数字图像实验三图像增强
图像处理实验报告

图像处理实验报告图像处理实验报告一、引言图像处理是计算机科学与工程领域的一个重要研究方向,它涉及到对数字图像进行获取、处理、分析和显示等一系列操作。
本实验旨在通过使用图像处理技术,对一幅给定的数字图像进行处理和分析,以探索图像处理的原理和应用。
二、实验目的本实验有以下几个目的:1. 理解图像处理的基本概念和原理;2. 掌握图像处理的常用技术和方法;3. 熟悉图像处理软件的使用。
三、实验步骤1. 图像获取在本实验中,我们选择了一张风景图作为实验对象。
该图像是通过数码相机拍摄得到的,保存在计算机中的文件格式为JPEG。
我们使用图像处理软件将该图像导入到程序中,以便进行后续的处理和分析。
2. 图像预处理在进行图像处理之前,我们需要对图像进行预处理。
预处理的目的是去除图像中的噪声、平滑图像的边缘等。
我们使用了均值滤波和中值滤波两种常用的图像平滑方法。
通过对比两种方法的效果,我们可以选择合适的方法来进行图像预处理。
3. 图像增强图像增强是指通过一系列的操作,使得图像在视觉上更加鲜明、清晰、易于观察。
在本实验中,我们使用了直方图均衡化和灰度拉伸两种图像增强方法。
直方图均衡化通过对图像的像素值进行变换,使得图像的直方图更加均匀,从而增强图像的对比度。
灰度拉伸则是通过对图像的像素值进行线性变换,将图像的灰度范围拉伸到更广的范围内,从而增强图像的细节。
4. 图像分割图像分割是将图像分成若干个互不重叠的区域,每个区域具有一定的意义和特征。
在本实验中,我们使用了阈值分割和边缘检测两种图像分割方法。
阈值分割是指通过设置一个合适的阈值,将图像中的像素分为两个类别。
边缘检测则是通过检测图像中的边缘信息,将图像分割为不同的区域。
5. 图像特征提取图像特征提取是指从图像中提取出具有一定意义和特征的信息。
在本实验中,我们选择了纹理特征和颜色特征两种常用的图像特征提取方法。
纹理特征提取通过对图像的纹理进行分析,提取出图像的纹理特征。
图像增强实验报告

图像增强实验报告图像增强实验报告引言:图像增强是数字图像处理中的重要技术之一,它可以通过改变图像的亮度、对比度、色彩等参数,使图像更加清晰、细节更加突出。
本实验旨在探究不同图像增强方法对图像质量的影响,并比较它们的效果。
一、实验目的通过实验比较不同的图像增强方法,包括直方图均衡化、拉普拉斯算子增强、灰度变换等,对图像质量的影响,了解各种方法的优缺点,为实际应用提供参考。
二、实验步骤1. 实验准备:准备一组包含不同场景、不同光照条件下的图像样本,以及实验所需的图像处理软件。
2. 直方图均衡化:将图像的直方图进行均衡化,使得图像的像素值分布更加均匀,从而提高图像的对比度和亮度。
3. 拉普拉斯算子增强:使用拉普拉斯算子对图像进行边缘增强,突出图像的细节和纹理。
4. 灰度变换:通过调整图像的灰度级别,改变图像的亮度和对比度,使图像更加清晰明亮。
5. 实验结果分析:对比不同图像增强方法处理后的图像,分析它们在视觉效果上的差异,并根据实验结果评估各种方法的优劣。
三、实验结果与讨论在本次实验中,我们选择了一张室内拍摄的暗淡图像作为样本进行增强处理。
首先,我们对该图像进行了直方图均衡化处理。
结果显示,通过直方图均衡化,图像的亮度和对比度得到了明显的提升,细节也更加清晰可见。
然而,由于直方图均衡化是全局处理,可能会导致图像的局部细节过于突出,从而影响整体视觉效果。
接下来,我们采用了拉普拉斯算子增强方法。
通过对图像进行边缘增强,图像的纹理和细节得到了突出展示。
然而,拉普拉斯算子增强也存在一定的局限性,对于噪声较多的图像,可能会导致边缘增强过程中出现伪影和锯齿现象。
最后,我们尝试了灰度变换方法。
通过调整图像的灰度级别,我们改变了图像的亮度和对比度,使图像的细节更加突出。
与直方图均衡化相比,灰度变换方法更加灵活,可以根据实际需求对图像进行个性化的调整。
综合对比三种图像增强方法的实验结果,我们可以得出以下结论:直方图均衡化适用于对整体亮度和对比度进行提升的场景;拉普拉斯算子增强适用于突出图像的边缘和纹理;灰度变换方法可以根据实际需求对图像进行个性化调整。
3.图像增强—灰度变换 - 数字图像处理实验报告

计算机与信息工程学院验证性实验报告一、实验目的:1、了解图像增强的目的及意义,加深对图像增强的感性认识,巩固所学理论知识。
2、学会对图像直方图的分析。
3、掌握直接灰度变换的图像增强方法。
二、实验原理及知识点术语‘空间域’指的是图像平面本身,在空间与内处理图像的方法是直接对图像的像素进行处理。
空间域处理方法分为两种:灰度级变换、空间滤波。
