巧解火车行程问题

合集下载

第九讲 火车行程问题

第九讲 火车行程问题

第九讲火车行程问题1、基本关系及基本现象同向行驶(1)追上(头尾齐)——超过(A长+B长)÷(A速-B速)=时间(2)头相齐——超过A长÷(A速-B速)=时间(3)尾相齐——超过B长÷(A速-B速)=时间相向行驶:(1)相遇——错过(A长+B长)÷(A速+B速)=时间(2)头相齐——尾相齐A长÷(A速+B速)=时间(3)头尾齐——尾头齐(A长-B长)÷(A速+B速)=时间(4)尾头齐——两尾齐B长÷(A速+B速)=时间2、解决问题例:慢车车身长125米,车速每秒17米,快车车身长140米,车速每秒22米,慢车在前,快车在后面从追上到完全超过需要多少秒?据关系(1)可知:(125+140)÷(22-17)=53(秒)答:快车从追上到超过慢车需要53秒。

练:长150米的的火车以每秒18米的速度穿越一条长300米的隧道,问:火车穿越这条隧道(从入隧道开始到完全离开)需要多少秒?(150+300)÷18=25秒答:火车穿越这条隧道需要25秒。

例:一列火车通过一座长1260米的桥(车头上桥到车尾离开)用了60秒,它穿越长2010米的隧道,用了90秒,问:这列火车的车速和车身长各是多少?(2010-1260)÷(90-60)=25米路程差时间差车速或25×60-1260=240米,25×9-2010=240米答:车速为每秒25米,车身长240米。

讲与练:两列火车相向而行,甲车每小时行36米,乙车每小时行54米,两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾离开他的车窗时共用了14秒,求:乙车的车长?此题可以理解为:乘客以每小时36千米的速度与乙车以每小时54千米的速度,从同一起点同时作反向运动,因此,可用相遇问题的基本关系式解。

36000÷3600=10(米)……甲每秒速54000÷3600=15(米)……乙车速(10+15)×14=350(米)……乙车身长答:乙车车身长350米。

复杂的火车行程问题

复杂的火车行程问题

复杂的火车行程问题知识简析:有关火车过桥、火车过隧道、两列火车车头相遇到车尾相离等问题,也是一种行程问题。

在考虑速度、时间和路程三种数量关系时,必须考虑到火车本身的长度。

如果有些问题不容易一下子看出运动过程中的数量关系,可以利用作图或演示的方法来帮助解题。

解答火车行程问题可记住以下几点:1,火车过桥(或隧道)所用的时间=[桥(隧道长)+火车车长]÷火车的速度;2,两列火车相向而行,从相遇到相离所用的时间=两火车车身长度和÷两车速度和;(可以把火车相遇问题转化为两个人的相遇问题.) 3,两车同向而行,快车从追上到超过慢车所用的时间=两车车身长度和÷两车速度差内容:1过桥(隧道、电线杆)问题、错车问题、人车相遇、人车追及问题、车车追及问题、齐头并进、齐尾并进,类型1:过桥问题例题1.(1)一列火车长500米,要穿过一个长150米的山洞,如果火车每秒钟行26米,那么,从车头进洞到车长全部离开山洞一共要用几秒钟?(2)一列火车通过440米的桥需要40秒钟,以同样的速度穿过310米的隧道需要30秒钟,求这列的速度和车长各是多少?例题2.一座铁路桥长1200米,一列火车开过大桥需要75秒;火车开过路旁一根信号杆需15秒。

求火车的速度和车长各是多少?例题3.一条隧道长360米,某列火车从车头入洞到全车进洞用了8秒钟,从车头入洞到全车出洞用了20秒钟。

这列火车长多少米?类型:2:错车问题例题4.(1)有两列火车,一车长130米,每秒行23米;另一列火车长250米,每秒行15米。

现在两车相向而行,从相遇到离开需要几秒钟?(2)某列火车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米,时速为72千米的列车相遇,错车而过需要几秒钟?类型3:人车问题例题5:(人遇车)例题1.一位老人在铁路旁的小路上行走,他的速度是每秒2米,这是迎面开来一列火车,从车头到车尾经过他身旁共用18秒,已知火车全长342米,求火车的速度。

火车行程问题

火车行程问题

一:火车过桥、过隧道问题公式:路程=速度×时间基本数量关系是:火车长+桥长=火车速度×过桥时间火车速度=(火车长+桥长)÷过桥时间过桥时间=(火车长+桥长)÷火车速度一般的火车过桥所求的分为:求过桥时间;求桥长;求火车长;求火车的速度。

