2008高考福建数学文科含答案(全word版)2008.6.10

合集下载

2008年普通高等学校招生全国统一考试(福建卷)数学(文)

2008年普通高等学校招生全国统一考试(福建卷)数学(文)

2008年普通高等学校招生全国统一考试(福建卷)数学(文)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|0A x x x =-<,{}|03B x x =<<,则A B 等于( )A .{}|01x x <<B .{}|03x x <<C .{}|13x x <<D .∅2.“1a =”是“直线0x y +=和直线0x ay -=互相垂直”的( )条件A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项和为( )A .128B .80C .64D .564.函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为( )A .3B .0C .-1D .-25.某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是( ) A .12125B .16125 C .48125D .961256.如图,在长方体1111ABCD A BC D -中,2AB BC ==分别为11AA =,则1AC 与平面1111A B C D 所成的角的正弦值为( )A B .23C D .137.函数cos ()y x x R =∈的图像向左平移2π个单位后,得到函数()y g x =的图像,则()g x 的解析式为( ) A .sin x - B .sin xC .cos x -D .cos x8.在△ABC 中,角A 、B 、C 的对应边分别为a 、b 、c,若222a cb +-=,则角B 的值为( )A .6πB .3π C .6π或56πD .3π或23π9.某班级要从4名男生和2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A .14B .24C .28D .4810.若实数x 、y 满足002x y x y -+≤⎧⎪>⎨⎪≤⎩,则y x 的取值范围是( )A .(0,2)B .(0,2]C .(2,)+∞D .[2,)+∞11.如果函数()y f x =的图像如右图,那么导函数'()y f x =的图像可能是()12.双曲线22221(0,0)x y a b a b-=>>的两个焦点为12,F F ,若P 为其上一点,且12||2||PF PF =,则双曲线离心率的取值范围为( )A .(1,3)B .(1,3]C .(3,)+∞D .[3,)+∞第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13. 91(x x+展开式中3x 的系数是 (用数字作答)14.若直线340x y m ++=与圆222440x y x y +-++=没有公共点,则实数m 的取值范围是15.,则其外接球的表面积是16.设P 是一个数集,且至少含有两个数,若对任意,a b P ∈,都有,,,aa b a b ab P b+-∈(除数0b ≠),则称P 是一个数域。

2008年高考数学试卷(福建.文)含详解

2008年高考数学试卷(福建.文)含详解

数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.¢ (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 (3)设|a n |是等左数列,若a 2=3,a 1=13,则数列{a n }前8项的和为 A.128 B.80 C.64 D.56 (4)函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为 A.3 B.0 C.-1 D.-2 (5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是A.12125 B.16125 C.48125 D.96125(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为A.223 B.23 C.24 D.13(7)函数y =cos x (x ∈R)的图象向左平移2个单位后,得到函数y=g(x )的图象,则g(x )的解析式为A.-sin xB.sin xC.-cos xD.cos x(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 3,则角B 的值为A.6πB.3πC.6π或56πD.3π或23π(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(10)若实数x、y满足10,0,2,x yxx-+≤⎧⎪⎨⎪≤⎩则yx的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) (11)如果函数y=f(x)的图象如右图,那么导函数y=f(x)的图象可能是(12)双曲线22221x ya b-=(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PE2|,则双曲线离心率的取值范围为A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞]第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.(13)(x+1x)9展开式中x2的系数是.(用数字作答)(14)若直线3x+4y+m=0与圆x2+y2-2x+4y+4=0没有公共点,则实数m的取值范围是 . (153,则其外接球的表面积是.(16)设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a-b、ab、ab∈P(除数b≠0)则称P是一个数域,例如有理数集Q是数域,有下列命题:①数域必含有0,1两个数;②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域;④数域必为无限集.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知向量(sin ,cos ),(1,2)m A A n ==-,且0.m n = (Ⅰ)求tan A 的值;(Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域. (18)(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为111,,,543且他们是否破译出密码互不影响.(Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由. (19)(本小题满分12分)如图,在四棱锥P —ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD 2,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC=2,O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的余弦值; (Ⅲ)求点A 到平面PCD 的距离. (20)(本小题满分12分)已知{a n }是正数组成的数列,a 1=11,n n a a +)(n ∈N *)在函数y =x 2+1的图象上. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2n a,求证:b n ·b n +2<b 2n +1. (21)(本小题满分12分)已知函数32()2f x x mx nx =++-的图象过点(-1,-6),且函数()()6g x f x x '=+的图象关于y 轴对称.(Ⅰ)求m 、n 的值及函数y =f (x )的单调区间;(Ⅱ)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值. (22)(本小题满分14分)如图,椭圆2222:1x y C a b+=(a >b >0)的一个焦点为F (1,0),且过点(2,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)若AB 为垂直于x 轴的动弦,直线l :x =4与x 轴交于点N , 直线AF 与BN 交于点M . (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求△AMN 面积的最大值.2008年普通高等学校招生全国统一考试(福建卷)数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.∅ 解:A ={x |0<x<1}∴A ∩B={x |0<x <1} (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解:若00x y x ay +=-=与互相垂直,则0x ay -=的斜率必定为1,1a =,反之显然 (3):设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项的和为 A.128 B.80 C.64 D.56 解:因为{}n a 是等差数列,278313886422a a ++=⨯=⨯=∴S(4)函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为 A.3 B.0 C.-1 D.-2解:3()1sin f x x x -=+为奇函数,又()2f a =∴()11f a -=故()11f a --=-即()0f a -=.(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 A.12125 B.16125 C.48125 D.96125解:独立重复实验服从二项分布4(3,)5B ,21234148(2)55125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭(6)如图,在长方体ABCD -A 1B 1C 1D 1中, AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为B.23D.13解:连11A C ,则11AC A ∠为AC 1与平面A 1B 1C 1D 1所成角.112AB BC AC AC ==⇒==11AA = 1111113sin 3AA AC AC A AC =⇒∠==∴ (7)函数cos ()y x x R =∈的图象向左平移2π个单位后,得到函数()y g x =的图象,则()g x 的解析式为A.sin x -B. sin xC.cos x -D.cos x 解:()cos()sin 2y g x x x π==+=-(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c,若222a cb +-=,则角B 的值为 A.6π B.3π C.6π或56π D.3π或23π解:由222a +c -b得222(a +c -b )2ac即cos =2B ,6B π⇒=(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48解:6人中选4人的方案4615C =种,没有女生的方案只有一种,所以满足要求的方案总数有14种(10)若实数x 、y 满足10,0,2,x y x y -+≤⎧⎪>⎨⎪≤⎩则y x 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞)AA解:由题设1y x ≥+,所以11y x x ≥+,又01211x y <≤-≤-=,因此2y x≥ 又yx可看做可行域中的点与原点构成直线的斜率,画出可行域也可得出答案。

高考试卷 全国普通高校招生统一考试数学(福建卷 文科)(附答案 全字版)

高考试卷 全国普通高校招生统一考试数学(福建卷 文科)(附答案 全字版)

高考试卷全国普通高校招生统一考试数学(福建卷文科)(附答案全字版)自己整理的高考试卷全国普通高校招生统一考试数学(福建卷文科)(附答案全字版)相关文档,希望能对大家有所帮助,谢谢阅读!2008年全国普通高校招生统一考试(文史)(福建卷)卷一(选择题60分)1.选择题:共12个分题,每个分题5分,共60分。

在每个子问题中给出的四个选项中,只有一个符合主题的要求。

(1)如果设置a={x | x2-xB.(0,2)C.(2,)d[2,) (11)如果函数y=f(x)的像如右图所示,那么导函数y=f(x)的像可能是(12)双曲线(a > 0,b > 0)的两个焦点是F1和F2,如果p是它的上点,并且B.(1,3)C.(3, )D.[3,]卷二(非选择题90分)二、填空:这个大题有4个小题,每题4分,共16分,填在答题卡的相应位置。

(13)(x)9展开式中x2的系数为。

(用数字回答)(14)如果直线3x 4y m=0与圆x2 y2-2x 4y 4=0之间没有公共点,则实数m的取值范围为。

(15)如果三棱锥的三个侧边相互垂直,并且侧边的长度都相同,则外切球面的表面积为。

(16)设p为一个数字集,至少包含两个数字。

如果有的话,(1)数字字段必须包含两个数字,0和1;整数集是一个数域;如果有理数集QM,那么数集M一定是数域;(4)数域必须是无限集合。

正确命题的序号是。

(填写你认为正确的命题序号)三、答题:这个大题有6个小题,共74分。

答案应写书面说明,证明过程或计算步骤。

(17)(这个小问题满分12分)向量已知,且(I)求tanA的值;()求函数r)的值域。

(18)(本项满分12分)三个人独立破译同一个密码。

已知三个人破译密码的概率分别为,是否破译密码互不影响。

()找到恰好两个人破译密码的概率;(二)“密码破解”和“密码未破解”的概率是多少?说明理由。

(19)(这个小问题满分12分)如图所示,在金字塔P-ABCD中,侧边PAD是底部ABCD,侧边PA=PD=,底部ABCD是直角梯形,其中BCAD,AB ADAMN面积最大值。

【历年高考经典】2008年文科数学试题及答案-福建卷

【历年高考经典】2008年文科数学试题及答案-福建卷

2008年普通高等学校招生全国统一考试(福建卷)文科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|0A x x x =-<,{}|03B x x =<<,则AB 等于( )A.{}|01x x << B.{}|03x x << C.{}|13x x <<D.∅2.a=1”是“直线0x y +=和直线0x ay -=互相垂直”的( )条件A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 3.设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项和为( )A.128B.80C.64D.564.函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为( )A.3B.0 C.-1D.-25.某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是( )A.12125B.16125 C.48125 D.961256.如图,在长方体1111ABCD A BC D -中,2AB BC ==分别为11AA =,则1AC 与平面1111A B C D 所成的角的正弦值为( )A.3B.23C.4D.137.函数cos ()y x x R =∈的图像向左平移2π个单位后,得到函数()y g x =的图像,则()g x 的解析式为( )A.sin x - B.sin xC.cos x -D.cos x8.在△ABC 中,角A,B,C 的对应边分别为a,b,c,若222a cb +-=,则角B 的值为( )A.6πB.3π C.6π或56πD.3π或23π9.某班级要从4名男生和2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A.14 B.24 C.28 D.4810.若实数x,y 满足{02x y x y -+≤>≤,则yx的取值范围是( ) A.(0,2)B.(0,2] C.(2,)+∞D.[2,)+∞11.如果函数()y f x =的图像如右图,那么导函数'()y f x =的图像可能是( )12.双曲线22221(0,0)x y a b a b-=>>的两个焦点为12,F F ,若P 为其上一点,且12||2||PF PF =,则双曲线离心率的取值范围为( )A.(1,3)B.(1,3]C.(3,)+∞D.[3,)+∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13. 91()x x+展开式中3x 的系数是 (用数字作答)14.若直线340x y m ++=与圆222440x y x y +-++=没有公共点,则实数m 的取值范围是15.,则其外接球的表面积是 16.设P 是一个数集,且至少含有两个数,若对任意,a b P ∈,都有,,,aa b a b ab P b+-∈(除数0b ≠),则称P 是一个数域。

2008年高考文科数学(福建)卷试题及其参考答案

2008年高考文科数学(福建)卷试题及其参考答案

2008年福建卷省高考数学(文科)试题第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|0A x x x =-<,{}|03B x x =<<,则A B 等于A.{}|01x x << B.{}|03x x << C.{}|13x x <<D.∅2.a=1”是“直线0x y +=和直线0x ay -=互相垂直”的A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 3.设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项和为 A.128B.80C.64 D.564.函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为 A.3B.0 C.-1D.-25.某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 A.12125B.16125 C.48125D.961256.如图,在长方体1111ABCD A B C D -中,2AB BC ==分别为11AA =,则1AC 与平面1111A B C D 所成的角的正弦值为A.3 B.23D.137.函数cos ()y x x R =∈的图像向左平移2π个单位后,得到函数()y g x =的图像,则()g x的解析式为 A.sin x -B.sin x C.cos x -D.cos x8.在△ABC 中,角A,B,C 的对应边分别为a,b,c,若222a cb +-=,则角B 的值为 A.6π B.3π C.6π或56πD.3π或23π9.某班级要从4名男生和2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14 B.24 C.28 D.48A.(0,2)B.(0,2] C.(2,)+∞D.[2,)+∞11.如果函数()y f x =的图像如右图,那么导函数'()y f x =的图像可能是12.双曲线22221(0,0)x y a b a b -=>>的两个焦点为12,F F ,若P 为其上一点,且12||2||PF PF =,则双曲线离心率的取值范围为A.(1,3)B.(1,3]C.(3,)+∞D.[3,)+∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置. 13. 91()x x+展开式中3x 的系数是 (用数字作答)14.若直线340x y m ++=与圆222440x y x y +-++=没有公共点,则实数m 的取值范围是15.,则其外接球的表面积是 16.设P 是一个数集,且至少含有两个数,若对任意,a b P ∈,都有,,,aa b a b ab P b+-∈(除数0b ≠),则称P 是一个数域。

