分别为A , C.求证:AD=BC35、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,∠1=∠2,求证:∠B=∠C36、已知:如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:BD=CE37、已知:如图,∠1=∠2,BE=CF,AC=DE,E、C在直线BF上.求证:∠A=∠D38、已知:如图, A、E、F、B在一条直线上, AC=BD , AE=BF , CF=DE.求证:AD=BC.39、如果两个三角形有两个角和第三个角的平分线对应相等,那么这两个三角形全等.40、已知:如图,AD=AE,AB=AC,BD、CE相交于O.求证:OD=OE.全等三角形001 试卷标准答案(总分:171 考试时间:132分钟)一、判断题:本大题共5小题,从第1小题到第5小题每题 2.0分小计10.0分;共计10.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新北师大版七年级数学下册第四章 三角形测试卷
一、选择题(每小题3分,共30分)
1. 有下列长度的三条线段,能组成三角形的是( )
A 、 2cm ,3cm ,4cm
B 、 1cm ,4cm ,2cm
C 、1cm ,2cm ,3cm
D 、 6cm ,2cm ,3cm 2. 在下列各组图形中,是全等的图形是( )
3.下列命题中正确的是( )
①全等三角形对应边相等; ②三个角对应相等的两个三角形全等; ③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。

A .4个
B 、3个
C 、2个
D 、1个
4.如图,已知AB=CD ,AD=BC ,则图中全等三角形共有( )
A .2对
B 、3对
C 、4对
D 、5对
5. 具备下列条件的两个三角形中,不一定全等的是 ( ) (A) 有两边一角对应相等 (B) 三边对应相等
(C) 两角一边对应相等(D )有两边对应相等的两个直角三角形
6.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )
A.带①去
B. 带②去
C. 带③去
D. 带①和②去
7.已知△ABC ≌△DEF ,∠A=70°,∠E=30°,则∠F 的度数为 ( )
(A ) 80° (B ) 70° (C ) 30° (D ) 100°
8.尺规作图作AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于
1
2
CD 长为半径画弧,两弧交于点P ,作射线OP ,
由作法得OCP ODP △≌△的根据是( )
A .SAS
B .ASA
C .AAS
D .SSS
9.如图,△ABC ≌△CDA ,并且AB=CD ,那么下列结论错误的是 ( ) (A )∠DAC=∠BCA (B )AC=CA (C )∠D=∠B (D )AC=BC
10.如图,D 在AB 上,E 在AC 上,且∠B=∠C ,
则在下列条件中,无法判定△ABE ≌△ACD 的是( )
(A )AD=AE (B )AB=AC (C )BE=CD (D )∠AEB=∠ADC
二、填空: (每小题3分,共30分)
1、全等三角形的_________和_________相等; B
C
D
A
A B C
D E
A B C
D O D
P
C
A B
2.已知△ABC 与△DEF 中 AB=DE ,∠B=∠E ,若要使△ABC ≌△DEF , 还需条件:_____________,
3.如右图,已知∠B =∠D=90°,,若要使△AB C ≌△ABD ,还要需条件:_____________, 4.如图5,⊿ABC ≌⊿ADE ,若∠B=40°,∠EAB=80°,
5.如图7,已知∠1=∠2,AB ⊥AC ,BD ⊥CD ,则图中全等三角形有 _____________;
≌ΔBOC 。

7.如图9,AE=BF ,AD ∥BC ,AD=BC ,则有ΔADF ≌ ,且DF= 。

8.如图10,在ΔABC 与ΔDEF 中,如果AB=DE ,BE=CF ,只要加上∠ =∠ 或 ∥ ,就可证明ΔABC ≌ΔDEF 。

9、已知ABC 与△DEF 中,∠B=∠DEF ,AB=DE ,要说明△ABC ≌△DEF , (1)若以“ASA ”为依据,还缺条件 (2)若以“AAS ”为依据,还缺条件 . 10、为了使一扇旧木门不变形,木工师傅在木门的背面 加钉了一根木条,这样做的道理是 。

三、证明题(每小题5分,共40分)
1.如图,已知AB=AC ,AD=AE ,求证:
A
B
C
D
2、如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠ 3=∠4
求证:(1)ABC ADC △≌△;(2)BO DO .
3.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .
(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的
三角形.(直接写出结果,不要求证明):
4、如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O.
求证:(1) △ABC ≌△AED ; (2) OB =OE .
5.已知:如图,AB=AC ,DB=DC .F 是AD 的延长线上一点. 求证: (1) ∠ABD =∠ACD (2)BF=CF
6、已知∠1=∠2,∠3=∠4,求证:AB=CD
D
C
B
A
O
1
2 3 4
O
E
D
C
B
A O
C E
B
D
A
7、 已知:如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD =CD.
试说明AD 是∠BAC 的平分线。

8、 如图,在一小水库的两测有A 、B 两点,A 、B 间的距离不能直接测得,采用方法如下:取一点可以同时到达A 、B 的点C ,连结AC 并延长到D ,使AC=DC ;同法,连结BC 并延长到E ,使BC=EC ;这样,只要测量CD 的长度,就可以得到A 、B 的距离了,这是为什么呢?根据以上的描述,请画出图形, 并写出已知、求证、证明。

七年级三角形单元测试卷
一、选择题
1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为( ) A .10 B .12 C .14 D.16
2.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是( ) A .18 B .15 C .18或15 D .无法确定 3.能将一个三角形分成面积相等的两个三角形的一条线段是 ( ) A .中线 B .角平分线 C .高线 D .三角形的角平分线 4.下列各图中,作出AC 边上的高,正确的是( )
5.如图,△ABC ≌△EDF,AF=20,EC=8,则AE 等于( ) A.6 B.8 C.10 D.12
5题 6题 7题
6.如图,AB ∥ED,CD=BF,若要说明△ABC ≌△EDF,则还需要补充的条件可以是( )
A ·
·B
C .
A.AC=EF
B.AB=ED
C.∠B=∠E
D.不用补充
7.如图,在△ABC 中,∠ABC,∠ACB 的平分线BE,CD 相交于点F,∠A=60°,则∠BFC 等于( ) A.118° B.119° C.120° D.121°
二、填空题
8.在△ABC 中,AB =6 cm ,AC =8 cm 那么BC 长的取值范围是___________.
9.已知△ABC 中,∠A ∶∠B ∶∠C =2∶3∶4,则∠A 、∠B 、∠C 的度数为 __________ . 10.等腰三角形的两边长为4和2,那么它的周长为___________.
11.如图△ABC 中,∠A =40°,∠B = 72°,CE 平分∠ACB,CD ⊥AB 于D,DF ⊥CE,则∠CDF = _____度。

12.如图△ABC 中,AD 是BC 上的中线,BE 是∆ABD 中AD 边上的中线,若∆ABC 的面积是24,则∆ABE 的面积是________。

11 题 12题 三、解答题
13.如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在直线L 两侧,测得AB =DE ,AC =DF ,BF =EC.
(1)求证:△ABC ≌△DEF ;
(2)指出图中所有平行的线段,并说明理由.
A B C
D
E
14.如图,AB ⊥BC ,ΔABE ≌ΔECD .判断AE 与DE 的关系,并证明你的结论.
15.如图:在△ABC 中,∠ACB=90°,AC=BC ,过点C 在△ABC 外作直线MN ,AM ⊥MN 于M ,BN ⊥MN 于N 。

求证:MN=AM+BN 。

N
M
C
B
A。

相关文档
最新文档