下面我们分别研究这些问题。

经典例题:例1:一列火车长180米,每秒行25米。

全车通过一条120米的大桥,需要多长时间?解:如图过桥时间=(火车长+桥长)÷火车速度(180+120)÷25=300÷25=12(秒)答:需要12秒。

课堂训练:(1)一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒?(2)一列火车长250米,每秒行驶50米,全车通过一座长2750米的隧道,一共需要多少时间?(3)一列火车长150米,每秒行驶16米,全车通过一座长330米的大桥。

一共需要多少时间?(4)一列火车长210米,每秒钟行驶25米,全车通过一个190米的山洞需要多少时间?例2:一列火车长160米,全车通过一座桥需要30秒钟,这列火车每秒行20米,求这座桥的长度.解:由公式:火车长+桥长=火车速度×过桥时间变形可得:桥长=火车速度×过桥时间-火车长20×30-160=600-160=440(米)答:这座桥长440米。

课堂训练:(5)一列350米长的火车以每秒25米的速度穿过一座桥花了20秒,问:大桥的长度是多少?(6)一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?(7)一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。

这条隧道长多少米?(8)一座大桥长590米,一列火车以每秒15米的速度通过大桥,从车头上桥到车尾离开桥共用时间50秒,求这列火车长多少米?(9)一座大桥长2100米。

行程问题(火车过桥问题)三道典型例题(附解题思路及答案)

行程问题(火车过桥问题)三道典型例题(附解题思路及答案)

行程问题(火车过桥问题)三道典型例题(附解题思路及答案)我们在研究一般行程问题时,都不考虑运动物体的长度,但是当研究火车过桥过隧道问题时,有一火车的长度太长,所以不能忽略不计。

火车过桥问题主要有以下几个类型:1、最简单的过桥问题,火车过桥。

例:一列长120米的火车,通过长400米的桥,火车的速度是10米/秒,求火车通过桥需多长时间?解题思路:火车行的路程是一个车长+桥长,然后利用公式时间=路程÷速度即可求出通过桥的时间。

答案:(120+400)÷10=52(秒)答:火车通过桥需要52秒。

2、两列火车错车问题。

例(1):两列火车相向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,当两车错车时,甲车一乘客,看到乙车火车头从她的窗前经过,到乙车车尾离开他的窗户,共用时8秒,求乙车的长度。

解题思路:这类问题类似于相遇问题,路程是乙车车长,然后利用公式路程=速度和x时间算出乙车车长。

答案:(20+25)x8=360(米)答:乙车长360米。

例(2):两列火车相向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,已知甲车长250米,乙车长200米,从两车车头到两车车尾离开,需要多少时间?解题思路:这类问题类似于相遇问题,路程是两车车长,然后利用公式时间=路程÷速度和算出错时间。

答案:(200+250)÷(25+20)=10(秒)答:需要10秒。

3、两列火车超车问题。

例:两列火车同向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,已知甲车长250米,乙车长200米,从乙车车头追上甲车车尾到乙车车尾离开甲车头需多少时间?解题思路;此类问题相当于追及问题。

追及路程是两车的车长和,然后利用追及问题公式追及时间=追及路程÷速度差求出时间。

答案: (250+200)十(25-20)=90(秒)答:需要90秒。

六年级巧用比例解行程问题

六年级巧用比例解行程问题

巧用比例解行程问题例1:甲、乙两车的速度比是4:7,两车同时从两地相对出发,在距中点15千米处相遇,两地相距多少千米?例2:两列火车同时从两个城市相对开出,6.5小时相遇.相遇时甲车比乙车多行52千米,乙车的速度是甲车的错误!.求两城之间的距离。

1、甲、乙两车同时从AB两地相对而行,甲、乙两车速度比7:5,相遇时距中点12千米,AB两地相距多少千米?2、两只轮船同时从甲、乙两港相对开出,客船每小时行42千米,货船的速度是客船的错误!.两只轮船在离甲、乙两港中点7千米处相遇,甲、乙两港间的距离是多少?开出,相遇时客车距离乙城还有192千米,求两城间的距离。

4、甲、乙两车分别从AB两地同时相向而行,3小时相遇。

已知甲车行1小时距B 地340千米,乙车行1小时距A地360千米.AB两地相距多少千米?例3:甲、乙两车同时从AB两地相对而行,5小时相遇,已知甲、乙两车速度的比是2:3,甲车行完全程需多少小时?例4:客车和货车同时从AB两地相对开出,客车每小时行60千米,货车每小时行全程的错误!,相遇时客车和货车所行路程的比是5:4。