2008高考福建数学文科试卷含详细解答

2008高考福建数学文科试卷含详细解答

2008年普通高等学校招生全国统一考试(福建卷)数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.∅ 解:A ={x |0<x<1}∴A ∩B={x |0<x <1} (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解:若00x y x ay +=-=与互相垂直,则0x ay -=的斜率必定为1,1a =,反之显然 (3):设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项的和为 A.128 B.80 C.64 D.56 解:因为{}n a 是等差数列,278313886422a a ++=⨯=⨯=∴S(4)函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为 A.3 B.0 C.-1 D.-2解:3()1sin f x x x -=+为奇函数,又()2f a =∴()11f a -=故()11f a --=-即()0f a -=.(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 A.12125 B.16125 C.48125 D.96125解:独立重复实验服从二项分布4(3,)5B ,21234148(2)55125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭(6)如图,在长方体ABCD -A 1B 1C 1D 1中, AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为A.3B.23C.4D.13AB解:连11A C ,则11AC A ∠为AC 1与平面A 1B 1C 1D 1所成角.11222AB BC AC AC ==⇒==,又11AA = 1111113sin 3AA AC AC A AC =⇒∠==∴ (7)函数cos ()y x x R =∈的图象向左平移2π个单位后,得到函数()y g x =的图象,则()g x 的解析式为A.sin x -B. sin xC.cos x -D.cos x 解:()cos()sin 2y g x x x π==+=-(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2223a c b ac +-=,则角B 的值为 A.6π B.3π C.6π或56π D.3π或23π解:由222a +c -b 3ac 得222(a +c -b )32ac 即3cos B ,6B π⇒=(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48解:6人中选4人的方案4615C =种,没有女生的方案只有一种,所以满足要求的方案总数有14种(10)若实数x 、y 满足10,0,2,x y x y -+≤⎧⎪>⎨⎪≤⎩则y x 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) 解:由题设1y x ≥+,所以11y x x≥+,又01211x y <≤-≤-=,因此2y x ≥又yx可看做可行域中的点与原点构成直线的斜率,画出可行域也可得出答案。

2008高考全国卷Ⅱ数学文科试卷含答案(全word版)-推荐下载


A.1
B. 2
C.3
C. 3
D.18
11.设 △ABC 是等腰三角形, ABC 120 ,则以 A,B 为焦点且过点 C 的双曲线的离
心率为( )
1 2
A.
2
1 3
B.
2
C. 1 2
12.已知球的半径为 2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为 2,则两圆的圆心距等于( )


19.(本小题满分 12 分) 甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲 击中 8 环,9 环,10 环的概率分别为 0.6,0.3,0.1,乙击中 8 环,9 环,10 环的概率分别 为 0.4,0.4,0.2. 设甲、乙的射击相互独立. (Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率; (Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.
A.1
B. 3
C.2
C.0,1 2,
D. 5
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2008年全国统一高考数学试卷(文科)(全国卷ⅱ)(含解析版)

取值范围.
22.(12 分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点, 直线 y=kx(k>0)与 AB 相交于点 D,与椭圆相交于 E、F 两点.
(Ⅰ)若
,求 k
2008 年全国统一高考数学试卷(文科)(全国卷Ⅱ)
参考答案与试题解析
双曲线的离心率为( )
A.
B.
C.
D.
12.(5 分)已知球的半径为 2,相互垂直的两个平面分别截球面得两个圆,若两
圆的公共弦长为 2,则两圆的圆心距等于( )
A.1
B.
C.
D.2
二、填空题(共 4 小题,每小题 5 分,满分 20 分)
13.(5 分)设向量
,若向量
与向量
共线,
则 λ=

14.(5 分)从 10 名男同学,6 名女同学中选 3 名参加体能测试,则选到的 3 名
充要条件①

充要条件②

(写出你认为正确的两个充要条件)
三、解答题(共 6 小题,满分 70 分) 17.(10 分)在△ABC 中,cosA=﹣ ,cosB= .
(Ⅰ)求 sinC 的值; (Ⅱ)设 BC=5,求△ABC 的面积.
18.(12 分)等差数列{an}中,a4=10 且 a3,a6,a10 成等比数列,求数列{an}前 20 项的和 S20.
【解答】解:sinα<0,α 在三、四象限;tanα>0,α 在一、三象限. 故选:C. 【点评】记住角在各象限的三角函数符号是解题的关键,可用口诀帮助记忆:一
全部,二正弦,三切值,四余弦,它们在上面所述的象限为正
2.(5 分)设集合 M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则 M∩N=( )

2008高考福建数学文科试卷含详细解答(全word版)080626

2008年普通高等学校招生全国统一考试(福建卷)数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.∅ 解:A ={x |0<x<1}∴A ∩B={x |0<x <1} (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解:若00x y x ay +=-=与互相垂直,则0x ay -=的斜率必定为1,1a =,反之显然 (3):设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项的和为 A.128 B.80 C.64 D.56 解:因为{}n a 是等差数列,278313886422a a ++=⨯=⨯=∴S(4)函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为 A.3 B.0 C.-1 D.-2解:3()1sin f x x x -=+为奇函数,又()2f a =∴()11f a -=故()11f a --=-即()0f a -=.(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 A.12125 B.16125 C.48125 D.96125解:独立重复实验服从二项分布4(3,)5B ,21234148(2)55125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭(6)如图,在长方体ABCD -A 1B 1C 1D 1中, AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为A.3B.23C.4D.13A解:连11A C ,则11AC A ∠为AC 1与平面A 1B 1C 1D 1所成角.11222AB BC AC AC ==⇒==11AA = 1111113sin 3AA AC AC A AC =⇒∠==∴ (7)函数cos ()y x x R =∈的图象向左平移2π个单位后,得到函数()y g x =的图象,则()g x 的解析式为A.sin x -B. sin xC.cos x -D.cos x 解:()cos()sin 2y g x x x π==+=-(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2223a c b ac +-=,则角B 的值为 A.6π B.3π C.6π或56π D.3π或23π解:由222a +c -b 3ac 得222(a +c -b )32ac 即3cos B ,6B π⇒=(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48解:6人中选4人的方案4615C =种,没有女生的方案只有一种,所以满足要求的方案总数有14种(10)若实数x 、y 满足10,0,2,x y x y -+≤⎧⎪>⎨⎪≤⎩则y x 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) 解:由题设1y x ≥+,所以11y x x ≥+,又01211x y <≤-≤-=,因此2y x≥ 又yx可看做可行域中的点与原点构成直线的斜率,画出可行域也可得出答案。

2008年高考数学福建卷(文)全解全析

2008年普通高等学校招生全国统一考试福建卷数学试题(文科)全解全析解析作者:李辉一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.¢【标准答案】A【试题解析】A ={x |0<x<1}∴A ∩B={x |0<x <1} 【高考考点】简单的集合的运算.【易错提醒】概念不清会导致部分同学失分.【学科网备考提示】集合在高考的考查是以基础题为主,题目比较容易,复习中我们应从基础出发。

(2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【标准答案】C 【试题解析】验证即可.【高考考点】本题主要考查分式不等式及四种命题【易错提醒】很容易混淆充分条件和必要条件的推导方向即那个为条件那个为结论.【学科网备考提示】一定要劳记充分条件或者必要条件是由谁推谁?特别注意“A 的充分不必要条件是()”题型.(3)设{}n a 是等差数列,若a 2=3,a 7=13,则数列{a n }前8项的和为 A.128 B.80 C.64 D.56(4)函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为 A.3 B.0 C.-1 D.-2【标准答案】B【试题解析】注意到3()1s in f x x x -=+为奇函数,又()2f a =∴()11f a -=故()11f a --=-即()0f a -=. 【高考考点】函数奇偶性的应用.【易错提醒】往往有的考生不注意观察函数在形式上的特征以至于找不到问题的切入点. 【学科网备考提示】在备考过程中要多引导学生自己发现并及时总结.(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是A.12125B.16125C.48125D.96125【标准答案】C【试题解析】由212334148(2)55125P C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭【高考考点】独立重复实验的判断及计算 【易错提醒】容易记成二项展开式的通项.【学科网备考提示】请考生注意该公式与二项展开式的通项的区别,所以要强化公式的记忆.(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为A.223 B.23C.24D.13【标准答案】D【试题解析】连11A C ,则11A C A ∠为所成角,下面就是计算了. 【高考考点】线面角的做法【易错提醒】有的考生可能会误认为线面角就是11A C B ∠.【学科网备考提示】主要是要一个线面垂直关系,所以只要做到了这点对于计算只要考生认真就一定没有问题.(7)函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,则g(x )的解析式为A.-sin xB.sin xC.-cos xD.cos x【标准答案】A【试题解析】()c o s ()s in 2y g x x x π==+=-【高考考点】三角函数的平移变换. 【易错提醒】按向量平移要注意方向.【学科网备考提示】劳记三角函数诱导公式及平移变换法则.对于三角这一部分考纲应该要求是在降低,所以一定要把握基础.(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 2=3ac ,则角B 的值为 A.6πB.3πC.6π或56π D.3π或23π【标准答案】A【试题解析】由222a +c -b = 3ac 得222(a +c -b )3=22a c即3c o s =2B3c o s =2B ∴,又在△中所以B 为6π.【高考考点】余弦定理的应用【易错提醒】忽略三角形中的条件,所以就有可能出现两个答案.【学科网备考提示】注意结果取舍问题,在平时的练习过程中一定要注意此点.(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48【标准答案】A【试题解析】由于只少一各女生所以考虑用间接法即46114C-=,还可考虑直接法.【高考考点】简单的排列组合【易错提醒】有些同学用直接法,往往会分类不全.【学科网备考提示】建议如果下面考虑太复杂的题目最好用间接法,以避免直接的分类不全情况出现.(10)若实数x、y满足10,0,2,x yxx-+≤⎧⎪>⎨⎪≤⎩则yx的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞)【标准答案】D【试题解析】yx可看做可行域中的点与原点构成直线的低斜率.【高考考点】简单的线性规划及目标函数的几何意义.【易错提醒】对于可行域的确定.【学科网备考提示】对于线性规划考纲中也明确说明只要掌握简单的线性目标函数即可,所以这部分不需要过多的提高. (11)如果函数y=f(x)的图象如右图,那么导函数y=f(x)的图象可能是【标准答案】A【试题解析】由原函数的单调性可以得到导函数的正负情况依次是正→负→正→负,所以只有答案A满足.【高考考点】导函数的意义【易错提醒】导函数的概念不清,不知道两函数之间的关系.【学科网备考提示】建议让学生在最后一轮一定要回归课本,抓课本基本概念.(12)双曲线22221x y ab-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为A.(1,3)B.(1,3]C.(3,+∞)D. [3,+∞]【标准答案】B【试题解析】可用三角形的两边和大于第三边,及两边差小于第三边,但要注意前者可以取到等号成立,因为可以三点一线. 也可用焦半径公式确定a 与c 的关系 【高考考点】关于离心率范围的确定.【易错提醒】有些同学想直接算出e,然后再通过确定其中参数的范围从而确定e, 这是不可能的,既然题目要范畴所以一定要想办法构造不等式才可以.【学科网备考提示】可以在平时的教学过程中总结常见的有关离心率的求法及范围的求法.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)(x +1x)9展开式中x 3的系数是 .(用数字作答)【标准答案】84 【试题解析】992991rrrr rC xC xx --⎛⎫= ⎪⎝⎭,令9233r r -==得,3984C ∴= 【高考考点】二项展开式的特定项的求法. 【易错提醒】公式记不清楚导致计算错误. 【学科网备考提示】劳记公式.(14)若直线3x+4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是 .【标准答案】(,0)(10,)-∞⋃+∞【试题解析】此圆的圆心为(-1.2),因为要没有公共点,所以根据圆心到直线的距离大于半径即可;或者可以联立方程根据二次函数的0∆<.【高考考点】直线与圆的位置关系的判断.【易错提醒】本题出现最多的问题应该是计算上的问题,我班上有个平时相当不错的学生就跟我说他就算错了.哭死… 【学科网备考提示】平时要强化基本功的练习.因为使用新课标后他们小学的计算都是按计算器过来的,而高考又不能用,所以有的学生计算能力就相当差了.(15)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是 .【标准答案】9π【试题解析】依题可以构造一个正方体,其体对角线就是外接球的直径.23333r =++= ,249s rππ==【高考考点】立几中的构造法及球的表面积计算.