最新小学五年级奥数知识点word百度文库

合集下载

小学五年级奥数知识点

小学五年级奥数知识点
小学五年级奥数知识点篇二 年龄问题: 已知两人的年龄,求若干年前或若干年后两人年龄之间倍数关系的应用题,叫做年龄问题。 年龄问题的三个基本特征: ①两个人的年龄差是不变的; ②两个人的年龄是同时增加或者同时减少的; ③两个人的年龄的倍数是的这个关键。 例:父亲今年54岁,儿子今年18岁,几年前父亲的年龄是儿子年龄的7倍? ⑴父子年龄的差是多少? 54–18=36(岁) ⑵几年前父亲年龄比儿子年龄大几倍? 7-1=6 ⑶几年前儿子多少岁? 36÷6=6(岁) ⑷几年前父亲年龄是儿子年龄的7倍?
小学五年级奥数知识点篇四 盈亏问题: 基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于 分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量. 基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然 后根据题意求出对象的总量. 基本题型: ①一次有余数,另一次不足; 基本公式:总份数=(余数+不足数)÷两次每份数的差 ②当两次都有余数; 基本公式:总份数=(较大余数一较小余数)÷两次每份数的差 ③当两次都不足; 基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差 基本特点:对象总量和总的组数是不变的。 关键问题:确定对象总量和总的组数。
小学五年级奥数知识点篇三 鸡兔同笼问题: 基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来; 基本思路: ①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样): ②假设后,发生了和题目条件不同的差,找出这个差是多少; ③每个事物造成的差是固定的,从而找出出现这个差的原因; ④再根据这两个差作适当的调整,消去出现的差。 基本公式: ①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数) ②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数) 关键问题:找出总量的差与单位量的差。

五年级奥数知识点上册

五年级奥数知识点上册

五年级奥数知识点上册五年级奥数知识点上册涵盖了多个数学领域的高级概念,旨在培养学生的逻辑思维能力和解决复杂问题的能力。

以下是一些关键的知识点:一、数论基础- 质数与合数:理解质数和合数的概念,掌握质数的判定方法。

- 因数与倍数:学习如何找出一个数的因数和倍数,理解它们之间的关系。

- 最大公约数和最小公倍数:掌握求两个或多个数的最大公约数和最小公倍数的方法。

二、分数与小数- 分数的加减乘除:学习分数的四则运算,包括通分和约分。

- 分数的比较:掌握如何比较分数的大小。

- 小数的运算:熟悉小数的加减乘除运算,以及小数点的移动规律。

三、几何图形- 面积与周长:学习计算不同几何图形的面积和周长,如三角形、矩形、圆形等。

- 几何变换:了解平移、旋转和反射等基本几何变换。

- 相似与全等:理解相似图形和全等图形的概念和判定方法。

四、排列组合与概率- 排列组合:掌握排列和组合的基本概念,学会计算排列数和组合数。

- 简单概率:了解概率的基本概念,学会计算简单事件的概率。

五、逻辑推理- 逻辑推理题:通过解决逻辑推理问题,培养学生的逻辑思维和推理能力。

- 数列问题:学习数列的基本概念,掌握等差数列和等比数列的性质。

六、应用题- 速度、时间与距离:解决与速度、时间和距离相关的问题。

- 工程问题:理解工作效率和工作时间的关系,解决相关的应用题。

- 经济问题:学习基本的经济概念,如成本、利润和折扣等。

七、数学思维训练- 枚举法:学习如何通过列举所有可能的情况来解决问题。

- 归纳法与演绎法:理解归纳推理和演绎推理的区别,学会应用这两种方法解决问题。

结语五年级奥数的学习不仅能够提高学生的数学素养,还能锻炼他们的逻辑思维和解决问题的能力。

通过掌握这些知识点,学生将能够在数学竞赛和日常生活中更加自信地应对各种挑战。

五年级奥数知识要点汇总

五年级奥数知识要点汇总

五年级奥数总结知识点第一讲 小数的简便运算简便运算,就是用比较简捷、巧妙的方法计算出算式的得数。

一道计算题的简便算法常常不止一种。

下面我总结了小数简便算法的一些技巧和例题,希望各位家长和同学细心看并熟练运用每一种方法解题,争取做到一拿到手题就立刻知道这道题怎么做的水平哦!第一种方法:遇125找8,遇25找4法。