空间域技术直接对像素进行操作其表达式为g(x,y)=T[f(x,y)]其中f(x,y)为输入图像,g(x,y)为输出图像,T是对图像f进行处理的操作符,定义在点(x,y)的指定领域内。
定义点(x,y)的空间邻近区域的主要方法是,使用中心位于(x,y)的正方形或长方形区域。
此区域的中心从原点(如左上角)开始逐像素点移动,在移动的同时,该区域会包含不同的领域。
T应用于每个位置(x,y),以便在该位置得到输出图像g。
在计算(x,y)处的g值时,只使用该领域的像素。
灰度变换T的最简单形式是使用领域大小为1×1,此时,(x,y)处的g值仅由f 在该点处的亮度决定,T也变为一个亮度或灰度级变化函数。
当处理单设(灰度)图像时,这两个术语可以互换。
由于亮度变换函数仅取决于亮度的值,而与(x,y)无关,所以亮度函数通常可写做如下所示的简单形式:s=T(r)其中,r表示图像f中相应点(x,y)的亮度,s表示图像g中相应点(x,y)的亮度。
三、实验内容:1、图像数据读出2、计算并分析图像直方图3、利用直接灰度变换法对图像进行灰度变换下面给出灰度变化的MATLAB程序f=imread('medicine_pic.jpg');g=imhist(f,256); %显示其直方图g1=imadjust(f,[0 1],[1 0]); %灰度转换,实现明暗转换(负片图像)figure,imshow(g1)%将0.5到0.75的灰度级扩展到范围[0 1]g2=imadjust(f,[0.5 0.75],[0 1]);figure,imshow(g2)g=imread('point.jpg');h=log(1+double(g)); %对输入图像对数映射变换h=mat2gray(h); %将矩阵h转换为灰度图片h=im2uint8(h); %将灰度图转换为8位图figure,imshow(h)四、实验仪器PC一台,MATLAB软件五、实验图片columbia480.bmp Fig0704(Vase).tif.tif六、实验程序及结果clc;clear allf=imread('columbia480.bmp');subplot 121;imshow(f)title('原始图像')subplot 122;imhist(f,256)title('原始图像直方图')%灰度转换,实现明暗转换(负片图像)f1=imadjust(f,[0 1],[1 0]);figure(2)subplot 121,imshow(f1)title('明暗转换后的图像')subplot 122;imhist(f1,256) title('明暗转换直方图')%将0.5到0.75的灰度级扩展到范围[0 1] f2=imadjust(f,[0.5 0.75],[0 1]); figure(3)subplot 121;imshow(f2)title('0.5到0.75的灰度级扩展到范围[0 1]的图像') subplot 122;imhist(f2,256) title('灰度级扩展直方图')原始图像0原始图像直方图100200明暗转换后的图像明暗转换直方图1002000.5到0.75的灰度级扩展到范围[0 1]的图像04灰度级扩展直方图100200clc;clear allm=imread('Fig0704(Vase).tif.tif');h=log(1+double(m)); %对输入图像对数映射变换 h=mat2gray(h); %将矩阵h 转换为灰度图片 h=im2uint8(h); %将灰度图转换为8位图 figuresubplot 221;imshow(m) title('原始图像') subplot 222;imhist(m) title('原始图像直方图') subplot 223;imshow(h)title('经log 变换后的图像') subplot 224;imhist(h)title('经log 变换后的图像直方图')原始图像原始图像直方图100200经log变换后的图像0经log 变换后的图像直方图100200教师签名:年 月 日。
数字图像处理图像增强实验报告

实验报告班级:08108班姓名:王胤鑫 09号学号:08210224一、实验内容给出噪声图像Girl_noise.jpg,请选择合适的图像增强算法,给出你认为最优的增强后的图像。
可以使用Matlab - Image Processing Toolbox 中的处理函数。
原始图像如下:二、算法分析对于给出的图像中有灰色的噪声,因此首先处理灰色的线条,根据其方差的大小来判断其所在行。
对于两条白色的噪声,根据与前后两行的对比来判断其所在位置。