【易错提醒】体红外线应该是外接球的直径,往往有的学生就当成半径来算导致错误.【学科网备考提示】对于有关外接球的问题要注意归纳几种的典型的构造方法,再比如正四面体的外接球的构造法,还有对棱相等的构造方法等.(16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a+b 、a-b 、ab 、a b∈P (除数b ≠0)则称P 是一个数域,例如有理数集Q 是数域,有下列命题: ①数域必含有0,1两个数; ②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域;④数域必为无限集.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上) 【标准答案】①④【试题解析】要满足对四种运算的封闭,只有一个个来检验,如②对除法如12Z ∉不满足,所以排除;对③当M 中多一个元素i 则会出现1i M +∉所以它也不是一个数域;①④成立. 【高考考点】新定义概念的理解能力.【易错提醒】很多学生考完后对我说④也不是,他的例子是{1,0,1}M =-殊不知1(1)2--=,导致不应有的失分. 【学科网备考提示】三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知向量(sin ,co s ),(1,2)m A A n ==-,且0.m n = (Ⅰ)求tan A 的值;(Ⅱ)求函数()co s 2tan sin (f x x A x x =+∈R )的值域.【标准答案】解:(Ⅰ)由题意得 m ·n =sin A -2cos A =0,因为cos A ≠0,所以tan A =2. (Ⅱ)由(Ⅰ)知tan A =2得2213()c o s 22s in 12s in2s in 2(s in ).22f x x x x x x =+=-+=--+因为x ∈R,所以[]sin 1,1x ∈-. 当1s in 2x =时,f (x )有最大值32,当sin x =-1时,f (x )有最小值-3, 所以所求函数f (x )的值域是33,.2⎡⎤-⎢⎥⎣⎦【试题解析】【高考考点】本小题主要考查平面向量的数量积计算、三角函数的基本公式、三角恒等变换、一元二次函数的最值等基本知识,考查运算能力.属于简单题.【易错提醒】不注意正弦函数的有界性.【学科网备考提示】第二问属于二次函数在区间上的值域问题,要注意结合单调性在区间上取最值.(18)(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为111,,,543且他们是否破译出密码互不影响. (Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.【标准答案】解:记“第i 个人破译出密码”为事件A 1(i =1,2,3),依题意有123111(),(),(),54.3P A P A P A ===且A 1,A 2,A 3相互独立.(Ⅰ)设“恰好二人破译出密码”为事件B ,则有B =A 1·A 2·3A ·A 1·2A ·A 3+1A ·A 2·A 3且A 1·A 2·3A ,A 1·2A ·A 3,1A ·A 2·A 3 彼此互斥于是P (B )=P (A 1·A 2·3A )+P (A 1·2A ·A 3)+P (1A ·A 2·A 3) =314154314351324151⨯⨯+⨯⨯+⨯⨯=203.答:恰好二人破译出密码的概率为203.(Ⅱ)设“密码被破译”为事件C ,“密码未被破译”为事件D . D =1A ·2A ·3A ,且1A ,2A ,3A 互相独立,则有 P (D )=P (1A )·P (2A )·P (3A )=324354⨯⨯=52.而P (C )=1-P (D )=53,故P (C )>P (D ).答:密码被破译的概率比密码未被破译的概率大.【试题解析】【高考考点】本小题主要考查概率的基本知识与分类思想,考查运用数学知识分析问题、解决问题的能力.满分12分. 【易错提醒】对于恰有二人破译出密码的事件分类不清.【学科网备考提示】对于概率大家都知道要避免会而不全的问题,上述问题就是考虑不周全所造成的,所以建议让学生一定注重题干中的每一句话,每一个字的意思.只有这样才能做到满分.(19)(本小题满分12分)如图,在四棱锥P —ABCD 中,侧面PAD ⊥底面ABCD ,侧棱PA =PD =2,底面ABCD 为直角梯形,其中BC∥AD ,AB ⊥AD ,AD =2AB =2BC=2,O 为AD 中点. (Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的余弦值; (Ⅲ)求点A 到平面PCD 的距离. 【标准答案】解法一:(Ⅰ)证明:在△PAD 卡中PA =PD ,O 为AD 中点,所以PO ⊥AD .又侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,PO ⊂平面PAD , 所以PO ⊥平面ABCD.(Ⅱ)连结BO ,在直角梯形ABCD 中,BC ∥AD ,AD =2AB =2BC , 有OD ∥BC 且OD =BC ,所以四边形OBCD 是平行四边形, 所以OB ∥DC.由(Ⅰ)知PO ⊥OB ,∠PBO 为锐角, 所以∠PBO 是异面直线PB 与CD 所成的角.因为AD =2AB =2BC =2,在Rt △AOB 中,AB =1,AO =1,所以OB =2, 在Rt △POA 中,因为AP =2,AO =1,所以OP =1, 在Rt △PBO 中,PB =322=+OBOP ,cos ∠PBO =3632==PBOB ,所以异面直线PB 与CD 所成的角的余弦值为36.(Ⅲ)由(Ⅱ)得CD =OB =2, 在Rt △POC 中,PC =222=+OP OC ,所以PC =CD =DP ,S △PCD =43·2=23.又S △=,121=∙AB AD设点A 到平面PCD 的距离h , 由V P-ACD =V A-PCD , 得31S △ACD ·OP =31S △PCD ·h ,即31×1×1=31×23×h ,解得h =332.解法二:(Ⅰ)同解法一,(Ⅱ)以O 为坐标原点,OP OD OC 、、的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O -xyz .则A (0,-1,0),B (1,-1,0),C (1,0,0), D (0,1,0),P (0,0,1).所以CD =(-1,1,0),PB =(t ,-1,-1), ∞〈PB 、CD 〉=362311-∙--∙==CDPB CD PB ,所以异面直线PB 与CD 所成的角的余弦值为36,(Ⅲ)设平面PCD 的法向量为n =(x 0,y 0,x 0), 由(Ⅱ)知CP =(-1,0,1),CD =(-1,1,0), 则 n ·CP =0,所以 -x 0+ x 0=0,n ·CD =0, -x 0+ y 0=0,即x 0=y 0=x 0,取x 0=1,得平面的一个法向量为n =(1,1,1). 又AC =(1,1,0).从而点A 到平面PCD 的距离d =.33232==∙nnAC【试题解析】【高考考点】本小题主要考查直线与平面的位置关系、异面直线所成角、点到平面的距离等基本知识,考查空间想象能力,逻辑思维能力和运算能力.满分12分.【易错提醒】第一问就建立坐标系的就会导致错误.再者就是线与线所成角应该在0,2π⎡⎤⎢⎥⎣⎦才可【学科网备考提示】因为立几的难度一再降低,所以一定要求学生掌握坐标法,劳记公式.(20)(本小题满分12分)已知{a n }是正数组成的数列,a 1=1,且点(1,n n a a +)(n ∈N *)在函数y =x 2+1的图象上. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2na ,求证:b n ·b n +2<b 2n +1.【标准答案】解法一:(Ⅰ)由已知得a n +1=a n +1、即a n +1-a n =1,又a 1=1,所以数列{a n }是以1为首项,公差为1的等差数列. 故a n =1+(a -1)×1=n.(Ⅱ)由(Ⅰ)知:a n =n 从而b n +1-b n =2n .b n =(b n -b n -1)+(b n -1-b n -2)+···+(b 2-b 1)+b 1 =2n -1+2n -2+···+2+1【试题解析】【高考考点】本小题主要考查等差数列、等比数列等基本知识,考查转化与化归思想,考查推理与运算能力.满分12分.【易错提醒】第二问中的比较大小直接做商的话还要说明b n 的正负,而往往很多学生不注意. 【学科网备考提示】对于递推数列要学生掌握常见求法,至少线性的要懂得处理.(21)(本小题满分12分)已知函数32()2f x x m x n x =++-的图象过点(-1,-6),且函数()()6g x f x x '=+的图象关于y 轴对称.(Ⅰ)求m 、n 的值及函数y =f (x )的单调区间;(Ⅱ)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值.【标准答案】解:(1)由函数f (x )图象过点(-1,-6),得m -n =-3, ……① 由f (x )=x 3+mx 2+nx -2,得f ′(x )=3x 2+2mx +n , 则g (x )=f ′(x )+6x =3x 2+(2m +6)x +n ; 而g (x )图象关于y 轴对称,所以-3262⨯+m =0,所以m =-3,代入①得n =0.于是f ′(x )=3x 2-6x =3x (x -2). 由f ′(x )>得x>2或x <0,故f (x )的单调递增区间是(-∞,0),(2,+∞); 由f ′(x )<0得0<x <2,故f (x )的单调递减区间是(0,2).(Ⅱ)由(Ⅰ)得f ′(x )=3x (x -2), 令f ′(x )=0得x =0或x=2.当x 变化时,f ′(x )、f (x )的变化情况如下表: X (-∞.0) 0 (0,2) 2 (2,+ ∞) f ′(x ) + 0- 0+ f (x )极大值极小值由此可得:当0<a <1时,f (x )在(a -1,a +1)内有极大值f (O )=-2,无极小值; 当a =1时,f (x )在(a -1,a +1)内无极值;当1<a <3时,f (x )在(a -1,a +1)内有极小值f (2)=-6,无极大值; 当a ≥3时,f (x )在(a -1,a +1)内无极值.综上得:当0<a <1时,f (x )有极大值-2,无极小值,当1<a <3时,f (x )有极小值-6,无极大值;当a=1或a ≥3时,f (x )无极值.【试题解析】【高考考点】本小题主要考察函数的奇偶性、单调性、极值、导数、不等式等基础知识,考查运用导数研究函数性质的方法,以及分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力. 【易错提醒】对于a 的讨论标准找不到或对其讨论不全造成结果错误.【学科网备考提示】分类讨论思想在数学中是非常重要的思想之一,所以希望能加强这方面的训练.(22)(本小题满分14分)如图,椭圆2222:1x y C ab+=(a >b >0)的一个焦点为F (1,0),且过点(2,0). (Ⅰ)求椭圆C 的方程;(Ⅱ)若AB 为垂直于x 轴的动弦,直线l :x =4与x 轴交于点N ,直线AF 与BN 交于点M . (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求△AMN 面积的最大值. 【标准答案】解法一:(Ⅰ)由题设a =2,c =1,从而b 2=a 2-c 2=3, 所以椭圆C 前方程为13422=+yx.(Ⅱ)(i)由题意得F (1,0),N (4,0). 设A (m,n ),则B (m ,-n )(n ≠0),3422nm +=1. ……①AF 与BN 的方程分别为:n (x -1)-(m -1)y =0, n (x -4)-(m -4)y =0.设M (x 0,y 0),则有 n (x 0-1)-(m -1)y 0=0, ……②n (x 0-4)+(m -4)y 0=0, ……③由②,③得x 0=523,52850-=--m ny m m .所以点M 恒在椭圆G 上.(ⅱ)设AM 的方程为x =xy +1,代入3422y x +=1得(3t 2+4)y 2+6ty-9=0.由④代入①,得3422y x+=1(y ≠0).当x=52时,由②,③得:3(1)023(4)0,2n m y n m y ⎧--=⎪⎪⎨⎪-++=⎪⎩1)52(4936)85()52(412)85()52(3)52(4)85()52(3)52(4)85(34222222222222222020=--+-=-+-=-+--=-+--=+m m m m n m m n m m m n m m y x由于解得0,0,n y =⎧⎨=⎩与a ≠0矛盾.所以点M 的轨迹方程为221(0),43x x y +=≠即点M 恒在锥圆C 上.(Ⅱ)同解法一.【试题解析】【高考考点】本小题主要考查直线与椭圆的位置关系、轨迹方程、不等式等基本知识,考查运算能力和综合解题能力,满分14分,【易错提醒】【学科网备考提示】此题为压轴题,所以平时可以让学生学会放弃一些自己能力范围之外的题目,把多余的时间多花点在中低档题目上,可是80%的分数呀,多么可观,可是纵观历年的高考成绩来看又有多少人真正的做到了这120分?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.¢ (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 (3)设|a n |是等左数列,若a 2=3,a 1=13,则数列{a n }前8项的和为 A.128 B.80 C.64 D.56 (4)函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为 A.3 B.0 C.-1 D.-2 (5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是A.12125 B.16125 C.48125 D.96125(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为A.3 B.23 C.4D.13(7)函数y =cos x (x ∈R)的图象向左平移2个单位后,得到函数y=g(x )的图象,则g(x )的解析式为A.-sin xB.sin xC.