电工基础-第1章 电路的基本概念(修改)
电工电子技术基础第1单元 电路基本概念及基本定律(自学版)

(2) 功率平衡关系
电压源“吸收”电功率: PUS=US I=( 3 3 ) W = 9 W
电流源发出电功率: PIS=U IS=( 6 3 ) W = 18 W
I US
R
+
IS
U
−
电阻 R 消耗的电功率: PR=RI 2 =( 1 32 ) W = 9 W
功率平衡关系:
PIS = PUS+ PR
1820 年,法国物理学家安培(1775-1836)确定了通有电流的线 圈的作用与磁铁相似。同年,丹麦物理学家奥斯特(1777-1851)发现了电 流对磁针有力的作用,他们共同揭开了电学理论新的一页。
安培
14
2. 电位
电场力将单位正电荷从电 路的某一点移至参考点时所消
I
+
+
耗的电能。 参考点的电位为零。
电路的这一状态称为通路。
E
US
UL
-
-
通路时,电源向负载输出电能,电源这时的状态称为
有载或称电源处于负载状态。
额定值 各种电气设备在工作时,其电压、电流和功率 都有一定的限制,这些限制用来表示它们的正常工作条件 和工作能力,称为电气设备的额定值。使用时不可超过额 定值。
26
2. 开路
当某一部分电路与其它电路
16
1800 年意大利物理学家伏特(1745-1827)发明了伏打电池,从 而使化学能可以转化为源源不断的电能。电学研究迈出了静电范围。 电学的重要里程碑。
用导体将伏打 电池的两极连 接起来,这就 是人类历史上 的第一个电路。
伏特
17
3. 电压 电场力将单位正电荷从电路
的某一点移至另一点时所消
耗的电能。
y
电工基础第1章知识要点解读

序号
名称
图形符号
主要用途
1
碳膜
电阻器
目前电子、电气产品使用量最大、价格最便宜、品质稳定性和信赖度较高的电阻器
2
金属膜
电阻器
常用在要求较高的电路中,如各种测试仪表
3
线绕
电阻器
在大功率电阻电路中作为分压电阻和分流电阻,在电源电路中作为限流电阻
2.可变电阻器
可变电阻器是阻值可变的电阻器,也称电位器,分为半可变电阻器和电位器。常见可变电阻器比较见表1.3。
(3)表达式:Q=I2Rt
4.最大功率输出定理
(1)内容:当负载电阻R和电源内阻r相等时,电源输出功率最大(负载获得最大功率)Pmax。
(2)表达式:当R=r时
Pmax=
(3)负载匹配(阻抗匹配):负载电阻等于电源电阻。——欧姆(Ω)6
电能
W
电荷定向移动形成的电流所做的功
W=Uq=UIt
——
焦耳
(J)
7
电功率
P
描述电流做功快慢的物理量
——
瓦特(W)
三、电阻器
电阻器是利用金属或非金属材料对电流起阻碍作用的特性制成,通常被称为电阻。它在电路中起分压、分流和限流等作用。
1.固定电阻器
固定电阻器是阻值不能改变的电阻器,文字符号为R。常见固定电阻器比较见表1.2。
序号
(2)电阻器的主要参数
电阻器的主要参数有标称阻值、允许误差和额定功率等。电阻器主要参数的标注方法有直标法、文字符号法、数码法和色标法,见表1.5。
表1.5电阻器主要参数标注方法比较
序号
标注方法
电阻值识读要点
允许误差识读要点
1
电工基础知识

第一章电工基础知识第一节电路的基本概念1、电路电路就是电流通过的路径。
电路是由电源、负载、连接导线和开关组成。
图1-1为简单手电筒电路,其中干电池为电源、灯泡为负载,用连接导线将电源、开关、负载连接成电路。
在实际用中通常按国家统一规定的图形符号表示电路图。
如图1-2所示就是图1-1手电筒电路图。
电路通常有三种状态(1)通路:电路中的开关闭合,负载(电路)中有电流通过,这种状态一般称为正常工作状态。
(2)开路:也称为断路,是指电路中某处断开或电路中开关打开,负载(电路)中无电流通过。
(3)短路:电源两端的导线由于某种事故,而直接相连,使负载中无电流通过。
短路时,电源向导线提供的电源比正常时大几十至几百倍,因而不允许短路。
2、电流与电流强度在电路中,把电荷的定向运动叫做电流。
规定:以正电荷移动的方向作为电流的正方向。