程序中设定灰色线条处理的均方差门限为0.1,白线处理的标准为与前后两行的差值超过0.2(转换为double型)。
滤除噪声之后再通过中值滤波、拉普拉斯图像增强等方式对图像进行处理。
三、matlab 源程序clear all;clc;f=imread('girl_noise.jpg');figure,imshow(f),title('原始图像');[m,n]=size(f);f0= im2double(f); % 整型转换为double 类f1=f0;std_i=zeros(1,m-2);%灰线处理for i=2:m-1%灰线处理std_i(i-1)=std(f0(i,:));if(std_i(i-1)<0.1)for j=1:mf0(i,j)=(f0(i-1,j)+f0(i+1,j))/2;endendfigure,imshow(f0),title('滤除灰线后的图像');fz=f0-f1;[r,c]=find(fz~=0);%寻找灰线噪声的位置f2=f0;change=0;count=0;for i=3:m-2%白线处理for j=1:mif(abs(f0(i,j)-f0(i-1,j))>0.2&&abs(f0(i,j)-f0(i+1,j))>0.2)count=count+1;endif(count>n*0.8)count=0;change=1;break;endendif(change==1)for k=1:mf0(i,k)=(f0(i-1,k)+f0(i+1,k))/2;endchange=0;count=0;endendfigure,imshow(f0),title('滤除白线后的图像');fz1=f2-f0;[r1,c1]=find(fz1~=0); %寻找白线噪声的位置fn = medfilt2(f0); %反射对称填充figure, imshow(fn),title('中值滤波后的图像');f0 = im2double(fn); % 整型转换为double 类g =2*f0- imfilter(f0,w4, 'replicate'); % 增强后的图像figure, imshow(g),title('高提升滤波图像(A=2)');四、图像处理结果五、结果分析从上面结果可以看出,带状噪声处理部分,已经基本将带状噪声去除。
数字图像处理实验报告——图像增强实验

实验报告课程名称数字图像处理导论专业班级_______________姓名_______________学号_______________电气与信息学院和谐勤奋求是创新2.编写函数w = genlap lacia n(n),自动产生任一奇数尺寸n的拉普拉斯算子,如5×5的拉普拉斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 14.采用不同的梯度算子对b lurry_moon.tif进行锐化滤波,并比较其效果。
[I,m ap]=im read('trees.tif');I=double(I);subplo t(2,3,1)imshow(I,m ap);title(' Original Im age');[Gx,Gy]=gradie nt(I); % gradie n t calcul ationG=sqrt(Gx.*Gx+Gy.*Gy); % matrixJ1=G; % gradie nt1subplo t(2,3,2)imshow(J1,m ap);title(' Operator1 Im age');J2=I; % gradie nt2 K=find(G>=7);J2(K)=G(K);subplo t(2,3,3)im show(J2,m ap);title(' Operator2 Im age');J3=I; % gradie n t3 K=find(G>=7);J3(K)=255;subplo t(2,3,4)im show(J3,m ap);title(' Operator3 Im age');J4=I; % gradie n t4 K=find(G<=7);J4(K)=255;subplo t(2,3,5)im show(J4,m ap);title(' Operator4 Im age');J5=I; % gradie nt5 K=find(G<=7);J5(K)=0;Q=find(G>=7);J5(Q)=255;subplo t(2,3,6)im show(J5,m ap);title(' Operator5 Im age');5.自己设计锐化空间滤波器,并将其对噪声图像进行处理,显示处理后的图像;附录:可能用到的函数和参考结果**************报告里不能用参考结果中的图像1)采用3×3的拉普拉斯算子w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1]滤波I=im read('moon.tif');T=double(I);subplo t(1,2,1),im show(T,[]);title('Origin al Im age');w =[1,1,1;1,-8,1;1,1,1];K=conv2(T,w,'sam e');subplo t(1,2,2)im show(K);title('Laplacian Transf orm ation');图2.9 初始图像与拉普拉斯算子锐化图像2)编写函数w = genlap lacia n(n),自动产生任一奇数尺寸n的拉普拉斯算子,如5×5的拉普拉斯算子:w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]functi on w = genlap lacia n(5)%Com put es the Laplac ian operat orw = ones(n);x = ceil(n/2);w(x, x) = -1 * (n * n - 1);3)分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对blurry_mo on.tif进行锐化滤波,并利用式完成图像的锐化增强,观察其有何不同,要求在同一窗口中显示。
数字图像处理之频率域图像增强

图像增强技术广泛应用于医学影 像、遥感、安全监控、机器视觉
等领域。
频率域图像增强的概念
01
频率域图像增强是指在频率域 对图像进行操作,通过改变图 像的频率成分来改善图像的质 量。
02
频率域增强方法通常涉及将图 像从空间域转换到频率域,对 频率域中的成分进行操作,然 后再将结果转换回空间域。
直方图规定化
直方图规定化是另一种频率域图像增强 方法,其基本思想是根据特定的需求或 目标,重新定义图像的灰度级分布,以
达到增强图像的目的。
与直方图均衡化不同,直方图规定化可 以根据具体的应用场景和需求,定制不 同的灰度级分布,从而更好地满足特定
的增强需求。
直方图规定化的实现通常需要先对原始 图像进行直方图统计,然后根据规定的 灰度级分布进行像素灰度值的映射和调
灵活性
频率域增强允许用户针对特定频率成 分进行调整,从而实现对图像的精细 控制。例如,可以增强高频细节或降 低噪声。
总结与展望 数字图像处理之频率域图像增强的优缺点
频谱混叠
在频率域增强过程中,如果不采取适 当的措施,可能会导致频谱混叠现象, 影响图像质量。
计算复杂度
虽然频率域增强可以利用FFT加速, 但对于某些复杂的图像处理任务,其 计算复杂度仍然较高。
傅立叶变换具有线性、平移不变性和周期性等性质,这些性质在图像增强中具有重 要应用。
傅立叶变换的性质
线性性质
傅立叶变换具有线性性质,即两 个函数的和或差经过傅立叶变换 后,等于它们各自经过傅立叶变
换后的结果的和或差。
平移不变性
傅立叶变换具有平移不变性,即 一个函数沿x轴平移a个单位后, 其傅立叶变换的结果也相应地沿
THANKS
《数字图像处理及MATLAB实现》图像增强与平滑实验

《数字图像处理及MATLAB实现》图像增强与平滑实验一.实验目的及要求1、熟悉并掌握MA TLAB 图像处理工具箱的使用;2、理解并掌握常用的图像的增强技术。
二、实验设备MATLAB 6.5 以上版本、WIN XP 或WIN2000 计算机三、实验内容(一)研究以下程序,分析程序功能;输入执行各命令行,认真观察命令执行的结果。
熟悉程序中所使用函数的调用方法,改变有关参数,观察试验结果。
(可将每段程序保存为一个.m文件)1.直方图均衡化clear all; close all % Clear the MATLAB workspace of any variables% and close open figure windows.I = imread('pout.tif'); % Reads the sample images ‘pout.tif’, and stores it inimshow(I) % an array named I.display the imagetext(60,20,'李荣桉1909290239','horiz','center','color','r')figure, imhist(I) % Create a histogram of the image and display it in% a new figure window.[I2,T] = histeq(I); % Histogram equalization.figure, imshow(I2) % Display the new equalized image, I2, in a new figure window.text(60,20,'李荣桉1909290239','horiz','center','color','r')figure, imhist(I2) % Create a histogram of the equalized image I2.figure,plot((0:255)/255,T); % plot the transformation curve.imwrite (I2, 'pout2.png'); % Write the newly adjusted image I2 to a disk file named% ‘pout2.png’.imfinfo('pout2.png') % Check the contents of the newly written file2.直接灰度变换clear all; close allI = imread('cameraman.tif'); 注意:imadjust()功能:调整图像灰度值或颜色映像表,也可实现伽马校正。
数字图像实验报告图像增强实验

数字图像实验报告图像增强实验一、实验目的熟悉并掌握MATLAB图像处理工具箱的使用;理解并掌握常用的图像的空域增强技术。
二、实验内容对一幅图像分别添加高斯、椒盐和斑点噪声,并分别进行均值和中值滤波处理,显示处理前后的图像。
三、实验方法及程序学生自行编程实现提示:1.加入高斯噪声的函数调用。
I_noise =imnoise(I,’gaussian’,0,0.1)2.加入椒盐噪声的函数调用。
I_noise = imnoise(I,’salt&pepper’,0.06)3.加入斑点噪声的函数调用。
I_noise= imnoise(I,’speckle’,0.1)4.均值滤波的函数调用。
I_smooth=imfilter(I_noise,fspecial(‘average’,5))5.中值滤波的函数调用。
I_smooth=medfilt2(I_noise,[3 3])A=imread('toyobjects.png');B=imnoise(A,'gaussian',0,0.1);%加入高斯噪声C=imnoise(A,'salt & pepper',0.05);%加入椒盐噪声D=imnoise(A,'speckle',0.05);%加入斑点噪声I1=imfilter(B,fspecial('average',5));I2= medfilt2(B);%高斯中值处理K1=imfilter(C,fspecial('average',5));K2= medfilt2(C);%椒盐中值处理G1=imfilter(D,fspecial('average',5));G2= medfilt2(D);%斑点噪声中值处理figure(1);imshow(A);title('原图像');figure(2);subplot(1,3,1);imshow(B);title('高斯噪声'); subplot(1,3,2);imshow(I1);title('高斯均值滤波处理'); subplot(1,3,3);imshow(I2);title('高斯中值滤波处理'); figure(3);subplot(1,3,1);imshow(C);title('椒盐噪声'); subplot(1,3,2);imshow(K1);title('椒盐均值处理'); subplot(1,3,3);imshow(K2);title('椒盐中值处理'); figure(4);subplot(1,3,1);imshow(D);title('斑点噪声'); subplot(1,3,2);imshow(G1);title('斑点噪声均值处理'); subplot(1,3,3);imshow(G2);title('斑点噪声中值处理');四、实验结果与分析分别运用B=imnoise(A,'gaussian',0,0.1)C=imnoise(A,'salt & pepper',0.05)D=imnoise(A,'speckle',0.05);三个函数啊加入不同的噪声,再用I_smooth=imfilter(I_noise,fspecial(‘average’,5))I_smooth=medfilt2(I_noise,[3 3])对加入噪声的图像进行处理,比较不同的处理方式对加入噪声后的图像处理后的清晰度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三、图像增强一、实验目的(1 )熟悉并学会使用MATLAB中图像增强的相关函数。
(2)掌握图像灰度修正、平滑去噪、锐化加强边缘和轮廓的方法,并编程实现。
二、实验主要仪器设备(1)台式机或笔记本电脑。
(2)MATLAB软件(含图像处理工具箱)。
注意:由于软件版本的缘故,软件的界面可能有所差异,读者可以根据实际安装的软件选择相关的命令。
(3)典型的灰度、彩色图像文件。
三、实验原理数码相机的曝光量指到达DC感光器件上的光线总量,用曝光值(EV)表示。
图像的过度曝光、曝光不足时,用曝光补偿调节曝光量,这种功能可修正自动曝光设置值为上升或下降几级。
例如,某些DC的EV调整范围为+3~0~-3。
尝试对同一景象进行正确曝光、过度曝光和曝光不足三种情况成像情况。
(1)将一幅图像视为一个二维矩阵,用MATLAB进行图像增强。
(2)利用MATLAB图像处理工具箱中的函数imread (读入),imshow (显示),imnoise (加噪),filter2 (滤波)对图像进行去噪处理。
(3)图像灰度修正:灰度变换。
对不满意的图像通过线性或非线性灰度映射关系进行变换,其效果可以得到明显提高。
通过分析,会发现变换前后图像的直方图也发生相应的变化。
(4)图像平滑方法:领域平均、中值滤波。
分析图像降质的性质,区分平稳性还是非平稳型、加性还是乘性等,采用合适的去噪方法,可以去除或降低噪声对图像的影响。
从频率域看,平均操作在降低噪声的同时衰减了图像的高频分量会影响图像细节的重现。
中值滤波对某些信号具有不变形,适用于消除图像中的突发干扰,但如果图像含有丰富的细节,则不宜使用。
(5)图像锐化方法:人眼对目标的边缘和轮廓较为敏感,对图像进行锐化,有助于突出图像的这些特征。
从频率域看,锐化提升了图像的高频分量。
四、实验内容MATLAB图像增强:①图像灰度修正:②图像平滑方法:③图像锐化方法。
五、实验步骤MATLAB图像增强。
(1)图像灰度修正。
测试图像为pout.tif、tire.tif。
读入一幅灰度级分布不协调的图像,分析其直方图。
根据直方图,设计灰度变换表达式,或调用imadjuct函数。
调整变换表达式的参数,直到显示图像的灰度级分布均衡为止。
(2)不均匀光照的校正。
测试图像为pout.tif 。
采用分块处理函数blkproc和图像相减函数imsubtract校正图6.6存在的不均匀光照现象。
(3)三段线性变换增强。
测试图像为eight.tif。
选择合适的转折点,编程进行三段线性变换增强。
(4)图像平滑方法。
测试图像为eight.tif。
对有噪声图像或人为加入噪声的图像进行平滑处理。
根据噪声的类型,选择不同的去噪方法,如领域平均、中值滤波等方法,调用filter2、medfilt2 函数,选择不同的滤波模板和参数,观测和分析各种去噪方法对不同噪声图像处理的去噪或降噪效果。
(5)图像锐化方法。
读入一幅边缘模糊地图像,利用罗伯茨梯度对图像进行4种锐化处理,比较各自效果。
六、实验程序(1)I = imread('pout.tif);subplot(2,2,1);imshow(l);subplot(2,2,2);imhist(l);J = imadjust(l,[0.3 0.7],[]);subplot(2,2,3);imshow(J);subplot(2,2,4);imhist(J)(2)I=imread('rice.p ng');subplot(2,2,1);imshow(I);title('原始图像');J = imno ise(l,'salt &pepper', 0.1);subplot(2,2,2);imshow(J);title('加噪图像');blocks=blkproc(J,[128 128],@estibackgrou nd);backgro un d=imresize(blocks,[256256],'bil in ear');subplot(2,2,3);imshow(backgro un d);title('提取背景');I2=imsubtract(J,backgro un d);Iout=medfilt2(l2,[3 3]);subplot(2,2,4);imshow(lout,[]);title('校正图像');function backgray=estibackgro un d(x,thr) mean x=mea n( x(:)); stdx=std(x(:));min x=mi n(x(:));backgray=max(mea nx-thr*stdx, min x);(3)f = imread('pout.tif);[M,N]=size(f);g=zeros(M,N);f=double(f);g=double(g);k1=mi n(min (f));k2=max(max(f));a=k1+50;b=k2-50;c=k1-30;d=k2+20;for i=1:Mfor j=1:Nif((f(i,j)>=a )&&((f(i,j))<b))g(i,j)=((d-c)/(b-a))*(f(i,j)-a)+c;endif(f(i,j)<a)g(i,j)=c;endif(f(i,j)>=b)g(i,j)=d;endendendfigure;subplot(1,2,1);imshow(f,[]);subplot(1,2,2);imshow(g,[]);(4)I = imread('eight.tif);subplot(2,3,1);imshow(l);title('原始图像');J=imno ise(l,'gaussia n',0.01);subplot(2,3,2);imshow(J);title('高斯白噪声');h0=1/9.*[1 1 1 1 1 1 1 1 1];h仁[0.1 0.1 0.1;0.1 0.2 0.1;0.1 0.1 0.1]; h2=1/16.*[1 2 1;2 4 2;1 2 1];h3=1/8.*[1 1 1;1 0 1;1 1 1];g0=filter2(h0,J);g1=filter2(h1,J);g2=filter2(h2,J);g3=filter2(h3,J);subplot(2,3,3);imshow(g0,[]);subplot(2,3,4);imshow(g1,[]);subplot(2,3,5);imshow(g2,[]);subplot(2,3,6);imshow(g3,[]);(5)l=imread('rice.p ng'); subplot(2,3,1);imshow(I);title('原始图像');B1=edge(I,'roberts',0.1); subplot(2,3,2);imshow(B1);title('0.1');B2=edge(I,'roberts',0.05); subplot(2,3,3);imshow(B2);title('0.05');B3=edge(I,'roberts',0.07); subplot(2,3,4);imshow(B3);title('0.07');B4=edge(I,'roberts',0.01); subplot(2,3,5);imshow(B4);title('O.OI');七、实验结果(1)(2)(3)原始图像加噪图像提取背星校正團像(4)高斯白噪声(5)原始图像0 1 0.050 070.01八、思考题word资料可编辑(1) 如何针对图像过暗、过亮、对比度不足设计灰度变换函数?灰度g与灰度f之间的关系为:g=a '+(b '-a '(b-a)*(f-a),可见,如果b -a 'b-a,则线性变换使得图像灰度范围增大,即对比度增大,图像会变得清晰;如果b -a 'b-a , 则使得图像灰度范围缩小,即对比度减小。
在曝光不足或过度的情况下,图像灰度可能会局限在一个很小的范围内,这时在显示器上看到的将是一个模糊不清、没有灰度层次的图像。
采用线性变换对图像的每一个像素灰度做线性拉伸,将有效地改善图像的视觉效果。
以曝光不足为例,选取b -a 'b-a ,则使曝光不充分的图像中黑的更黑,拜的更白,从而有效的提高图像灰度的对比度。
(2) 比较同一种去噪方法对不同噪声处理的效果。
对于高斯噪声,仍然是中值滤波的峰值信噪比最低,总体变分的均方误差最小,的情况一致所以,对于高斯噪声,中值滤波的降噪效果不太理想,而总体变分模型则取得比较好看出均值滤波的峰值信噪比最低,小波TV的峰值信噪比比较接近而总体变分的均方误差仍为最小,对于高斯噪声,线性均值滤波和TV去噪可以取得较好的去噪效果但对于椒盐噪声,中值滤小波、总体变分(TV)的去噪平滑效果比较好其中,总体变分模型对两种噪声都取得了比较好的去噪效果,它是现在图像平滑去噪和复原最流行的方法但仍然会丢失部分边界纹理信息。
(3) 讨论用梯度法锐化图像的4种不同方法的应用范围。
Robert算子通常会在图像边缘附近的区域内产生较宽的响应,用此算子可以很准确的定位边缘,但是他对噪声的敏感程度也相对较强。
所以如果要用次算法进行锐化处理时,尤其要考虑到噪声的影响。
Sobel锐化算法也是图像微分锐化算法之一。
一幅图像进行Sobel算子锐化后,图像的灰度变化的幅度会有所增加。
word资料可编辑。