-cos xD.cos x(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b ,则角B 的值为A.6π B.3π C.6π或56π D.3π或23π(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(10)若实数x 、y 满足10,0,2,x y x x -+≤⎧⎪⎨⎪≤⎩则y x 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) (11)如果函数y=f (x )的图象如右图,那么 导函数y=f (x )的图象可能是(12)双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞]第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)(x +1x)9展开式中x 2的系数是 .(用数字作答) (14)若直线3x+4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是 . (15,则其外接球的表面积是 . (16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a+b 、a-b 、ab 、a b∈P (除数b ≠0)则称P 是一个数域,例如有理数集Q 是数域,有下列命题: ①数域必含有0,1两个数;②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域;④数域必为无限集.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知向量(sin ,cos ),(1,2)m A A n ==-,且0.m n = (Ⅰ)求tan A 的值;(Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域. (18)(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为111,,,543且他们是否破译出密码互不影响.(Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由. (19)(本小题满分12分)如图,在四棱锥P —ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD 底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC=2,O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的余弦值; (Ⅲ)求点A 到平面PCD 的距离. (20)(本小题满分12分)已知{a n }是正数组成的数列,a 1=11n a +)(n ∈N *)在函数y =x 2+1的图象上. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2n a,求证:b n ·b n +2<b 2n +1. (21)(本小题满分12分)已知函数32()2f x x mx nx =++-的图象过点(-1,-6),且函数()()6g x f x x '=+的图象关于y 轴对称.(Ⅰ)求m 、n 的值及函数y =f (x )的单调区间;(Ⅱ)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值. (22)(本小题满分14分)如图,椭圆2222:1x y C a b+=(a >b >0)的一个焦点为F (1,0),且过点(2,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)若AB 为垂直于x 轴的动弦,直线l :x =4与x 轴交于点N , 直线AF 与BN 交于点M . (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求△AMN 面积的最大值.数学试题(文史类)参考答案一、选择题:本大题考查基本概念和基本运算.每小题5分,满分60分. (1)A (2)C (3)C (4)B (5)C (6)D (7)A (8)A (9)A (10)D (11)A (12)B二、填空题:本大题考查基础知识和基本运算,每小题4分,满分16分. (13)84(14)(,0)(10,)-∞⋃+∞ (15)9π (16)①④三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)本小题主要考查平面向量的数量积计算、三角函数的基本公式、三角恒等变换、一元二次函数的最值等基本知识,考查运算能力,满分12分. 解:(Ⅰ)由题意得 m ·n =sin A -2cos A =0,因为cos A ≠0,所以tan A =2. (Ⅱ)由(Ⅰ)知tan A =2得2213()cos 22sin 12sin 2sin 2(sin ).22f x x x x x x =+=-+=--+因为x ∈R,所以[]sin 1,1x ∈-. 当1sin 2x =时,f (x )有最大值32, 当sin x =-1时,f (x )有最小值-3, 所以所求函数f (x )的值域是33,.2⎡⎤-⎢⎥⎣⎦(18)本小题主要考查概率的基本知识与分类思想,考查运用数学知识分析问题、解决问题的能力.满分12分.解:记“第i 个人破译出密码”为事件A 1(i =1,2,3),依题意有123111(),(),(),54.3P A P A P A ===且A 1,A 2,A 3相互独立.(Ⅰ)设“恰好二人破译出密码”为事件B ,则有B =A 1·A 2·3A ·A 1·2A ·A 3+1A ·A 2·A 3且A 1·A 2·3A ,A 1·2A ·A 3,1A ·A 2·A 3 彼此互斥于是P (B )=P (A 1·A 2·3A )+P (A 1·2A ·A 3)+P (1A ·A 2·A 3)=314154314351324151⨯⨯+⨯⨯+⨯⨯ =203.答:恰好二人破译出密码的概率为203. (Ⅱ)设“密码被破译”为事件C ,“密码未被破译”为事件D . D =1A ·2A ·3A ,且1A ,2A ,3A 互相独立,则有 P (D )=P (1A )·P (2A )·P (3A )=324354⨯⨯=52. 而P (C )=1-P (D )=53,故P (C )>P (D ). 答:密码被破译的概率比密码未被破译的概率大.(19)本小题主要考查直线与平面的位置关系、异面直线所成角、点到平面的距离等基本知识,考查空间想象能力,逻辑思维能力和运算能力.满分12分. 解法一:(Ⅰ)证明:在△P AD 卡中P A =PD ,O 为AD 中点,所以PO ⊥AD .又侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD , 所以PO ⊥平面ABCD.(Ⅱ)连结BO ,在直角梯形ABCD 中,BC ∥AD ,AD =2AB =2BC , 有OD ∥BC 且OD =BC ,所以四边形OBCD 是平行四边形, 所以OB ∥DC.由(Ⅰ)知PO ⊥OB ,∠PBO 为锐角, 所以∠PBO 是异面直线PB 与CD 所成的角.