在闭合电路中,电流的方向为:电流从电源正极流出,通过导线、开关流入负载后回到电源的负极。
电流分成直流和交流电源两大类:直流电流:是指电流的方向不随时间变化的电流,如图1-3所示交流电流:是指电流的大小和方向和方向随时间作周期性变化。
如图1-4最常见的是正弦交流电。
电流强度:由于电流所产生的效果具有不同的程度,这样就形成电流强度的概念。
电流强度也简称为电流,它是用在单位时间内通过导体横截面的电量多少来度量的。
QI=t式中I-表示电流强度,单位:安培(A)。
Q-表示t时间内,通守导体横截面电荷电量,单位:库仑(C)。
T-表示时间,单位:秒(s)。
在国际单位制中,电流强度的单位是安培,(A),简称安。
计算微小电流时以毫安(mA)或微安(μA)为单位,它们的关系是:1A=103mA 1mA=103μA3、电压与电动势(1)电压图1-5A和B表示负载两端,电流的方向由A流向B,负载灯泡发光,说明电流通过灯线时产生热和发光。
为了表示电流强度与做功的本领,引入一物理量—电压(电位差)U AB:WU AB=QQ-由A端移动到B端的电荷电量,单位:库仑。
电工学 电路基础简明教程 第1章

第一章 电路的基本概念与定律
功 率 的 计 算 1) u、i取关联参考方向
2) u、i取非关联参考方向 p吸 =- u i 例 U = 5V, I = - 1A i + u –
+
u
i
p吸 = u i
例 U = 5V, I = - 1A
–
P吸= UI = 5× (-1) = -5 W p吸< 0 ,说明元件实际发出功率 5W
第一章 电路的基本概念与定律
单位时间内电流做的功称为电功率,用“P ”表示: UIt W P = t = t = UI 国际单位制 U :V,I:A,电功率P用瓦特W。 用电器铭牌数据上的电压、电流值称额定值, 所谓额定值是指用电器长期、安全工作条件下的最 高限值,一般在出厂时标定。其中额定电功率反映 了用电器在额定条件下能量转换的本领。
第一章 电路的基本概念与定律
例、 右下图电路,若已知元件吸收功率为-20W, U I + 电压U=5V,求电流I。
元件
解: 由图可知UI为关联参考方向,因此: P -20 I= -4A U = 5 = 例、右下图电路,若已知元件中电流为I=-100A, 电压U=10V,求电功率P,并说明元件是电源 还是负载。 解:由图可知UI为非关联参考方向,因此: P = UI = 10×(-100) = 1000W 元件吸收正功率,说明元件是负载
+
U E
RL
_
b
–
电位V是相对于参考点的电压。参考点的 电位:Vb=0;a点电位: Va=E-IR0=IR
第一章 电路的基本概念与定律
为描述和表征电荷与元件间能量交换的规模及 大小,引入电路物理量电压、电位和电动势。 Wa-Wb 电压的定义式为: Uab = q 电位的定义式为: Va = 电动势的定义式为: 单位换算: Wa-W0 q 三者定义式 的形式相同 因此它们的 单位相同
电工基础——电路的基本概念和定律

教学方法
通过自学的方法引入参考方向的定义
思考题
1. 为什么要在电路图上规定电流的参考方向? 请说明参考方向与实际方向的关系?
2.电压参考方向都有哪些表示方法?
1.3 电功率和电能
目的与要求
或
i Gu
5.功率
在电流和电压关联参考方向下, 任何瞬
时线性电阻元件接受的电功率为
u 2 p ui Ri Gu R
2
2
线性电阻元件是耗能元件。
6.焦耳定律
如果电阻元件把接受的电能转换成热能, 则从 t0到t时间内。电阻元件的热[量] Q, 也就是 这段时间内接受的电能W为
Q W
负, 故 P=16+32-24=24W
Ⅳ、教学方法
讲授法
Ⅴ、思考题
1.当元件电流,电压选择关联参考方向时,什么情 况下元件接受功率?什么情况下元件发出功率?
2.有两个电源,一个发出的电能为1000kW.h,另一 个发出的电能为500kW.h。是否可认为前一个电源 的功率大,后一个电源的功率小?