(这是一种很巧妙的计算方法,包括1.25、12.5、0.125、0.8、0.08……要都会熟练变形)例题:(1)0.125×400 (2)2.5×10.8=0.125×8×50 =2.5×(10+0.8)=1×50 =2.5×10+2.5×0.8=50 =27**第二种方法:熟练应用乘法分配率:a ×(b ±c)=a ×b ±a ×c (这种方法非常重要,同学们一定要掌握,**尤其逆向的()a b a c a b c ⨯±⨯=⨯±最为重要),如果没有直接给出乘法分配率的逆运算式子要会扩大缩小10倍100倍凑成乘法分配率逆运算的式子。

例题:(1)199.7×19.98-199.8×19.96 (2)0.245×28+24.5×3+2.45×7.2 =199.8×19.97-199.8×19.96 =24.5×0.28+24.5×3+24.5×0.72 =1.998 =98第三种方法:凑整法:把一个数如0.9、0.8向1凑,然后再减去多余的部分。

例题:0.9+9.9+99.9+999.9=(1+10+100+1000)-0.1×4()a b c a b a c ⨯±=⨯±⨯=1111-0.4=1110.6第四种方法:首位相加法:当一列数字首位相加相等时,利用首位相加再乘以数字的个数除以2就是这列数相加的结果。

五年级奥数主要知识点

五年级奥数主要知识点

五年级奥数主要知识点五年级奥数是小学数学竞赛的一个重要阶段,它不仅要求学生掌握基础数学知识,还要求学生具备一定的逻辑思维能力和解决问题的能力。

以下是五年级奥数的主要知识点:一、数论基础- 整数的奇偶性:理解奇数和偶数的概念,掌握奇偶数的基本性质。

- 质数与合数:区分质数和合数,了解它们的定义和特点。

- 最大公约数和最小公倍数:学会求两个或多个数的最大公约数和最小公倍数,理解其在数学中的应用。

二、分数和小数- 分数的加减乘除:掌握分数的四则运算,包括通分、约分等技巧。

- 分数的大小比较:学会比较分数的大小,理解分数的性质。

- 小数的运算:熟练进行小数的加减乘除运算,理解小数点的移动规律。

三、比例和比例关系- 比例的基本性质:理解比例的概念,掌握比例的基本性质。

- 正比例和反比例:区分正比例和反比例,理解它们在实际问题中的应用。

四、几何图形- 平面图形:学习三角形、四边形、圆等基本平面图形的性质和面积计算。

- 立体图形:了解长方体、正方体、圆柱、圆锥等立体图形的体积和表面积计算。

五、排列组合与计数原理- 排列组合:掌握排列和组合的基本概念,学会解决相关的数学问题。

- 计数原理:理解加法原理和乘法原理,学会应用这些原理解决实际问题。

六、逻辑推理- 条件逻辑:学会根据给定条件进行逻辑推理,解决数学问题。

- 数学证明:了解数学证明的基本方法,学会用逻辑推理来证明数学命题。

七、应用题- 行程问题:解决涉及速度、时间和距离的行程问题。

- 工程问题:理解工作效率和工作时间的关系,解决相关的工程问题。

- 经济问题:学习解决涉及价格、成本和利润的经济问题。

八、数学思维和解题技巧- 归纳推理:通过观察和分析,归纳出数学规律和模式。

- 逆向思维:学会从问题的结果出发,逆向推导出解决问题的方法。

- 转化思维:将复杂问题转化为简单问题,或将不同类型问题相互转化。

五年级奥数的学习不仅能够提高学生的数学素养,还能培养他们的逻辑思维和创新能力。

五年级必备的奥数知识点

五年级必备的奥数知识点

五年级必备的奥数知识点
l几何
–直线形面积、曲线型面积——圆与扇形、立体图形的体积表面积(不规则形体是重点)。

l数论
–数的整除性、整除应用、奇数偶数、平方数问题;约数与倍数、质数与和数、余数问题、数论综合;进制转换、整数的拆分。

l行程
–多次相遇、多人行程、钟表中的行程、环形行程、火车过桥、流水行船、走走停停
l计算

比较和估算、裂项、应用公式计算、通项公式计算、换元计算
l分数、方程应用题
–列方程解应用题、不定方程初步、分数应用题、工程问题、年龄问题、盈亏问题、鸡兔同笼、牛吃草问题
l最佳策略
–统筹优化、数学游戏、博弈问题、爬楼梯问题、策略与操作
l抽屉原理
–最不利原则、抽屉问题中的构造与论证
l逻辑推理
l数学方法
l其他内容:
–数阵、数表、数字谜
–排列组合、加法原理、乘法原理、染色问题。