因为AD =2AB =2BC =2,在Rt △AOB 中,AB =1,AO =1,所以OB =2, 在Rt △POA 中,因为AP =2,AO =1,所以OP =1, 在Rt △PBO 中,PB =322=+OB OP , cos ∠PBO =3632==PB OB , 所以异面直线PB 与CD 所成的角的余弦值为36. (Ⅲ)由(Ⅱ)得CD =OB =2, 在Rt △POC 中,PC =222=+OP OC ,所以PC =CD =DP ,S △PCD =43·2=23. 又S △=,121=∙AB AD 设点A 到平面PCD 的距离h , 由V P-ACD =V A-PCD ,得31S △ACD ·OP =31S △PCD ·h , 即31×1×1=31×23×h , 解得h =332. 解法二:(Ⅰ)同解法一,(Ⅱ)以O 为坐标原点,、、的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O -xyz .则A (0,-1,0),B (1,-1,0),C (1,0,0), D (0,1,0),P (0,0,1). 所以=(-1,1,0),=(t ,-1,-1), ∞〈PB 、CD 〉362311-∙--==, 所以异面直线PB 与CD 所成的角的余弦值为36, (Ⅲ)设平面PCD 的法向量为n =(x 0,y 0,x 0), 由(Ⅱ)知=(-1,0,1),=(-1,1,0), 则n ·CP =0,所以 -x 0+ x 0=0,n ·CD =0, -x 0+ y 0=0,即x 0=y 0=x 0,取x 0=1,得平面的一个法向量为n =(1,1,1). 又=(1,1,0).从而点A 到平面PCD 的距离d .33232==(20)本小题主要考查等差数列、等比数列等基本知识,考查转化与化归思想,考查推理与运算能力.满分12分. 解法一:(Ⅰ)由已知得a n +1=a n +1、即a n +1-a n =1,又a 1=1, 所以数列{a n }是以1为首项,公差为1的等差数列. 故a n =1+(a -1)×1=n.(Ⅱ)由(Ⅰ)知:a n =n 从而b n +1-b n =2n . b n =(b n -b n -1)+(b n -1-b n -2)+···+(b 2-b 1)+b 1 =2n -1+2n -2+···+2+1=2121--n =2n -1. 因为b n ·b n +2-b 21+n =(2n -1)(2n +2-1)-(2n -1-1)2=(22n +2-2n +2-2n +1)-(22n +2-2-2n +1-1)=-5·2n +4·2n =-2n <0,所以b n ·b n +2<b 21+n , 解法二:(Ⅰ)同解法一. (Ⅱ)因为b 2=1,b n ·b n +2- b 21+n =(b n +1-2n )(b n +1+2n +1)- b 21+n=2n +1·b n -1-2n ·b n +1-2n ·2n +1=2n (b n +1-2n +1) =2n (b n +2n -2n +1) =2n (b n -2n ) =…=2n (b 1-2) =-2n 〈0,所以b n -b n +2<b 2n +1(21)本小题主要考察函数的奇偶性、单调性、极值、导数、不等式等基础知识,考查运用导数研究函数性质的方法,以及分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力.满分12分. 解:(1)由函数f (x )图象过点(-1,-6),得m -n =-3, ……① 由f (x )=x 3+mx 2+nx -2,得f ′(x )=3x 2+2mx +n , 则g (x )=f ′(x )+6x =3x 2+(2m +6)x +n ; 而g (x )图象关于y 轴对称,所以-3262⨯+m =0,所以m =-3, 代入①得n =0.于是f ′(x )=3x 2-6x =3x (x -2). 由f ′(x )>得x>2或x <0,故f (x )的单调递增区间是(-∞,0),(2,+∞); 由f ′(x )<0得0<x <2,故f (x )的单调递减区间是(0,2). (Ⅱ)由(Ⅰ)得f ′(x )=3x (x -2), 令f ′(x )=0得x =0或x=2.当0<a <1时,f (x )在(a -1,a +1)内有极大值f (O )=-2,无极小值; 当a =1时,f (x )在(a -1,a +1)内无极值;当1<a <3时,f (x )在(a -1,a +1)内有极小值f (2)=-6,无极大值; 当a ≥3时,f (x )在(a -1,a +1)内无极值.综上得:当0<a <1时,f (x )有极大值-2,无极小值,当1<a <3时,f (x )有极小值-6,无极大值;当a=1或a ≥3时,f (x )无极值.(22)本小题主要考查直线与椭圆的位置关系、轨迹方程、不等式等基本知识,考查运算能力和综合解题能力,满分14分, 解法一:(Ⅰ)由题设a =2,c =1,从而b 2=a 2-c 2=3,所以椭圆C 前方程为13422=+y x . (Ⅱ)(i)由题意得F (1,0),N (4,0).设A (m,n ),则B (m ,-n )(n ≠0),3422n m +=1. ……① AF 与BN 的方程分别为:n (x -1)-(m -1)y =0, n (x -4)-(m -4)y =0.设M (x 0,y 0),则有 n (x 0-1)-(m -1)y 0=0, ……②n (x 0-4)+(m -4)y 0=0, ……③由②,③得 x 0=523,52850-=--m ny m m .所以点M 恒在椭圆G 上.(ⅱ)设AM 的方程为x =xy +1,代入3422y x +=1得(3t 2+4)y 2+6ty -9=0. 1)52(4936)85()52(412)85()52(3)52(4)85()52(3)52(4)85(34222222222222222020=--+-=-+-=-+--=-+--=+m mm m n m m n m m m n m m y x 由于设A (x 1,y 1),M (x 2,y 2),则有:y 1+y 2=.439,4362212+-=+-t y y x x |y 1-y 2|=.4333·344)(2221221++=-+t t y y y y令3t 2+4=λ(λ≥4),则 |y 1-y 2|=,+)--(=+)-(=- 412113411341·3432λλλλλ 因为λ≥4,0<时,,=,即=所以当04411,41≤1=t λλλ |y 1-y 2|有最大值3,此时AM 过点F . △AMN 的面积S △AMN=.292323y ·212121有最大值y y y y y FN -=-=- 解法二:(Ⅰ)问解法一: (Ⅱ)(ⅰ)由题意得F (1,0),N (4,0).设A (m ,n ),则B (m ,-n )(n ≠0), .13422=+n m ……① AF 与BN 的方程分别为:n (x -1)-(m -1)y =0, ……② n (x -4)-(m -4)y =0, ……③ 由②,③得:当≠523,528525-=--=x yn x x m 时,. ……④ 由④代入①,得3422y x +=1(y ≠0). 当x=52时,由②,③得:3(1)023(4)0,2n m y n m y ⎧--=⎪⎪⎨⎪-++=⎪⎩解得0,0,n y =⎧⎨=⎩与a ≠0矛盾.所以点M 的轨迹方程为221(0),43x x y +=≠即点M 恒在锥圆C 上. (Ⅱ)同解法一.。

相关文档
最新文档