AB两地相距多少千米?5、甲、乙两车同时从AB两地相对而行,4小时相遇,已知甲、乙两车速度的比是3:6、甲、乙两个城市相距若干千米,一列客车与一列货车同时从两个城市相对开出,3小时后相遇,相遇时客车比货车多行60千米,货车与客车速度比是9:11。

货车平均每小时行多少千米?7、客车和货车同时从甲、乙两地相对开出,客车每小时行全程的错误!,货车每小时行50千米。

相遇时客车和货车所行的路程的比是3:2。

甲、乙两地相距多少千米?8、甲、乙两车同时相对而行,甲车行全长需8小时,乙车每小时56千米,相遇时,甲、乙两车所行路程的比是3:4,这时乙车行了多少千米?例5:甲、乙两车同时从AB两地相向而行,4小时后相遇,相遇后甲又行了3小时到达B地,这时乙车离A地70千米,AB两地相距多少千米?例6:甲、乙两车同时从AB两地相向而行,当甲到达B地时,乙车距A地30千米,当乙车到达A地时,甲车超过B地40千米,AB两地相距多少千米?9、小强和小军分别从AB两地同时相对而行,8分钟相遇,相遇后又行6分钟小军到达A地,这时小强离B地160米,AB两地相距多少米?10、快车从A地,慢车从B地同时出发相向而行,经过4小时相遇,相遇后两车仍按原速度继续前进,又经过5小时慢车到达A地,这时快车已超过B地90千米。

手把手教你解火车过桥问题

手把手教你解火车过桥问题

手把手教你解火车过桥问题什么是火车过桥问题?火车在行驶中,经常发生过桥与通过隧道,两车对开错车与快车超越慢车等情况. 火车过桥是指“全车通过”,即从车头上桥直到车尾离桥才算“过桥”。

列车过桥的总路程是桥长加车长,这是解决过桥问题的关键。

过桥问题也要用到一般行程问题的基本数量关系:过桥的路程=桥长+车长车速=(桥长+车长)-过桥时间通过桥的时间=(桥长+车长)、车速桥长=车速×过桥时间-车长车长=车速×过桥时间-桥长后三个都是根据第二个关系式逆推出的.对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.两列火车的"追及"情况,请看下图:火车A 火车A火车五火车B(1) (2)两列火车A与B, 图中(1)表示A已经追上B, 图中(2)A已经超过B. 从“追上”到“超过”就是一个“追及”过程,比较两个火车头,“追上”时A落后B 的车身长,“超过”时A 领先B 的车身长,也就是说,从“追上”到“超过”,A的车头比B 的车头多走的路程是B 的车身长+A 的车身长,因此所需时间为:(A的车身长+B的车身长)+(A的车速-B的车速)=从车头追上到车尾离开的时间两列火车的“相遇”情况,如下图:(2)图中(1)表示“碰上”,图中(2)表示“错过”,类似于前面的分析,“遇上”时两列火车车头相遇,“错过”时两列火车车尾离开.从“遇上”到“错过”所需要的时间为:(A 的车身长+B 的车身长)+(A 的车速+B 的车速)=两车从车头相遇到车尾离开的时间火车过桥问题的例题讲解1【例题】一列以相同速度行驶的火车,经过一根有信号灯的电线杆用了9秒,通过一座468 米长的铁桥用了35秒,这列火车长多少米?【分析】由题意,“经过一根有信号灯的电线杆用了9秒”,可知火车行驶一个车身长的路程用时9秒,那么行驶468米长的路程用时为:35-9=26(秒),所以火车长468÷26×9=162(米).火车过桥问题的例题讲解2【例题】一列火车长200米,通过一条长430米的隧道用了42秒,这列火车以同样的速度通过某站台用了25秒钟,那么这个站台长多少米?【分析】火车速度为:(200+430)÷42=15(米/秒),通过某站台行进的路程为:15×25=375 (米),已知火车长,所以站台长为375-200=175(米)。

行测数量关系技巧:如何利用正反比巧解行程问题

行测数量关系技巧:如何利用正反比巧解行程问题

行测数量关系技巧:如何利用正反比巧解行程问题行测数量关系技巧:如何利用正反比巧解行程问题对于众多考生来说,行测数量中的行程问题基本上是属于年年必考类的题型,但是这种题型有时简单有时复杂,所以接下来给大家介绍一种关于行程问题可以巧解的方法——正反比方法。

一、行程问题中基本公式S=VT(路程=速度×时间)二、行程问题中正反比存在S=VT时且3个未知数有其中一个量处于不变时当S不变时,V与T成反比当V不变时,S与T成正比当T不变时,S与V成正比三、例题展示例:甲乙两辆从A地驶往90公里外的B地,两车的速度比为5:6。

甲车于上午10点半出发,乙车于10点40分出发,最终乙车比甲车早2分钟到达乙地。

问两车的时速相差多少千米/小时?A.10B.12C.12.5D.15【解析】:选D。

根据题意,甲乙两车的速度比为5:6,两车都是从A走向B路程一致,速度与时间成反比,因此两车从A到B所用的时间比为6:5,乙比甲晚出发10分钟,且比甲早2分钟到达,所以全程乙比甲快了12分钟,即时间所差的一份对应12分钟,因此全程乙用时12×5=60分钟,即乙的速度为90公里/小时,甲的速度为90×5/6=75公里/小时,因此两车速度之差为15公里/小时。

例:有两个山村之间的公路都是上坡和下坡,没有平坦路。

农车上坡的速度保持20千米/小时,下坡的速度保持30千米/小时,已知农车在两个山村之间往返一次,需要行驶4小时,问两个山村之间的距离是多少千米?A.45B.48C.50D.24【解析】:选B。

往返相当于走了一个全程的上坡和一个全程的下坡,根据S=VT,当S一定时,VT成反比。

上坡的速度:下坡速度=20:30=2:3,则上坡时间:下坡时间=3:2,5份对应4小时,1份是0.8时间,上坡对应3×0.8=2.4小时,全程是2.4×20=48千米。

例:两名运动员进行110米栏赛跑,结果甲领先乙10米到达终点。

小学思维数学:行程问题之火车行程问题-带详解

小学思维数学:行程问题之火车行程问题-带详解

火车问题教学目标1、会熟练解决基本的火车过桥问题.2、掌握人和火车、火车与火车的相遇追及问题与火车过桥的区别与联系.3、掌握火车与多人多次相遇与追及问题知识精讲火车过桥常见题型及解题方法(一)、行程问题基本公式:路程=速度⨯时间总路程=平均速度⨯总时间;(二)、相遇、追及问题:速度和⨯相遇时间=相遇路程速度差⨯追及时间=追及路程;(三)、火车过桥问题1、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程) =火车速度×通过的时间;2、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程) =(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程) =(火车速度—人的速度) ×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程) =(火车速度±人的速度) ×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程) =(快车速度+慢车速度) ×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程) =(快车速度—慢车速度) ×错车时间;老师提醒学生注意:对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行。

