二次函数图象与字母系数的关系

合集下载

小专题7二次函数的图象与字母系数之间的关系

小专题7二次函数的图象与字母系数之间的关系

小专题7 二次函数的图象与字母系数之间的关系【例】(恩施中考)抛物线y=ax2+bx+c的对称轴为直线x=-1,部分图象如图所示,下列判断:①abc>0;②b2-4ac>0;③9a-3b+c=0;④若点(-0.5,y1),(-2,y2)均在抛物线上,则y1>y2;⑤5a-2b+c<0.其中正确的个数是( ) A.2 B.3 C.4 D.5根据抛物线y=ax2+bx+c的图象判断字母系数a,b,c之间的关系开口方向开口向上a>0开口向下a<0对称轴位置对称轴为y轴b=0对称轴在y轴左侧a与b同号对称轴在y轴右侧a与b异号与y轴交点过原点c=0与y轴交于正半轴c>0与y轴交于负半轴c<0与x轴交点与x轴有唯一交点b2-4ac=0与x轴有两个交点b2-4ac>0与x轴没有交点b2-4ac<0判断a,b,c相关的常见代数式与零的大小关系a+b+c或a-b+c 令x=1或-1,看函数值4a+2b+c或4a-2b+c 令x=2或-2,看函数值9a+3b+c或9a-3b+c 令x=3或-3,看函数值2a+b 看对称轴与直线x=1的位置2a-b 看对称轴与直线x=-1的位置1.在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是( ) A.abc<0,b2-4ac>0 B.abc>0,b2-4ac>0C.abc<0,b2-4ac<0 D.abc>0,b2-4ac<02.(成都中考)如图,二次函数y=ax2+bx+c的图象经过点A(1,0),B(5,0),下列说法正确的是( )A.c<0B.b2-4ac<0C.a-b+c<0D.图象的对称轴是直线x=33.(枣庄中考)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是( )A.b2<4ac B.ac>0C.2a-b=0 D.a-b+c=04.(鄂州中考)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2-b2<0;④a+b≤m(am+b)(m为实数),其中结论正确的个数为( )A.1 B.2 C.3 D.4.5.(荆门中考)抛物线y=ax2+bx+c(a,b,c为常数)的顶点为P,且抛物线经过点A(-1,0),B(m,0),C(-2,n)(1<m<3,n<0).下列结论:①abc>0;②3a+c<0;③a(m-1)+2b>0;④a=-1时,存在点P使△PAB为直角三角形.其中正确结论的序号为.小专题7 二次函数的图象与字母系数之间的关系【例】B 【思路点拨】 ①由对称轴在y 轴左侧,可得出ab 的符号,再结合图象与y 轴交点的位置,可得出c 的符号,即可判断abc 的符号;②由图象与x 轴交点的情况,可判断b 2-4ac 的符号;③令x =-3,看函数值的符号,即可判断9a -3b +c 与0的大小关系; ④比较两点与对称轴的距离,结合图象的开口方向,可得出结论;⑤由对称轴位置可得a 与b 的等量关系,再由图象经过点(1,0),得关于a ,b ,c 的一个等量关系,进而转化得到a 与c 的等量关系,分别将b ,c 用含a 的式子代入5a -2b +c 中,结合a 的符号即可判断.1,B 2,D 3,D 4,C 提示:②③④正确 5,②③【解析】由已知得a <0,b >0,c =b -a >0.①abc <0;②当x =3时,y <0,即9a +3b +c =9a +3(a +c)+c =12a +4c =4(3a +c)<0;③a(m -1)+2b =-b +2b =b >0;④a =-1时,P(b 2,b +1+b24),则△PAB 为等腰直角三角形,b +1+b 24=b2+1,解得b =0或b =-2不合题意.。