五年级奥数Microsoft Word 文档 (2)

五年级奥数Microsoft Word 文档 (2)

五年级奥数M i c r o s o f t W o r d文档(2)work Information Technology Company.2020YEAR第一章和差、和倍、差倍问题一、长方形的周长是84厘米,长比宽多8厘米,长方形的面积是多少?二、兄弟俩共有人民币50元,哥哥给弟弟8元钱后,还比弟弟多2元,哥哥和弟弟原来各有多少钱?三、小明期中考试,语,数,外三门总分是270分,语文比数学少10分,外语比数学少5分,小明三门各考多少分?四、甲乙两个数的和是200.2,甲数的小数点向右移动一位就和乙一样大,甲乙两个数各是多少?五、一根电线长240米,把它截成三段,使第一段比第二段长20米,第三段是第一段的2倍,这三段电线各长多少米?六、被除数除以除数,商17余8,已知被除数、除数、商、余数的和是501,被除数、除数各是多少?七、父亲比儿子大28岁,父亲的年龄比儿子年龄的4倍多1岁,儿子今年多少岁?八、有两匹同样长的布,第一匹用去10.5米,第二匹用去1.3米,剩下的布第二匹是第一匹的3倍。

两匹布原来各长多少米?九、小明做一道加法试题,由于粗心,把一个加数个位上的零漏掉了,结果比正确答案少720.这个加数是多少?十、今年小明和爸爸、妈妈的年龄分别是6岁、35岁和31岁。

多少年后,爸爸、妈妈的年龄的和是小名的5倍?第二章相遇、追及问题一、甲乙两车分别同时从A、B两地相向而行,甲每小时行80千米,乙每小时行65千米,相遇时,离中点还有30千米,A、B两地相距多少千米?二、甲乙两车分别同时从从A、B两地相向而行,在距B地45千米处相遇,他们各自到达对方车站后立即返回,途中又在距A地30千米处相遇。

求A、B两地间的距离。

三、甲乙两人骑自行车从同一地点向相反方向出发,甲每小时行14千米,乙每小时行12千米。

如果乙先行2.5小时,那么甲行几小时后,两人相距160千米?四、甲乙两人分别同时从A、B两地相向而行,相遇时距A地120米,相遇时,他们继续前进,到达目的地后立即返回,在距A地150米处再次相遇,求A、B两地的距离。