模块一、火车过桥(隧道、树)问题【例 1】一列火车长200米,以60米每秒的速度前进,它通过一座220米长的大桥用时多少?【考点】行程问题之火车问题【难度】2星【题型】解答【解析】分析:(1)如右图所示,学生们可以发现火车走过的路程为:200+220=420(米),所以用时420÷60=7(秒).【答案】7秒【巩固】一列火车长360米,每秒钟行驶16米,全车通过一条隧道需要90秒钟,求这条隧道长多少米?【考点】行程问题之火车问题【难度】2星【题型】解答【解析】已知列车速度是每秒钟行驶16米和全车通过隧道需要90秒钟.根据速度⨯时间=路程的关系,可以求出列车行驶的全路程.全路程正好是列车本身长度与隧道长度之和,即可求出隧道的长度.列车90秒钟行驶:16901440-=(米).⨯=(米),隧道长:14403601080【答案】1080米【巩固】一列火车经过南京长江大桥,大桥长6700米,这列火车长100米,火车每分钟行400米,这列客车经过长江大桥需要多少分钟?火车行驶路程火车火车桥【考点】行程问题之火车问题【难度】2星【题型】解答【解析】建议教师帮助学生画图分析.从火车头上桥,到火车尾离桥,这是火车通过这座大桥的全过程,也就是过桥的路程=桥长+车长.通过“过桥的路程”和“车速”就可以求出火车过桥的时间.所以过桥路程为:67001006800+=(米),过桥时间为:680040017÷=(分钟).【答案】17分钟【巩固】长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间?【考点】行程问题之火车问题【难度】2星【题型】解答【解析】火车穿越隧道经过的路程为300150450+=(米),已知火车的速度,那么火车穿越隧道所需时间为4501825÷=(秒).【答案】25秒【巩固】一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?【考点】行程问题之火车问题【难度】2星【题型】解答【解析】火车过桥时间为1分钟60⨯=(米),即桥长为=秒,所走路程为桥长加上火车长为60301800-=(米).180********【答案】1560米【巩固】一列火车长160米,全车通过一座桥需要30秒钟,这列火车每秒行20米,求这座桥的长度.【考点】行程问题之火车问题【难度】2星【题型】解答【解析】建议教师帮助学生画图分析.由图知,全车通过桥是指从火车车头上桥直到火车车尾离桥,即火车行驶的路程是桥的长度与火车的长度之和,已知火车的速度以及过桥时间,所以这列车30秒钟走过:2030600-=(米).⨯=(米),桥的长度为:600160440【答案】440米【例 2】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长米.【考点】行程问题之火车问题【难度】2星【题型】解答【关键词】希望杯,六年级,一试【解析】100名学生分成2列,每列50人,应该产生49个间距,所以队伍长为⨯-=(米).⨯+⨯+⨯+⨯=(米),那么桥长为9043045649149249352304【答案】56米【巩固】一个车队以6米/秒的速度缓缓通过一座长250 米的大桥,共用152秒.已知每辆车长6米,两车间隔10米.问:这个车队共有多少辆车?【考点】行程问题之火车问题【难度】2星【题型】解答【解析】由“路程=时间⨯速度”可求出车队152 秒行的路程为 6 152 912=⨯ (米),故车队长度为912-250= 662(米).再由植树问题可得车队共有车(662 -6) ÷(6 +10) +1 =42(辆).【答案】42辆【巩固】一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1长150米的火车以每秒18米的速度穿越一条长300米的隧道,问:火车穿越隧道(从进入隧道直到完全离开)要用多长时间?
做一做1 长130米的列车,以每秒16米的速度行驶,通过一条隧道用了48秒。

问:这条隧道长多少米?
例2慢车车身长125米,车速为每秒17米,快车车身长140米,车速为每秒22米。

慢车在前面行驶,快车在后面从追上到完全超过需要多少秒?
做一做2 甲火车车身长250米,车速为每秒16米;乙火车车身长140米,车速为每秒21米。

问:乙火车从追上到完全超过甲火车需要多少秒?
例3一列火车通过一座长1260米的桥(车头上桥直至车尾离桥)用了60秒,火车穿越长2010米的隧道用了90秒。

问:这列火车的车速和车身长各是多少?
做一做3 一列火车通过450米长的桥用了23秒,从头到尾经过一位站在铁路边的扳道工人用了8秒。

问:这列火车的速度和车身长各是多少?
例4两列火车相向而行。

甲车每小时行36千米,乙车每小时行54千米。

两车错车时,甲车上一位乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他车窗时共用了14秒。

求乙车的车长。

做一做4 快车每秒行18米,慢车每秒行10米。

现有两列火车同时同方向齐头行进,经过10秒后,快车超过慢车;如果两车车尾相齐行进,则7秒钟后,快车超过慢车。

求两列火车的车身长。

例5某小学三、四年级学生共528人排成4路纵队去看电影,队伍的速度是每分钟25米,前后两人都相距1米。

现在队伍要走过一座桥,整个队伍从上桥到离桥共需16分钟。

问:这座桥长多少米?
做一做5 有346名少先队员排成2路纵队去参观科技成果展览。

队伍行进的速度是每分钟23米,前后两人都相距1米。

现在队伍要通过一座长度为702米的大桥,问:整个队伍从上桥到下桥共用了多长时间?
例6火车通过长为105米的铁桥用了25秒;如果火车的速度加快一倍,那么它通过96米长的铁桥只用12秒。

求火车原来的速度和它的长度。

做一做6 火车通过长为82米的桥用了22秒。

如果火车的速度加快一倍,那么它通过162米长的桥就只用16秒。

求这列火车原来的速度和长度。

例7沿着铁路线,有两个人迎面相对走着,两人的速度是一样的。

一列火车开来,整个列车从第一个人身边开过用了8秒钟,火车与第一个人相遇5秒后,与第二个人相遇。

火车从第二个人身边开过,全列车只用了7秒钟。

问:车遇到第二个人后多少分钟,两人才能相遇?
做一做7 铁路旁有一条小路,一列长为110米的火车以每小时30千米的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民,问:军人与农民何时相遇?。

相关文档
最新文档