小专题7 二次函数的图象与字母系数之间的关系

小专题7 二次函数的图象与字母系数之间的关系
湖北三市专版
数学
九年级上册 RJ
同步练习题7 二次函数的图象与字母系数之间的关系
【例】 抛物线 y=ax2+bx+c 如图所示,则用“>”“<”或
“=”填空:
(1)a < 0; (3)c > 0;
(2)b > 0; (4)b2-4ac > 0;
(5)-2ba > 0;
1.(2021·株洲)二次函数 y=ax2+bx+c(a≠0)的图象如图所示, 点 P 在 x 轴的正半轴上,且 OP=1.设 M=ac(a+b+c),则 M 的取 值范围为( D )
A.M<-1 B.-1<M<0 C.M<0 D.M>0
2.抛物线 y=ax2+bx+c 如图所示,则用“>”“<”或“=” 填空:
(1)-2ba < 0;
(2)2a-b =0;
(3)a+b+c=0; (4)a-b+c < 0;
(5)4a+2b+c > 0;(6)4a-2b+c < 0.
3.如图所示,抛物线 y=ax2+bx+c 的顶点为 B(-1,3),与 x 轴的交点 A 在点(-3,0),(-2,0)之间,以下结论:①b2-4ac=0; ②2a-b=0;③a+b+c<0;④c-a=3;⑤am2+bm≤a-b,其中 正确的是②③④⑤ (填序号).
2a+b
看对称轴与直线 x=1 的位置
c 相关的
2a-b
看对称轴与直线 x=-1 的位置
常见代数 a+b+c 或 a-b+c
令 x=1 或-1,看函数值
式与零的 4a+2b+c 或 4a-2b+c 令 x=2 或-2,看函数值
大小关系 9a+3b+c 或 9a-3b+c 令 x=3 或-3,看函数值

二次函数图像与字母系数的关系

二次函数图像与字母系数的关系

例1:已知二次函数y=x2+kx+9. ①当k为何值时,对称轴为y轴;
②当k为何值时,抛物线与x轴有两个交点; ③当k为何值时,抛物线与x轴只有一个交点.
学以致用1:不论m为何实数时,抛物线y=x2-mx-1与x轴的交点( ).
A.有0个 B.有1个
C.有2个 D.无法确定
5
学以致用2:已知方程2x2-3x+5=0的两个根是-1, 2
⑥ b2 4ac _____0 ⑦ 2a b ____ 0 ⑧ 2a b ____ 0
练习题
1(龙岩中考)若二次函数y=ax2+bx+c(a≠0)的图象如图所示, 则下列选项正确的是( )
A.a>0 C.ac>0
B.c>0 D.bc<0
2.(兰州中考)二次函数y=ax2+bx+c(a≠0)的图象 如图所示,其对称轴为x=1,下列结论中错是( )
④若(-2,y1),(5,y2)是抛物线上的两点, 则y1<y2.上述4个 判断中,正确的是( )
A.①② C.①③④
B.①④ D.②③④
5.(泰安中考)在同一坐标系内,一次函数y=ax+b与 二次函数y=ax2+8x+b的图象可能是( )
6.(遵义中考)已知抛物线y=ax2+bx和直线y=ax+b在 同一坐标系内的图象如图,其中正确的是( )
(2)求抛物线与y轴的交点B的坐标.
3.已知二次函数y=x2+(2m+1)x+m2的图象与x轴有两个交点. (1)求m的取值范围;
(2)当这两个交点横坐标的平方和等于7时,求m的值。
4.已知二次函数
y 1 x2 2x 1 2

二次函数y=ax2+bx+c的图象与字母系数的关系PPT教学课件

二次函数y=ax2+bx+c的图象与字母系数的关系PPT教学课件

12.(阿凡题:)如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1, 0),B(3,2).
(1)求m的值和抛物线的解析式; (2)求不等式x2+bx+c>x+m的解集;(直接写出答案) (3)若M(a,y1),N(a+1,y2)两点都在抛物线y=x2+bx+c上,试比较y1 与y2的大小.
2.(2016·烟台)二次函数y=ax2+bx+c的图象如图所示,下列结论:① 4ac<b2;②a+c>b;③2a+b>0.其中正确的有( )
A.①② B.①③ C.②③ D.①②③
3.二次函数 y=ax2+bx+c(a≠0)的图象如图所示,下列结论正 确的是( )
A.a<0 B.b2-4ac<0 C.当-1<x<3 时,y>0 D.-2ba=1
A.1 ·广安)已知二次函数y=ax2+bx+c(a≠0)的图象如图
所示,并且关于x的一元二次方程ax2+bx+c-m=0有两个不相等的实数根,
下列结论:①b2-4ac<0;②abc>0;③a-b+c<0;④m>-2.其中,正
确的个数有(
)
A.1 B.2 C.3 D.4
解:(1)x=-5或x=1 (2)-5<x<1 (3)y≤9
7.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P,Q两点,
则函数y=ax2+(b-1)x+c的图象可能是(
)
A
8.(阿凡题:1070544)(2016·巴中)如图是二次函数 y=ax2+bx+c 图 象的一部分,图象过点 A(-3,0),对称轴为直线 x=-1,给出四个结论: ①c>0;②若点 B(-23,y1),C(-25,y2)为函数图象上的两点,则 y1<y2; ③2a-b=0;④4ac4-a b2<0.其中,正确结论的个数是( )