A B A B
+
u
-
u
(a)
(b)
图1.3 电压的参考方向
1.2.2 电压及其参考方向(四)
4.若电压的参考方向与实际方向一致,电压为正。
若电压的参考方向与实际方向相反,电压为负。
5.分析电路时,首先应该规定电流电压的参考方 向。
1.2.2 电压及其参考方向(五)
6.元件的电压参考方向与电流参考方向是一致的, 称为关联参考方向。
1.1.1 电路(一)
1. 电路是电流的流通路径, 它是由一些电气设 备 和元器件按一定方式连接而成的。复杂的 电路呈网状, 又称网络。 电路和网络这两个术 语是通用的。
电工基础

图1-2 手电筒的电路原理图 电工基础部分第一章 电路的基本概念一、电路的基本组成1.什么是电路电路是由各种元器件(或电工设备)按一定方式联接起来的总体,为电流的流通提供了路径。
2.电路的基本组成电路的基本组成包括以下四个部分:(1)电源(供能元件):为电路提供电能的设备和器件(如电池、发电机等)。
(2)负载(耗能元件):使用(消耗)电能的设备和器件(如灯泡等用电器)。
(3) 控制器件:控制电路工作状态的器件或设备(如开关等)。
(4) 联接导线:将电器设备和元器件按一定方式联接起来(如各种铜、铝电缆线等)。
3.电路的状态(1) 通路(闭路):电源与负载接通,电路中有电流通过,电气设备或元器件获得一定的电压和电功率,进行能量转换。
(2) 开路(断路):电路中没有电流通过,又称为空载状态。
(3) 短路(捷路):电源两端的导线直接相连接,输出电流过大对电源来说属于严重过载,如没有保护措施,电源或电器会被烧毁或发生火灾,所以通常要在电路或电气设备中安装熔断器、保险丝等保险装置,以避免发生短路时出现不良后果。
二、电路模型(电路图)由理想元件构成的电路叫做实际电路的电路模型,也叫做实际电路的电路原理图,简称为电路图。
例如,图1-2所示的手电筒电路。
理想元件:电路是由电特性相当复杂的元器件组成的,为了便于使用数学方法对电路进行分析,可将电路实体中的各种电器设备和元器件用一些能够表征它们主要电磁特性的理想元件(模型)来代替,而对它的实际上的结构、材料、形状等非电磁特性不予考虑。
图1-1 简单的直流电路表1-1常用理想元件及符号三、电流1.电流的基本概念电路中电荷沿着导体的定向运动形成电流,其方向规定为正电荷流动的方向(或负电荷流动的反方向),其大小等于在单位时间内通过导体横截面的电量,称为电流强度(简称电流),用符号I 或 i (t )表示,讨论一般电流时可用符号i 。
设在 ∆t = t 2-t 1时间内,通过导体横截面的电荷量为 ∆q = q 2-q 1,则在 ∆t 时间内的电流强度可用数学公式表示为 t qt i ∆∆=)(式中,∆t 为很小的时间间隔,时间的国际单位制为秒(s),电量 ∆q 的国际单位制为库仑(C)。
电工技术第一章 电路的基本概念和基本定律习题解答

第一章 电路的基本概念和基本定律本章是学习电工技术的理论基础,介绍了电路的基本概念和基本定律:主要包括电压、电流的参考方向、电路元件、电路模型、基尔霍夫定律和欧姆定律、功率和电位的计算等。
主要内容: 1.电路的基本概念(1)电路:电流流通的路径,是为了某种需要由电工设备或电路元件按一定方式组合而成的系统。
(2)电路的组成:电源、中间环节、负载。
(3)电路的作用:①电能的传输及转换;②信号的传递及处理。
2.电路元件及电路模型(1)电路元件:分为独立电源和受控电源两类。
①无源元件:电阻、电感、电容元件。
②有源元件:分为独立电源和受控电源两类。
(2)电路模型:由理想电路元件所组成反映实际电路主要特性的电路。
它是对实际电路电磁性质的科学抽象和概括。
采用电路模型来分析电路,不仅使计算过程大为简化,而且能更清晰地反映该电路的物理本质。
(3)电源模型的等效变换①电压源及电阻串联的电路在一定条件下可以转化为电流源及电阻并联的电路,两种电源之间的等效变换条件为:0R I U S S =或0R U I SS =②当两种电源互相变换之后,除电源本身之外的其它外电路,其电压和电流均保持及变换前完全相同,功率也保持不变。
3.电路的基本物理量、电流和电压的参考方向以及参考电位 (1)电路的基本物理量包括:电流、电压、电位以及电功率等。