小学奥数五年级知识点总结

小学奥数五年级知识点总结

小学奥数五年级知识点总结小学奥数是一项旨在培养小学生数学能力和逻辑思维能力的竞赛活动。

在五年级这个阶段,学生需要掌握并熟练运用一系列的数学知识点。

本文将对五年级奥数的知识点进行总结,帮助学生更好地备战奥数竞赛。

一、整数和小数1. 整数概念:正整数、负整数和零的概念及表示方法。

2. 整数的运算:整数的加法、减法、乘法和除法运算规则。

3. 小数概念:小数点的位置和读法,小数的表达方法。

4. 小数的运算:小数的加法、减法、乘法和除法运算规则。

二、分数和比例1. 分数概念:分子、分母的含义,分数的读法和表达法。

2. 分数的运算:分数的加法、减法、乘法和除法运算规则。

3. 分数的化简:简化分数,寻找最大公约数和最小公倍数。

4. 分数的比较:同分母和异分母的分数比较方法。

5. 比例概念:比例的含义和比例的计算方法。

三、几何图形1. 二维图形:正方形、长方形、三角形、圆和平行四边形的特点和性质。

2. 三角形的分类:根据角度和边长特点将三角形分为等边三角形、等腰三角形和一般三角形。

3. 直角三角形:勾股定理和斜边公式的运用。

4. 四边形:矩形、正方形、菱形和梯形的特点和性质。

四、代数1. 代数方程式:使用字母表示未知数,解代数方程式的基本方法。

2. 简单方程组:解决两个未知数的方程组。

3. 带有括号的代数表达式:展开和化简带有括号的代数式子。

4. 代数表达式的运算:代数式子的加法、减法、乘法和除法运算规则。

五、逻辑推理1. 图形的变换:图形的平移、旋转和翻转。

2. 图形的对称性:图形的轴对称和中心对称特点。

3. 推理与判断:根据已知条件进行逻辑推理和推理判断。

4. 看图找规律:观察图形规律,进行类比和推理。

六、数列和函数1. 数列的概念:等差数列和等比数列的定义。

2. 数列的运算:计算等差数列和等比数列的前n项和。

3. 函数的概念:函数的自变量和因变量的含义,函数的定义和性质。

七、概率与统计1. 概率:事件的概念,基本事件和对立事件的概率计算。

(完整word版)五年级上册奥数讲义

(完整word版)五年级上册奥数讲义

↑↑↑↑↑优才家教 优等生同步奥数提高 五年级(下)↑↑↑↑↑第一讲 整数问题 第1课 数的整除一、知识要点1. 整除——因数、倍数2. 相关基础知识点回顾(1)0是任何整数的倍数. (2)1是任何整数的因数。

3. 数整除的性质例如:如果2|10,2|6,那么2|(10+6),并且2|(10-6).必要条件:(1)a 、b 、c 三个数是整数 (2)b ≠0 (3)a ÷b=c结论:整数a 能被整数b 整除,或b 能整除a,则a 叫做b 的倍数,b 叫做a 的因数。

记作:b|a例如:如果6|36,9|36,那么[6,9]|36.例如:如果2|72,9|72,且(2,7)=1,那么18|72.例:如果7|14,14|28,那么7|28。

4.数的整除特征(1)能被2整除的数的特征:如果一个整数的个位数是偶数(即个位数是2、4、6、8、0),那么它必能被2整除。

(2)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么它必能被5整除。

(3)能被3(或9)整除的数的特征:如果一个整数的各位数字之和能被3(或9)整除,那么它必能被3(或9)整除.(4)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么它必能被4(或25)整除.例:1864能否被4整除?解:1864=1800+64,因为4|64,4是1864的因数,1864是4的倍数,所以4|1864。

(5)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么它必能被8(或125)整除。

例:29375能否被125整除?解:29375=29000+375,因为125|375,125是375的因数,375是125的倍数,所以125|29375。

(6)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除。

(奇数位指:这个数的个位、百位、万位……;偶数位指:这个数的十位、千位、十万位……)例:判断13574是否是11的倍数?解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新小学五年级奥数知识点word百度文库
一、拓展提优试题
1.由120个棱长为1的正方体,拼成一个长方体,表面全部涂色,只有一面染色的小正方体,最多有块
2.如图,从A到B,有条不同的路线.(不能重复经过同一个点)
3.将等边三角形纸片按图1所示步骤折叠3次(图1中的虚线是三边的中点的连线),然后沿两边的重点的边减去一角(如图2).
将剩下的纸片展开、平铺,得到的图形是A
4.有白球和红球共300个,纸盒100个.每个纸盒里都放3个球,其中放1个白球的纸盒有27个,放2个或3个红球的纸盒共有42个,放3个白球和3个红球的纸盒数量相同.那么,白球共有个.
5.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是;
6.如图,正方形的边长是6厘米,AE=8厘米,求OB=厘米.
7.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.
8.如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=
厘米.
9.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.
10.用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用).
11.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值
是.
12.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方
式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是 .
13.小明准备和面包饺子,他在1.5千克面粉中加入了5千克的水,发现面和得太稀了,奶奶告诉他,包饺子的面需要按照3份面,2份水和面,于是小明
分三次加入相同分量的面粉,终于将面按按要求和好了,那么他每次加入了 千克面粉.
14.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是 元.
15.如图是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有 块.
【参考答案】
一、拓展提优试题
1.64
[解答]设长方体的长、宽、高分别为,,l m n (不妨设l m n ≥≥),容易知道只有一面染色的小正方体只有每个面上可能有一些。

要使得其最多,那么2n =(否则内部有太多的小正方体都是所有面没有染色的)。

由于12060lmn lm =⇒=。

此时一面染色的小正方体的个数为
()()()()()22222242602242644l m lm l m l m l m --=--+=--+=⨯-+。

要使得()2644l m ⨯-+最大,那么就是要使l m +最小。

考虑到60lm =,容易知道当10,6l m ==时,l m +最小。

所以只有一面染色的小正方体最多有
()264410664⨯-⨯+=
2.解:如图,因为,从A到B有5条直连线路,
每条直连线路均有5种不同的路线可以到达B点,
所以,共有不同线路:5×5=25(条),
答:从A到B,有25条不同的路线,
故答案为:25.
3.解:找一剪刀与一等边三角形纸片,按题中所示步骤进行操作,最后得到的图形是A,
故答案为:A.
4.解:根据题干分析可得:
3个红球的盒子数是:42﹣27=15(个),
所以放3个白球的盒子数也是15(个),
则放2白一红的盒子数是:100﹣15﹣15﹣27=43(个),
所以白球的总数有:15×3+43×2+27=158(个),
答:白球共有158个.
故答案为:158.
5.解:根据分析,AD=BE+EC=5+4=9,
AB=1+4=5,S△EFC=×EC×FC=×4×4=8;
S△ABE=×AB×BE=×5×5=12.5;
S△ADF=×AD×DF=×9×1=4.5;
S长方形ABCD=AB×AD=5×9=45,
要求的△AEF的面积等于整体长方形的面积减去三个三角形的面积.S△AEF=S长方形ABCD﹣S△EFC﹣S△ABE﹣S△ADF=45﹣8﹣12.5﹣4.5=20.
故答案是:20.
6.解:6×6÷2=18(平方厘米),
18×2÷8=4.5(厘米);
答:OB长4.5厘米.
故答案为:4.5.
7.解:△ADM、△BCM、△ABM都等高,
所以S
△ABM :(S
△ADM
+S
△BCM
)=8:10=4:5,
已知S △AMD =10,S △BCM =15,
所以S △ABM 的面积是:(10+15)×=20,
梯形ABCD 的面积是:10+15+20=45;
答:梯形ABCD 的面积是45.
故答案为:45.
8.解:△ABC 的周长是16厘米,可得△AEF 的周长为:16÷2=8 (厘米), △AEF 和四边形BCEF 周长和为:8+10=18(厘米),
所以BC =18﹣16=2(厘米),
答:BC =2厘米.
故答案为:2.
9.解:依题意可知:
2个偶数中间间隔是2个奇数.
发现只有数字10,11,9,12是符合条件的数字.
乘积为10×12=120.
故答案为:120
10.解:可以组成下列质数:
2、3、5、7、61、89,一共有6个.
答:用1、2、3、5、6、7、8、9这8个数字最多可以组成 6个质数. 故答案为:6.
11.解:3n 是5的倍数,3n 的个数一定是0或5
又因为大于0的自然数n 是3的倍数,
所以3n 最小是45
3n =45
n =15
所以n 最小取15时,n 是3的倍数,3n 是5的倍数.
答:n 的最小值是15.
故答案为:15.
12.解:依题意可知:
2个偶数中间间隔是2个奇数.
发现只有数字10,11,9,12是符合条件的数字.
乘积为10×12=120.
故答案为:120
13.解:根据分析,因面和水的比为3:2,即每一份水需要:3÷2=1.5份面粉,
现在有5千克水,则需要面粉:5×1.5=7.5千克,而现有面粉量为:1.5千克,故还须加:7.5﹣1.5=6千克,分三次加入,则每次须加入:6÷3=2千克.
故答案是:2.
14.解:5000÷(1﹣)÷(1+)÷(1﹣)÷(1+)
=5000××××
=5000(元)
答:小胖这个月的工资是5000元.
故答案为:5000.
15.解:依题意可知:
第一层的共有4个角满足条件.
第二层的4个角是4面红色,去掉所有的角块其余的符合条件.
分别是3+2+3+2=10(个);
共10+4=14(个);
故答案为:14。

相关文档
最新文档