二次函数与字母系数的关系(教案)

二次函数与字母系数的关系(教案)
3.重点难点解析:在讲授过程中,我会特别强调系数a对图像开口方向和宽度的影响,以及系数b、c对图像对称轴和y轴交点的影响。对于难点部分,我会通过实例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次函数相关的问题,如“如何通过改变系数来得到特定的图像”。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次函数的基本概念。二次函数是形如y=ax^2+bx+c的函数,其中a、b、c是常数且a≠0。它在数学和物理学等多个领域都有广泛应用,如描述物体抛掷运动的轨迹。
2.案例分析:接下来,我们来看一个具体的案例。通过分析y=x^2和y=-2x^2+4x+1这两个函数的图像,了解系数a、b、c对图像的具体影响。
- b对图像对称轴的影响;
- c对图像与y轴交点的影响;
3.结合具体实例,通过调整系数,观察图像变化,总结规律;
4.解决实际问题,运用字母系数的关系解决二次函数相关问题。
二、核心素养目标
本节课的核心素养目标旨在培养学生的以下能力:
1.掌握二次函数图像的基本性质,提高学生的数形结合思维能力,强化几何直观;
最后,关于课堂总结部分,我觉得自己在引导学生们进行反思和总结时,还可以做得更好。在今后的教学中,我会更加注重这一点,让学生们在总结过程中,能够更好地梳理所学知识,提高他们的自主学习能力。
二次函数与字母系数的关系(教案)
一、教学内容
本节教学内容选自人教版《数学》八年级下册第11章“二次函数”,重点探讨二次函数y=ax^2+bx+c(a≠0)中字母系数a、b、c对函数图像的影响。具体内容包括:
1.二次函数图像的基本性质;

二次函数的图像与字母a、b、c的关系

二次函数的图像与字母a、b、c的关系

课次教学方案教学过程:一、知识要点二次函数y=ax 2+bx+c 系数符号确实定:〔1〕a 由抛物线开口方向确定:开口方向向上,那么a >0;否那么a <0. 〔2〕b 由对称轴和a 的符号确定:由对称轴公式x=判断符号.〔3〕c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,那么c >0;否那么c <0.〔4〕b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b 2-4ac=0; 没有交点,b 2-4ac <0.〔5〕当x=1时,可确定a+b+c 的符号,当x=-1时,可确定a-b+c 的符号. 〔6〕由对称轴公式x=,可确定2a+b 的符号.二、根底练习1、抛物线y=ax 2+bx+c 〔a ≠0〕在平面直角坐标系中的位置如下图,那么以下结论中,正确的选项是〔 D 〕 A 、a >0 B 、b <0 C 、c <0 D 、a+b+c >02、二次函数y=ax 2+bx+c 的图象如图,其对称轴x=-1,给出以下结果①b 2>4ac ; ②abc >0;③2a+b=0; ④a+b+c >0;⑤a-b+c <0,那么正确的结论是〔 D 〕 A 、①②③④ B 、②④⑤ C 、②③④ D 、①④⑤任课教师学科 版本 年段 辅导类型 上课时间学生签名数学北师大初三课题二次函数y=a 2x +bx+c 系数符号确实定方法课次教学目标掌握二次函数中字母 a 、b 、c 三者与图象之间的关系。

教学策略 教学重点、难点:利用图形的性质与特殊性来确定字母a 、b 、c 三者之间的关系。

3、如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为〔21,1〕,以下结论:①ac <0;②a+b=0;③4ac-b 2=4a ;④a+b+c <0.其中正确结论的个数是〔 C 〕1\2\3 A 、1 B 、2 C 、3 D 、44、二次函数y=ax 2+bx+c 的图象如下图,对称轴为直线x=1,那么以下结论正确的选项是〔B 〕 A 、ac >0 B 、方程ax 2+bx+c=0的两根是x 1=-1,x 2=3 C 、2a-b=0 D 、当x >0时,y 随x 的增大而减小5、二次函数y=ax 2+bx+c 〔a ,b ,c 为常数,a ≠0〕的图象如下图,有以下结论: ①abc >0,②2b -4ac <0,③a-b+c >0,④4a-2b+c <0,其中正确结论的个数是〔A4 〕 A 、1 B 、2 C 、3 D 、46、〔如下图的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四条信息: 〔1〕b 2-4ac >0;〔2〕c >1;〔3〕2a-b <0;〔4〕a+b+c <0.你认为其中错误的有〔D2〕 A 、2个 B 、3个 C 、4个 D 、1个7、抛物线y=ax 2+bx+c 〔a ≠0〕的图象如下图,那么以下说法正确的选项是〔C 〕 A 、b 2-4ac <0 B 、abc <0 C 、 -a2b<-1 D 、a-b+c <08、二次函数y=ax 2+bx+c 〔a ≠0〕的图象如下图,现有以下结论:①b 2-4ac >0 ②a >0 ③b >0 ④c >0 ⑤9a+3b+c <0,那么其中结论正确的个数是〔B 〕1/2/5 A 、2个 B 、3个 C 、4个 D 、5个9、二次函数y=ax 2的图象开口向上,那么直线y=ax-1经过的象限是〔D 〕 A 、第一、二、三象限 B 、第二、三、四象限 C 、第一、二、四象限 D 、第一、三、四象限10、二次函数y=ax 2+bx+c 的图象如下图,那么以下结论正确的选项是〔D 〕A 、a <0,b <0,c >0,b 2-4ac >0B 、a >0,b <0,c >0,b 2-4ac <0C 、a <0,b >0,c <0,b 2-4ac >0D 、a <0,b >0,c >0,b 2-4ac >011、二次函数y=ax 2+bx+c 的图象如下图,那么以下判断不正确的选项是〔B 〕 A 、ac <0 B 、a-b+c >0C 、b=-4aD 、关于x 的方程a 2x +bx+c=0的根是x 1=-1,x 2=512、二次函数y=ax 2+bx+c 的图象如下图,那么a ,b ,c 满足〔A 〕A 、a <0,b <0,c >0,2b -4ac >0 B 、a <0,b <0,c <0,2b -4ac >0 C 、a <0,b >0,c >0,2b -4ac <0 D 、a >0,b <0,c >0,2b -4ac >013、二次函数y=2ax +bx+c 〔a ≠0〕的图象如下图,有以下4个结论,其中正确的结论是〔B 〕 A 、abc >0 B 、b >a+c C 、2a-b=0 D 、2b -4ac <014、二次函数y=2ax +bx+c 〔a ≠0〕的图象如下图,那么以下结论: ①ac >0;②a-b+c <0;③当x <0时,y <0;④方程2ax +bx+c=0〔a ≠0〕有两个大于-1的实数根.其中错误的结论有〔C 〕 A 、②③ B 、②④ C 、①③ D 、①④15、如下图为二次函数y=ax 2+bx+c 〔a ≠0〕的图象,在以下选项中错误的选项是〔C 〕 A 、ac <0 B 、x >1时,y 随x 的增大而增大 C 、a+b+c >0 D 、方程ax 2+bx+c=0的根是1x =-1,2x =316、二次函数y=ax 2+bx+c 的图象如下图,以下结论错误的选项是〔B 〕 A 、ab <0 B 、ac <0C 、当x <2时,函数值随x 增大而增大;当x >2时,函数值随x 增大而减小D 、二次函数y=2ax +bx+c 的图象与x 轴交点的横坐标就是方程2ax +bx+c=0的根17、二次函数y=ax 2+bx+c 的图象如下图,那么以下结论正确的选项是〔D 〕 A 、a >0 B 、c <0 C 、b 2-4ac <0 D 、a+b+c >018、二次函数y=ax 2+bx+c 〔a ≠0〕的图象如下图,以下结论①a ,b 异号;②当x=1和x=3时,函数值相等; ③4a+b=0;④当y=4时,x 的取值只能为0,结论正确的个数有〔 C 〕个.1/2/3 A 、1 B 、2 C 、3 D 、4三、能力练习c bx ax y ++=2的图象如图 l -2-2所示,那么a 、b 、c 满足〔 〕 A .a <0,b <0,c >0 B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >02.二次函数c bx ax y ++=2(a≠0〕且a <0,a -b+c >0,那么一定有〔 〕A .b 2-4ac >0B .b 2-4ac =0C .b 2-4ac <0D .b 2-4ac≤03.二次函数c bx ax y ++=2的图象如图1-2-10,那么点〔b ,c a〕在〔 〕A .第一象限B .第二象限C .第三象限D .第四象限4.假设二次函数c bx ax y ++=2的图象如图,那么ac_____0〔“<〞“>〞或“=〞〕第4题图5.二次函数c bx ax y ++=2的图象如图 1-2-14所示,那么以下关于a 、b 、c 间的关系判断正确的选项是〔 〕 A .ab <0 B 、bc <0 C .a+b +c >0 D .a -b 十c <0四、知识小结:例题.抛物线c bx ax y ++=2过三点〔-1,-1〕、〔0,-2〕、〔1,l 〕.〔1〕求抛物线所对应的二次函数的表达式; 〔2〕写出它的开口方向、对称轴和顶点坐标;〔3〕这个函数有最大值还是最小值? 这个值是多少?五、中考真题回忆:〔09佛山〕19.〔1〕请在坐标系中画出二次函数22y x x =-+的大致图象;〔2〕在同一个坐标系中画出22y x x =-+的图象向上平移两个单位后的图象; 〔3〕直接写出平移后的图象的解析式. 注:图中小正方形网格的边长为1.〔1〕画图〔略〕注:根本反映图形的特征〔如顶点、对称性、变化趋势、平滑〕给2分, 满足其中的两至三项给1分,满足一项以下给0分; 〔2〕画图、写解析式〔略〕注:画图总分值2分,同〔1〕的标准;写解析式2分〔无过程不扣分〕.〔11·佛山〕21.如图,二次函数y =ax 2+bx +c 的图像经过A 〔-1,-1〕、B 〔0,2〕、C 〔1,3〕; 〔1〕求二次函数的解析式; 〔2〕画出二次函数的图像;【答案】解:〔1〕根据题意,得⎩⎪⎨⎪⎧a -b +c =-1c =2a +b +c =3………………2分解得a =-1,b =2,c =2………………4分所以二次函数的解析式为y =-x 2+2x +2………………5分〔2〕二次函数的图象如图………………8分 给分要点:顶点、对称、光滑〔各1分〕〔12佛山〕xyO第19题图xyoABC1xyoABC122.(1)任选以下三个条件中的一个,求二次函数c bx ax y ++=2的解析式; ①y 随x 变化的局部数值规律如下表:②有序数对()0,1-、()4,1、()0,3满足c bx ax y ++=2; ③函数c bx ax y ++=2的图象的一局部〔如图〕. (2)直接写出二次函数c bx ax y ++=2的三个性质.解析:〔1〕方法一:由 可得:C=3,0=+-c b a ,4=++c b a ,所以1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y方法二:由②可得:0=+-c b a ,4=++c b a ,039=++c b a ,解之得:1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y 方法三:由③可得:C=3,0=+-c b a ,12=-ab,解之得:1-=a ,2=b ,C=3, 所以二次函数解析式为:322++-=x x y 〔三种选其一即可〕〔2〕1、对称轴为1=x , 2、开口向下 3、与x 轴有2个交点 4、交 y 轴正半轴考察知识:待定系数法求二次函数解析式、二次函数的性质及图像〔2021•佛山〕24.如图①,抛物线y=ax 2+bx+c 经过点A 〔0,3〕,B 〔3,0〕,C 〔4,3〕.x -1 0 1 2 3 y343〔1〕求抛物线的函数表达式;〔2〕求抛物线的顶点坐标和对称轴;〔3〕把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S〔图②中阴影局部〕.分析:〔1〕把点A、B、C代入抛物线解析式y=ax2+bx+c利用待定系数法求解即可;〔2〕把抛物线解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可;〔3〕根据顶点坐标求出向上平移的距离,再根据阴影局部的面积等于平行四边形的面积,列式进展计算即可得解.解:〔1〕∵抛物线y=ax2+bx+c经过点A〔0,3〕,B〔3,0〕,C〔4,3〕,∴,解得,所以抛物线的函数表达式为y=x2﹣4x+3;〔2〕∵y=x2﹣4x+3=〔x﹣2〕2﹣1,∴抛物线的顶点坐标为〔2,﹣1〕,对称轴为直线x=2;〔3〕如图,∵抛物线的顶点坐标为〔2,﹣1〕,∴PP′=1,阴影局部的面积等于平行四边形A′APP′的面积,平行四边形A′APP′的面积=1×2=2,∴阴影局部的面积=2.点评:此题考察了待定系数法求二次函数解析式,二次函数的性质,二次函数图象与几何变换,〔3〕根据平移的性质,把阴影局部的面积转化为平行四边形的面积是解题的关键.【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。

专题:二次函数的图象与字母系数的关系

专题:二次函数的图象与字母系数的关系

专题:二次函数y =ax 2+bx +c (a ≠0)的图象与字母系数的关系二次函数y =ax 2+bx +c (a ≠0)系数符号的确定:⑴a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0.⑵b 由对称轴和a 的符号确定:由对称轴公式x = -2ba判断符号(左同右异). ⑶c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0.⑷b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b 2-4ac =0;没有交点,b 2-4ac <0. ⑸当x =1时,y =a +b +c ,当x =-1时,y =a -b +c .故由点(1, a +b +c ) 所在的象限,可判断a +b +c 的符号;由点(-1, a -b +c ) 所在的象限,可判断a -b +c 的符号.同理,当x =2时,可确定4a +2b +c 的符号,当x =-2时,可确定4a -2b +c 的符号……⑹由对称轴x = -2b a 与x =±1的位置关系,可确定2a ±b 的符号.当x = -2b a =1时,b = -2a ,即2a +b =0;当x = -2ba=-1时,b = 2a ,即2a -b =0.例1.抛物线y =ax 2+bx +c 图象如图所示,则下列式子中正确的个数为( )①a <0;②b <0;③c >0;④a +b +c >0;⑤ 4a -2b +c <0;⑥2a +b >0;⑦b 2-4ac >0;⑧4a +c <0C .5D .6c 的图象如图所示,给出下列结论:①2a +b >0;②b >a >c ;③若-1<m <n <1,则m +n <-ba;④3|a |+|c |<2|b |.其中正确的结论是 (写出你认为正确的所有结论序号).例3.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,与y 轴相交点C ,与x 轴负半轴相交点A ,且OA =OC ,下列5个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④2a +b =0;⑤c +1a= -2,其中正确的结论有 .(请填序号)强化训练1.如图为二次函数y =ax 2+bx +c (a ≠0)的图象,则下列说法:①a >0②2a +b =0 ③a +b +c >0 ④当-1<x <3时,y >0,其中正确的个数为( )A .1 B .2 C .3 D .42.已知二次函数y =ax 2+bx +c +2的图象如图所示,顶点为(-1,0),下列结论:①abc <0;②b 2-4ac =0;③a >2;④4a -2b +c >0.其中正确结论的个数是( )A .1 B .2 C .3 D .43.已知二次函数y =ax 2+bx +c 的图象如图所示,则下列结论:①c =2;②b 2-4ac >0;③2a +b =0;④a -b +c <0.其中正确的为( )A .①②③ B .①②④ C .①② D .③④4.如图是二次函数y =ax 2+bx +c =(a ≠0)图象的一部分,对称轴是直线x =-2.关于下列结论:①ab <0;②b 2-4ac >0;③9a -3b +c <0;④b -4a =0;⑤方程ax 2+bx =0的两个根为x 1=0,x 2=-4,其中正确的结论有( ) A .①③④ B .②④⑤ C .①②⑤ D .②③⑤5.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列5个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b >m (am +b )(m ≠1的实数).其中正确的结论有( ) A .2个 B .3个 C .4个 D .5个6.如图,抛物线y =ax 2+bx +c (a ≠0)过点(1,0)和点(0,-2),且顶点在第三象限,设P =a -b +c ,则P 的取值范围是( )A .-4<P <0 B .-4<P <-2 C .-2<P <0 D .-1<P <07.已知二次函数y =ax 2+bx +c 的图象与x 轴交于点(-2,0)、(x 1,0),且1<x 1<2,与y 轴的正半轴的交点在(0,2)的下方.下列结论:①4a -2b +c =0;②a -b +c <0;③2a +c >0;④2a -b +1>0.其中正确结论的个数是( )个.A .4个B .3个C .2个D .1个8.如图,已知二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点A (-1,0),对称轴为直线x =1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论:①当x >3时,y <0;②3a +b <0;③-1≤a ≤-23;④4ac -b 2>8a ;其中正确的结论是( )A .①③④ B .①②③ C .①②④ D .①②③④9. 如图,二次函数y =ax 2+bx +c (a ≠0)的图象经过点(1,2)且与x 轴交点的横坐标分别为x 1,x 2,其中-1<x 1<0,1<x 2<2,下列结论:4a +2b +c <0,2a +b <0,b 2+8a >4ac ,a <-1,其中结论正确的有( ) A .1个B .2个C .3个D .4个10.抛物线y =ax 2+bx +c (a ≠0)满足条件:(1)4a -b =0;(2)a -b +c >0;(3)与x 轴有两个交点,且两交点间的距离小于2.以下有四个结论:①a <0;②c >0;③a +b +c <0;④4c <a <3c,其中所有正确结论的序号是 .有已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0),(x1,0),且1<x1<2,与y轴正半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c>0;③4a+c<0;④2a-b+1>0.其中正确的结论是.(填写序号)。

二次函数图象与字母系数的关系课件

二次函数图象与字母系数的关系课件
二次函数 图象与字母系数的关系
单击此处添加文本具体内容
演讲人姓名
CLICK HERE TO ADD A TITLE
字母符号
图象的特征
a>0
开口_____________________
a<0
开口_____________________
b=0
对称轴为_____轴
a、b同号
对称轴在y轴的____侧
a、b异号
o
x
y
A
3.已知二次函数y=ax²+bx+c的图象如图所示,则点P(a,bc)在第____象限. o x y 三
4.若二次函数y=ax2+bx+c 的图象如下,与x轴的一个交点为(1,0),则下列各式中不成立的是( ) A.b2-4ac>0 B.abc>0 C.a+b+c=0 D.a-b+c<0 1 x y o -1 B
开口向上,a>0
对称轴在y轴左侧,x<0
对称轴在y轴右侧,x>0
x=0时,y=c.
x
y
O
a3___ 0
b3___ 0
c3___ 0
a4___ 0
b4___ 0
c4___ 0
开口向下,a<0
对称轴是y轴,x=0
对称轴在y轴右侧,x>0
x=0时,y=c.
1.关于抛物线与a、b、c以及b²-4ac的符号关系: (1)开口方向由a决定; (2)对称轴位置由a、b决定,“左同右异”: 对称轴在y轴左侧时,a、b同号, 对称轴在y轴右侧时,a、b异号; (3)与y轴的交点由c决定,“上正下负”, c为0时图象经过原点. (4)抛物线y=ax²+bx+c与x轴的交点由b²-4ac决定:①当b²-4ac>0时,与x轴有两个不同交点; ②当b²-4ac=0时,与x轴只有一个交点(顶点在x轴上) ; ③当b²-4ac<0时,抛物线与x轴无交点;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数图象与字母系数的关系
教学目标:
1.准确掌握二次函数图象与字母系数a,b,c 以及ac b 42-的符号之间的关系. 2.能通过二次函数的图象确定字母a,b,c 的值及ac b 42-的符号.
教学重点:准确掌握二次函数图象与字母系数a,b,c 以及ac b 42-的符号之间的关系. 教学难点:准确掌握二次函数图象与字母系数a,b,c 以及ac b 42-的符号之间的关系. 教学过程:一、知识构架
知识点:二次函数图象与字母系数a,b,c 以及ac b 42
-的符号之间的关系 (1)a 的符号:由抛物线的开口方向确定 开口向上 a>0 开口向下 a<0
(2)c 的符号:由抛物线与y 轴的交点位置确定 交点在y 轴正半轴 c>0 交点在y 轴负半轴 c<0 交点在坐标原点 c=0 (3)b 的符号:由对称轴的位置及a 的符号确定 对称轴在y 轴左侧 a,b 同号 对称轴在y 轴右侧 a,b 异号 对称轴在y 轴 b=0
(4)ac b 42
-的符号:由抛物线与x 轴的交点个数确定 与x 轴有两个交点 042>-ac b 与x 轴有一个交点 042=-ac b
与x 轴无交点 042<-ac b
(5)a+b+c 的符号:因为x=1时,y=a+b+c,所以 a+b+c 的符号由x=1时,对应的y 值确定 a-b+c 的符号:因为x=-1时,y=a-b+c,所以a-b+c 的符号由x=-1时,对应的y 值确定。

抛物线上几个特殊点的坐标所决定的代数式的正负:(1,a+b+c ), (-1,a-b+c ), (2,4a+2b+c ), (-2,4a-2b+c ),
(6) 判断2a+b 与2a-b 的正负经常由对称轴与±1的关系确定 二、典型例题
例1 (1) 已知抛物线y=ax 2+bx+c (a ≠0)在平面直角坐标系中的 位置如图所示,则下列结论中,正确的是( )
A 、a >0
B 、b <0
C 、c <0
D 、a+b+c >0
(2)已知抛物线y=ax 2+bx+c 的图象如图所示,则下列结论:①abc >0;②a+b+c=2; ③a <;④b >1.其中正确的结论是( ) A .①② B .②③ C .③④ D .②④
例2 二次函数)0(2≠++=a c bx ax y 的图象如图所示,则一次函数
b ax y +=与反比例函数x
c
y =
在同一平面直角坐标系中的大致图象为( ) 练习:1.如图001是二次函数)0(2≠++=a c bx ax y 的图象,下列判断:
✍0<a ✍0>b ✍0>c ④0<++c b a ⑤02<+b a ,正确的 (填序号) 2.如图002是二次函数)0(2≠++=a c bx ax y 的图象,下列判断:
✍042>-ac b ✍1>c ✍02<-b a ④0<++c b a ⑤)1()(-≠-<+m b a b am m 其中错误的有 (填序号)
3.二次函数)0(2≠++=a c bx ax y 的图象如图所示,则函数x
a
y =与c bx y +=在同一直角坐标系内的大致图象是( ) 三、课堂小结:谈谈你的收获 四、课下作业
1.如图003是二次函数)0(2≠++=a c bx ax y 的图象一部分,则以下正确的有✍a b 2>; ②02=++c bx ax 的两根分别为-3和1;✍02<+-c b a ④0=++c b a ⑤08>+c a
其中正确的有 (填序号)
2.如图004是二次函数)0(2≠++=a c bx ax y 的图象,有下列5个结论:✍0>abc ✍c a b +<✍024>++c b a ④0<++c b a ⑤)1()(≠+<+m b a b am m ⑥b a b am m +≤+)(;你认为其中正确的有 (填序号)
3.抛物线c bx ax y ++=2的顶点为D (-1,2),与x 轴的一个点A 在点(-3,0)和(-2,0)之间,其部分图象如图所示,则以下结论:①b2-4ac <0②a +b +c <0③c -a =2 ④方程ax2+bx +c -2=0有两个不相等的实数根.正确的有()个 A .1个 B .2个 C .3个 D .4个
4.如图是二次函数)0(2≠++=a c bx ax y 的图象一部分,x=-1是对称轴,有下列判断: ①b-2a=0;②4a-2b+c <0;③a-b+c=-9a ;④若(-3,y 1),(2
3
,y 2)是抛物线上两点,则y 1>y 2,其中正确的是( )
5.函数b ax y +=的图象经过地一、二、三象限,那么函数bx ax y +=2的图像大致是( )
6.二次函数)0(2≠++=a c bx ax y 的大致图象如图,下列说法错误的是( ) A.函数有最小值 B.对称轴是直线2
1=x C.当2
1
<
x ,y 随x 的增大而减小 D.当-1<x <2时,y >0 7.小轩从如图所示的函数)0(2≠++=a c bx ax y 的图象中,观察得出了下面五条信
息:①0>ab ②a+b+c <0;③b+2c >0;④a-2b+4c >0;⑤b a 2
3
=你认为其中正确信息的
个数有( ) A .2个 B .3个 C .4个 D .5个
8.如图所示抛物线是二次函数)0(2≠++=a c bx ax y 的图象,给出下列结论: ①abc >0;②b+2a=0;③抛物线与x 轴的另一个交点为(4,0);④a+c >b ;⑤3a+c <0. 其中正确的结论有( ) A.5个 B.4个 C.3个 D.2个。

相关文档
最新文档