(2)电流和电压的参考方向:为了进行电路分析和计算,引入参考方向的概念。
电流和电压的参考方向是人为任意规定的电流、电压的正方向。
当按参考方向来分析电路时,得出的电流、电压值可能为正,也可能为负。
正值表示所设电流、电压的参考方向及实际方向一致,负值则表示两者相反。
当一个元件或一段电路上的电流、电压参考方向一致时,称它们为关联参考方向。
一般来说,参考方向的假设完全可以是任意的。
但应注意:一个电路一旦假设了参考方向,在电路的整个分析过程中就不允许再作改动。
(3)参考电位:人为规定的电路种的零电位点。
电工电子技术基础第1章 电路的基本理论及基本分析方法

-
电流源模型
实际电源可用一个电流为IS的理想电流源与电阻并 联的电路作为实际电源的电路模型,称为电流源模型。
其中
IS
U0 R0
称为短路电流
实际电源内阻R0越大,越接近于理想电流源。
第1章 电路的基本理论及基本分析方法
3.实际电源模型的等效变换
R0 + US -
等效电压源模型
IS
US R0
US R0IS
2.理想电流源:理想电流源是从实际电流源抽象出来的 理想二端元件,流过它的电流总保持恒定,与其端电压 无关。理想电流源简称电流源。 电流源的两个基本性质
①电流是给定值或给定的时间函数,与电压无关;
②电压是与相连的外电路共同决定的。
IS或iS
+ U或i
-
电流源的图形符号
电流源的伏安关系
i IS
o
u
直流电流源伏安特性
uR( i 关联u ) R( 或 i 非关联)
电阻参数R:表示电阻元件特性的参数。 线性非时变电阻:R为常数;简称为线性电阻。
第1章 电路的基本理论及基本分析方法
应当注意,非线性电阻不满足欧姆定律。
单位:SI单位是欧[姆](Ω)。计量大电阻时,以千欧 (KΩ)、兆欧(MΩ)为单位。
电阻的参数也可以用电导表示,其SI单位是西[门 子](S)。线性电阻用电导表示时,伏安关系为
②箭头,如图(a) i。
参考方向的意义:若电流的参考方向和实际方向一致, 则电流取正值,反之则取负值。如图(a)、(b)所示。
第1章 电路的基本理论及基本分析方法
二、电压、电位、电动势及其参考方向
1. 电压、电位、电动势
⑴电压
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2
2 +
3 + A 1 - 4
V 2 - A 3
5
d
d
+
-
( a )
( b )
图1.8
例1.2图
解 (1)验证I1、I2数值的电流表应按图1.8(b)所示串入所测 支路,其极性已标注在图上。 (2)Uab=φa—φb=10—8=2V
1 2
a
I3
c
d
图1.4例1.1图
1.2.2
1. 电压的定义及单位 电路中a、b两点的电压就是将单位正电荷由a点 移动到b点时电场力所作的功。
d u dq
(1-3)
在 SI 中,电压的单位为伏特,简称伏 (V) ,实用 中还有千伏(kV),毫伏(mV)和微伏(μV)等。
2. 用电位表示电压及正负电压的讨论 电路中某点的电位表示该点对参考点的电 压。电位用 表示。两点之间的电压就是这两 点的电位之差。在电路中,规定电位真正降低 的方向为电压的实际方向,故电压又称电位差 或电压降。 如果电压的大小和方向都不随时间变化, 则称为恒定电压,引入电位概念后,两点的电 压可以表示为:
+ +
- +
电 压 的 实 际 极 性
U > 0
U < 0
图1.5电压的参考极性
3.直流电压的测量 在直流电路中,测量电压时,应根据电压的实际极 性将直流电压表跨接在待测支路两端 。 如图 1.6 所示,若 Uab=10V , Ubc=-3V , 测量这两个电 压时应按图示极性接入电压表。电压表两旁标注的“+”、 “-”号分别表示电压表的正极性端和负极性端。
V1 a + + US1 - c R1 - b - US2 + R2 V2 + -
图1.6直流电压测试电路
4 关联参考方向 在电路分析中,电流的参考方向和电压的参考极性 都可以各自独立地任意设定。但为了方便,通常采用关 联参考方向,即:电流从标电压“+”极性的一端流入, 并从标电压“ —” 极性的另一端流出,如图 1.7 所示。这 样,在电路图上只要标出电压的参考极性,就确定了电 流的参考方向,反之亦然。如图1.7(a)只须用图1.7(b)、 (c)中的一种表示即可。
R 2 I = - 1A 2 R 3 U S - + I = 2A 1 R 1 - A 2 +
+
A 1
-
图1.3直流电流测试电路图
例1.1 图 例1.1 在图1.4中, 各电流的参 考方向已设定。 已知 I1=10A, I2=—2A, I3=8A。 试确定I1、 I2、 I3的实际方向。 解 I1>0, 故I1的实际方向与参考方向相同, I1由a点流向b点。 I2<0, 故 I2 的实际方向与参考方向相反, I2由b点流向c点。 I3>0, 故 I3 的实际方向与参考方向相同, I3由b点流向d点。 I I b
4. 电路模型与电路图 所谓电路模型,就是把实际电路的本质抽象出来所 构成的理想化了的电路。将电路模型用规定的理想元件 符号画在平面上形成的图形称作电路图。 图1.1就是一个 最简单的电路图。
+ US - RS RL
图1.1一个最简单的电路图
1.2 电流、电压及其参考方向
1.2.1 电流及其参考方向 1. 电流的表达式及单位 电荷的定向移动形成电流,且规定正电荷移动的方向 为电流的方向。其大小用电流强度来度量。
第1章 电路的基本概念和定律
• • • • • • • • 1.1 1.2电流、 电压及其参考方向 1.3 1.4电 阻元件 1.5电压源和电流源 1.6 1.7
1.1 电路和电路模型
1. 电路的定义及功能 电路是由电路元 ( 器) 件按一定要求连接而成,为电 流的流通提供路径的集合体。 电路的基本功能是实现电能的传输和分配或者电信 号的产生、 传输、 处理加工及利用。
dq i dt q I t
(1—1) (1—2)
直流:
国际单位制(SI)中,电荷的单位是库仑(C),时间的单 位是秒(s),电流的单位是安培, 简称安(A), 实用中还有 毫安(mA)和微安(μA)等。
2.电流的参考方向 参考方向可以任意设定, 在电路中用箭头表示, 并且规定,如果电流的实际方向与参考方向一致, 电 流为正值;反之,电流为负值, 如图1.2所。
2. 对实际电路元件理想化的意义 为了分析电路方便起见, 必须在一定条件下对实 际电路元(器)件加以近似化, 忽略其次要性质, 用一 些以表示实际电路元(器)件主要物理性质的模型来代替 实际电路元(器)件。 构成模型的元(器)件称为理想电路 元件。 3. 三种理想电路元件 常用的三种最基本的理想元件是:电阻元件 、电 容元件、电感元件 ;另外还有电压源和电流源两种理 想电源元件。
U
ab a b
在电路中,用“+”,“-”号标出电压的参考极性;或 用带双下标的字母表示,如uab表示这两点间的电压, 且表明a为电压参考方向的正极,b为负极。 当设定了参考方向后,若计算结果uab为正值,说明 a点电位实际比b点电位高;否则相反。
电 压 的 参 考 极 性 + - U - - U
参 考 方 向 元 件 实 际 方 向 I > 0 实 际 方 向 参 考 方 向 元 件 I < 0
图1.2电流的参考方向
也可以用双下标来表示电流的参考方向,如Iab;当参考方 向改变时有Iab=-Iቤተ መጻሕፍቲ ባይዱa。 不设定参考方向而谈电流的正负是没有意义的。
3. 直流电流的测量 在直流电路中, 测量电流时, 应根据电 流的实际方向将电流表串入待测支路中, 如图 1.3 所示, 电流表两旁标注的“ +”“—” 号为电流 表的极性。
I + U - + U - I
( a )
( b )
图1.7 关联参考方向
( c )
3V。
例1.2 在图1.8中,各方框泛指元件。已知 I1=3A,I2=2A, I3= -1A,φa=10V , φb=8V , φd=—
(1)欲验证I1、I3数值是否正确,问电流表在图中 应如何连接? 并标明电流表极性。 (2)求Uab和Ubd,若要测量这两个电压,问电压表 如何连接? 并标明电压表极性。
Ubd=φb—φd=8—(—3)=11V
或 而 故 Ubd=φb—φd=φb—φa+φa—φd=Uba+Uad Uba=φb—φa=8—10=—2V Uad=φa—φd=10—(—3)=13V Ubd=Uba+Uad=—2+13=11V 以上用两种思路计算所得结果完全相同,由此可得两条重要结论: