半导体量子点发光

半导体量子点发光
半导体量子点发光

.

半导体量子点发光

一、半导体量子点的定义

当半导体的三维尺寸都小于或接近其相应物质体相材料激子的玻尔半径(约5.3nm)时,称为半导体量子点。

二、半导体量子点的原理

在光照下,半导体中的电子吸收一定能量的光子而被激发,处于激发态的电子向较低能

级跃迁,以光福射的形式释放出能量。大多数情况下,半导体的光学跃迁发生在带边,也就是说光学跃迁通常发生在价带顶和导带底附近。半导体的能带结构可以用图的简化模型来表

示。如图所示,直接带隙是指价带顶的能量位置和导带底的能量位置同处于一个K 空间,间接带隙是指价带顶位置与导带底位置的K 空间位置不同。电子从高能级向低能级跃迁,伴随着发射光子,这是半导体的发光现象。

.

对于半导体量子点,电子吸收光子而发生跃迁,电子越过禁带跃迁入空的导带,而在原来的价带中留下一个空穴,形成电子空穴对(即激子),由于量子点在三维度上对激子施加

量子限制,激子只能在三维势垒限定的势盒中运动,这样在量子点中,激子的运动完全量子

化了,只能取分立的束缚能态。激子通过不同的方式复合,从而导致发光现象。原理示意图,如图所示,激子的复合途径主要有三种形式。

(1)电子和空穴直接复合 ,产生激子态发光。由于量子尺寸效应的作用 ,所产生的发射光的波长随着颗粒尺寸的减小而蓝移。

(2)通过表面缺陷态间接复合发光。在纳米颗粒的表面存在着许多悬挂键,从而形成了许多表面缺陷态。当半导体量子点材料受光的激发后,光生载流子以极快的速度受限于表面缺

陷态而产生表面态发光。量子点的表面越完整,表面对载流子的捕获能力就越弱,从而使得表面态的发光就越弱。

(3)通过杂质能级复合发光。杂质能级发光是由于表面分子与外界分子发生化学反应生

成其它杂质,这些杂质很容易俘获导带中的电子形成杂质能级发光。

以上三种情况的发光是相互竞争的。如果量子点的表面存在着许多缺陷,对电子和空穴的俘获能力很强,电子和空穴一旦产生就被俘获,使得它们直接复合的几率很小,从而使得激子态的发光就很弱,甚至可以观察不到,而只有表面缺陷态的发光。

为了消除由于表面缺陷引起的缺陷态发光而得到激子态的发光,常常设法制备表面完整

的量子点或者通过对量子点的表面进行修饰来减少其表面缺陷,从而使电子和空穴能够有效

地直接复合发光。

.

三、量子点修饰

对于量子点来说,它的稳定性有限、毒性高、存在表面缺陷等缺点使量子点在应用方面受到了很大的制约。所以科学家就想到了量子点修饰来解决这些问题。

量子点修饰中最主要的就是杂化,它可以与无机、有机、高分子和生物材料等进行杂化。

这些杂化材料中,核壳结构杂化材料,因其大小不同及组成和结构排列不同等而具有着特殊的

性质如光、磁、化学等性质。

所谓核壳结构,就是由中心的核和包覆在外部的壳构成。核壳材料一般是圆形粒子也可以是其他形状,包覆在粒子外边的壳材料可以改变并赋予粒子特殊的电学、光学、力学等性

质。因此 ,人们就量子点的表面修饰进行了大量研究例如,设计生物相容性的表面配体使量

子点可与特异性生物识别分子抗原,抗体等等连接图巧。根据量子点外包覆物的组成类型不

同,可以分为无机物包覆和聚合物包覆两种。

.

四、半导体量子点的特性及发光特性

1.半导体量子点的几个效应

(1)量子限域效应

通常 ,体积越小 ,带宽就越大,半导体的光学性质和电学性质 ,在很大程度上依

赖于材料的尺寸。因此 ,半导体材料的尺寸减小到一定值通常只要等于或者小于相对

应的体相材料的激子玻尔半径以后 ,其载流子电子一空穴对的运动就会处于强受限的

状态类似在箱中运动的粒子 ,有效带隙增大 ,半导体材料的能带从体相的

连续结构变成类似于分子的准分裂能级。粒径越小能隙就越大 ,半导体材料的行为

便具有了量子特性 ,量子化后的能量为:

E(R)=Eg+h2π 2/2uR2-1.8/ εR

式子中Eg 是体相带隙,u 是电子、空穴的折合质量,ε是量子点材料的介电常数, R 是粒子的半径,第二项是量子点受限项,第三项是库伦项。 E(R)就是最低激发能量, E(R)与 Eg的差是动能的增加量。

从上式可以看出,半导体量子点的受限项与 1/R2成正比,库仑力与 1/R 成正比,它们都随着 R 的减小而增大。受限项使能量向高的能量方向移动,即蓝移;而库伦

项使能量向低的能量方向移动,即红移动。

R足够小时,前者的增大就会超过后者的增大,即受限项成为主项,导致最

低激发态能量向高的能量方向移动,这就是我们在实验中观察到的量子限域效应。

也就是说,半导体纳米材料的尺寸控制着电子的准分裂能级间的距离以及动能增

加的多少。其尺寸越小,能级间的距离就越大,动能增加越多,光吸收和光

发射的能量也就越高。

(2)量子尺寸效应

由上述公式可得量子限域能和库仑作用能分别与1/R2 和与 1/R 成正比,前者可增加带

隙能量(蓝移),后者可减小带隙能量(红移)。在R 很小的时候,量子限域能对R 更

为敏感,随着R 减小,量子限域能的增加会超过库仑作用能,导致光谱蓝移,这就是实验

所观测到的量子尺寸效应。

(3)表面效应

表面效应是指随着量子点的粒径减小,大部分原子位于量子点的表面,量子点的比表

面积随着随粒径减小而增大,导致了表面原子的配位不足,不饱和键和悬挂键增多,使这些表面

原子具有很高的活性,极不稳定,很容易与其它原子结合。这种表面效应引起量子点有

大的表面能和高的活性,不但引起量子表面原子输运和结构型的变化,还导致表面电子自旋

构象和电子能谱的变化。表面缺陷导致陷阱电子或空穴,他们反过来会影响量子点的发光性

质,引起非线性光学效应。

(4)宏观量子隧道效应

微观粒子贯彻势垒的能力称为隧道效应

2.发光特性

量子点的发光原理与常规半导体发光原理相近,均是材料中载流子在接受外

来能量后,达到激发态,在载流子回复至基态的过程中,会释放能量,这种能量通

常以光的形式发射出去。与常规发光材料不同的是,量子点发光材料还具有一下

的一些特点。

(1)发射光谱可调节

半导体量子点主要由Ⅱ B-Ⅵ A 、Ⅲ A- ⅤA 或者Ⅳ A- Ⅵ A 族元素构成。尺寸、材料不同的量子点发光光谱处于不同的波段区域错误!未找到引用源。。如不同尺寸的 ZnS 量子点发光光谱基本涵盖紫外区, CdSe 量子点发光光谱基本涵盖可见光区域,而PbSe量子点发光光谱基本涵盖红外区,如图1.1 所示错误!未找到引用源。。

图 1.1 常见量子点发光光谱分布区间

即使是同一种量子点材料,其尺寸的不同,其发光光谱也不一样。以 CdSe 为例,如图 1.2 所示,当 CdSe 颗粒半径从 1.35nm 增加至 2.40nm 时,其发射光波长从

510nm 增加至 610nm。

图 1.2 不同尺寸CdSe 量子点及其发光照片

(2)宽的激发光谱和窄的发射光谱

能使量子点达到激发态的光谱范围较宽,只要激发光能量高于阈值,即可使

量子点激发。且不论激发光的波长为多少,固定材料和尺寸的量子点的发射光谱是

固定的,且发射光谱范围较窄且对称。

(3)较大的斯托克斯位移

量子点材料发射光谱峰值相对吸收光谱峰值通常会产生红移,发射与吸收光谱

峰值的差值被称为斯托克斯位移。相反,则被称为反斯托克斯位移。斯托克斯位

移在荧光光谱信号的检测中有广泛应用。量子点的斯托克斯位移较常规材料而言要大。

此外,量子点还有着良好的光学稳定性、高荧光量子效率、荧光寿命长、较

好的生物相容性等有点。

五、半导体量子点的制备

量子点的制备方法多种多样,不同方法制备出来的量子点性能也各不相同,

可根据实际需求选择不同的实验方法。制备方法大致可分为三大类:固相法、液相法和气相法,并且每一类又有多种制备手段

3.1 固相法

物理粉碎法、机械球磨法和真空冷凝法。

1.2 气相法

物理气相法

化学气相法

1.3 液相法

3.3.1 有机金属高温分解法

3.3.2 绿“色化学”有机相合成法

3.3.3 水相合成法

3.3.4 水热法及微波法

六、半导体量子点的应用

量子点在生物医学、能源材料、红外探测器、离子传感器等领域都有巨大的应用价值。

2.1 太阳能电池:量子点作为窄带隙材料,可以大幅度提高光能利用率,增加太

阳能电池的转化效率。

2.2 发光器材:具有色域广、色纯度高、低功耗、低成本、易加工等优点

2.3 光电探测:基于量子点可调节的吸收谱,研究人员可以合成具有特定吸收

峰的量子点附着于探测器上,甚至可以制作特定的光电感应器件,用于特殊环境光强探测及校准

2.4.1 细胞成像:量子点具有宽吸收谱、窄荧光谱、高稳定性的特点,而能更好

的应用于生物标记、细胞成像

2.4.2 分子示踪

2.5 激光器 :由于量子点的限域效应,使其阈值电流降低、工作温度升高

2.6 传感器 :

量子点LED

量子点LED专题报告 一、什么是量子点LED? 量子点LED是把有机材料或者LED芯片和高效发光无机纳米晶体结合在一起而产生的具有新型结构的量子点有机发光器件。相对于传统的有机荧光粉,量子点具有发光波长可调(可覆盖可见和近红外波段)、荧光量子效率高(可大于90%)、颗粒尺寸小、色彩饱和度高、可 低价溶液加工、稳定性高等优点,尤其值得注意的是高色纯度的发光使得其色域已经可以超过HDTV标准色三角。因此基于量子点的发 光二极管,有望应用于下一代平板显示和照明。

表征量子点的光电参数: 1、光致发光谱(PL谱):光致发光谱反映的是发射光波长与发光强度的关系。从PL谱上可以得到发光颜色的单色性、复合发光的机制、量子点的颗粒尺寸大小及分布均匀性、本征发射峰波长等基本光学信息。量子点光致发光谱的半高宽越窄,说明量子点的发光单色性越好,器件的缺陷和杂质复合发光越少。 2、紫外可见吸收谱:量子点的紫外可见吸收谱反映的是量子点对不同波长光的吸收程度,从谱中吸收峰的位置可计算出量子点的禁带宽度。量子点吸收谱的第一吸收峰与光致发光谱的发射峰的偏移是斯托

克斯位移,斯托克斯位移越大,量子点的自吸收越弱,量子点的荧光强度越高。 3、光致发光量子产率:量子点溶液的光致发光量子产率是通过与标准荧光物质(一般用罗丹明6G)的荧光强度对比而测出。量子点高的量子产率能有效提升器件的发光效率,但纯核量子点沉积成薄膜后量子产率将比在溶液中的量子产率下降1到2个数量级。量子点也存在荧光自淬灭现象,这是由存在于不均匀尺寸分布的量子点中的激子通过福斯特能量转移到非发光点进行非辐射复合所引起。 二、量子点LED在照明显示中的应用方案 量子点的发射峰窄、发光波长可调、荧光效率高、色彩饱和度好,非常适合用于显示器件的发光材料。量子点LED在照明显示领域中的应用方案主要包括两个方面:a、基于量子点光致发光特性的量子点背光源技术(QD-BLU,即光致量子点白光LED);b、基于量子点电致发光特性的量子点发光二极管技术(QLED)。

量子点qled深度解析

量子点QLED电视解析或成LED后又一背光革命 2014年12月04日 过去10年,液晶技术成为显示领域的唯一主宰,未来10年,被誉为次时代显示技术的OLED(Organic Light Emitting Diode,有机发光二极管)理应取缔液晶技术,成就一番霸业,就像当年液晶技术取缔体积庞大的CRT技术一样。然而,液晶技术并不愿坐以待毙,2015年将实现终极进化,如果您想知道什么才是液晶的“完美形态”,请不要错过这篇文章。 液晶是一种自身不能发光的物质,需借助要额外的光源才能工作,这一物理特性是无法改变的,因此液晶技术的“终极进化”自然需要从背光系统下手。液晶技术的背光系统主要经历了 CCFL(Cold Cathode Fluorescent Lamp,冷阴极荧光灯管)和 WLED(White Light Emitting Diode,白色发光二极管)两个阶段。 量子点QLED将液晶技术进化至“完美的终极形态”

2015年,液晶技术将迎来背光系统的“终极进化”——量子点QLED 技术,无论是性能还是功耗都有革命性的突破,然而,考虑到液晶技术先天物理特性完全处于劣势,量子点QLED背光极有可能是继CCFL 背光和WLED背光之后,液晶发展史上的最后一次革命,这也是我们将其定义为“终极进化”的原因。 2015年:三星将引领量子点QLED技术做强做大内幕可靠消息,电视领域的龙头老大,三星将会在2015年推出基于量子点QLED背光技术的液晶电视(意味着三星将无限期搁浅OLED电视计划),国产方面TCL最快年底就会上市量子点QLED电视产品,LG Display作为顶尖的液晶面板制造商,已经宣布量子点QLED 面板将会量产,此外还有京东方、华星光电等面板厂都会力挺量子

量子点发光材料综述

量子点发光材料综述 1.量子点简介 1.1量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为,也就是说量子点比表面积随着颗粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。 1.2.3 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序

上转换发光材料

>>更多... 相似文献(10 条) 相似文献
1. 期刊论文 上转换激光和上转换发光材料的研究进展 - 人工晶体学报 2001, 30(2) 2. 学位论文 上转换发光材料的合成、表征及发光性质的研究 2008 3. 期刊论文 戊二醛修饰上转换发光材料 Na[Y0.57Yb0.39Er0.04]F4 的制备与表征 - 北京科技大学 学报 2009, 31(8) 4. 期刊论文 Na2SiF6 对 Er3+, Yb3+共掺杂上转换发光材料颗粒度的影响 - 中国稀土学报 2003, 21(z1) 5. 学位论文 稀土掺杂氟化物上转换发光材料的制备及光谱特性研究 2006 6. 期刊论文 上转换发光材料表面修饰羧基的制备与表征 - 功能材料 2007, 38(1) 7. 学位论文 Bi<,2>O<,3>与 NaYF<,4>体系的上转换研究 2006 8. 学位论文 氟氧玻璃上转换发光材料的制备与表征 2005 9. 期刊论文 SiO2 包覆上转换发光材料 Na(Y0.57Yb0.39Er0.04)F4 的研究 - 发光学报 2006, 27(3)
10. 学位论文 高效蓝绿光上转换发光材料的荧光特性与机理研究 2003
相关博文(19 条) 相关博文
1. 上转换提高硅太阳能电池效率 2. 上转换稀土发光材料 经典文献 3. 加州笔记之四十七 增强型电致发光材料 4. 中科院院士--曹镛教授 5. 中国电子书面临“套牢”风险? 6. 中国电子书面临“套牢”风险? 7. 太阳电池技术和产业化趋势分析 8. 详解全新戴尔家用产品 9. [转载]中国香港任咏华教授获世界杰出女科学家奖 10. 最先维持至有效期届满的两件 OLED 中国实用新型专利

电致发光及原理

电致发光及原理 电致发光ElectroluminescenceEL是物质在一定的电场作用下被相应的电能所激发而产生的发光现象。电致发光EL是一种直接将电能转化为光能的现象。早在20世纪初虞瑟福就发现了SiC晶体在电场作用下的发光。电致发光作为一种平面光源引起了人们的极大爱好。人们企图实现照明光源从点光源、线光源到面光源的革命。自从无机发光板硫化锌和磷砷化镓化合物发明以来电致发光已被广泛应用在很多领域取得了令人瞩目的成就。尽管粉末电致发光现象早在1937年就被发现但直到50年代将硫化锌和有机介质涂敷在透明导电玻璃上再做上第二电极加上交流电压才实现稳定的电致发光。人们逐渐把目光投向了性能更为优良的新一代平板显示器件工艺更简单的新型有机电致发光器件OLED。 1.电致发光材料从发光材料角度可将电致发光分为无机电致发光和有机电致发光。无机电致发光材料一般为等半导体材料。有机电致发光材料依占有机发光材料的分子量的不同可以区分为小分子和高分子两大类。小分子OLED材料以有机染料或颜料为发光材料高分子OLED材料以共轭或者非共轭高分子聚合物为发光材料典型的高分子发光材料为PPV及其衍生物。有机电致发光材料依据在OLED器件中的功能及器件结构的不同又可以区分为空穴注进层HIL、空穴传输层HTL、发光层EML、电子传输层ETL、电子注进层EIL等材料。其中有些发光材料本身具有空穴传输层或者电子传输层的功能这样的发光材料也通常被称为主发光体发光材料层中少量掺杂的有机荧光或者磷光染料可以接受来自主发光体的能量转移和经过载流子捕捉carriertrap的机制而发出不同颜色的光这样的掺杂发光材料通常也称为客发光体或者掺杂发光体英文用Dopant表示。从发光原理角度电致发光可以分为高场电致发光和低场电致发光。 2.电致发光的原理和器件结构从发光原理电致发光可以分为高场电致发光和低场电致发光。高场电致发光是一种体内发光效应。发光材料是一种半导体化合物掺杂适当的杂质引进发光中心或形成某种介电状

半导体量子点发光

. 半导体量子点发光 一、半导体量子点的定义 当半导体的三维尺寸都小于或接近其相应物质体相材料激子的玻尔半径(约5.3nm)时,称为半导体量子点。 二、半导体量子点的原理 在光照下,半导体中的电子吸收一定能量的光子而被激发,处于激发态的电子向较低能 级跃迁,以光福射的形式释放出能量。大多数情况下,半导体的光学跃迁发生在带边,也就是说光学跃迁通常发生在价带顶和导带底附近。半导体的能带结构可以用图的简化模型来表 示。如图所示,直接带隙是指价带顶的能量位置和导带底的能量位置同处于一个K 空间,间接带隙是指价带顶位置与导带底位置的K 空间位置不同。电子从高能级向低能级跃迁,伴随着发射光子,这是半导体的发光现象。

. 对于半导体量子点,电子吸收光子而发生跃迁,电子越过禁带跃迁入空的导带,而在原来的价带中留下一个空穴,形成电子空穴对(即激子),由于量子点在三维度上对激子施加 量子限制,激子只能在三维势垒限定的势盒中运动,这样在量子点中,激子的运动完全量子 化了,只能取分立的束缚能态。激子通过不同的方式复合,从而导致发光现象。原理示意图,如图所示,激子的复合途径主要有三种形式。 (1)电子和空穴直接复合 ,产生激子态发光。由于量子尺寸效应的作用 ,所产生的发射光的波长随着颗粒尺寸的减小而蓝移。 (2)通过表面缺陷态间接复合发光。在纳米颗粒的表面存在着许多悬挂键,从而形成了许多表面缺陷态。当半导体量子点材料受光的激发后,光生载流子以极快的速度受限于表面缺 陷态而产生表面态发光。量子点的表面越完整,表面对载流子的捕获能力就越弱,从而使得表面态的发光就越弱。 (3)通过杂质能级复合发光。杂质能级发光是由于表面分子与外界分子发生化学反应生 成其它杂质,这些杂质很容易俘获导带中的电子形成杂质能级发光。 以上三种情况的发光是相互竞争的。如果量子点的表面存在着许多缺陷,对电子和空穴的俘获能力很强,电子和空穴一旦产生就被俘获,使得它们直接复合的几率很小,从而使得激子态的发光就很弱,甚至可以观察不到,而只有表面缺陷态的发光。 为了消除由于表面缺陷引起的缺陷态发光而得到激子态的发光,常常设法制备表面完整 的量子点或者通过对量子点的表面进行修饰来减少其表面缺陷,从而使电子和空穴能够有效 地直接复合发光。

半导体量子点及其应用概述_李世国答辩

科技信息2011年第29期 SCIENCE&TECHNOLOGY INFORMATION 0引言 近年来半导体材料科学主要朝两个方向发展:一方面是不断探索扩展新的半导体材料,即所谓材料工程;另一方面是逐步从高维到低维深入研究己知半导体材料体系,这就是能带工程。半导体量子点就是通过改变其尺寸实现能级的改变,达到应用的目的,这就是半导体量子点能带工程。半导体量子点是由少量原子组成的准零维纳米量子结构,原子数目通常在几个到几百个之间,三个维度的尺寸都小于100纳米。载流子在量子点的三个维度上运动受尺寸效应限制,量子效应非常显著。在量子点中,由于量子限制效应作用,其载流子的能级类似原子有不连续的能级结构,所以量子点又叫人造原子。由于特殊能级结构,使得量子点表现出独特的物理性质,如量子尺寸效应、量子遂穿效应、库仑阻塞效应、表面量子效应、量子干涉效应、多体相关和非线性光学效应等,它对于基础物理研究和新型电子和光电器件都有很重要的意义,量子点材料生长和器件应用研究一直是科学界的热点之一[1]。 1量子点制备方法 目前对量子点的制备有很多方法,主要有外延技术生长法、溶胶-凝胶法(Sol-gel 和化学腐蚀法等,下面简单介绍这几种制备方法: 1.1外延技术法 外延技术法制备半导体量子点,主要是利用当前先进的分子束外延(MBE、金属有机物分子束外延(MOCVD和化学束外延(CBE等技术通过自组装生长机理,在特定的生长条件下,在晶格失配的半导体衬底上通过异质外延来实现半导体量子点的生长,在异质外延外延中,当外延材料的生长达到一定厚度后,为了释放外延材料晶格失配产生的应力能,外延材料就会形成半导体量子点,其大小跟材料的晶格失配度、外延过程中的条件控制有很大的关系,外延技术这是目前获得高质量半导体量子点比较普遍的方法,缺点是对半导体量子点的生长都是在高真空或超高真空下进行,使得材料生长成本非常高。1.2胶体法

量子点发光材料综述

量子点 1.量子点简介 1.1量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为,也就是说量子点比表面积随着颗 粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。 1.2.3 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序阵列,载流子共同越过多个势垒时,在宏观上表现为导通状态。因此这种现象又

上转换发光材料

上转换发光材料 上转换发光的概念: 上转换发光是在长波长光激发下,可持续发射波长比激发波长短的光。本质上是一种反-斯托克斯(Anti-Stokes)发光,即辐射的能量大于所吸收的能量。斯托克斯定律认为材料只能受到高能量的光激发,发出低能量的光,换句话说,就是波长短的频率高的激发出波长长的频率低的光。比如紫外线激发发出可见光,或者蓝光激发出黄色光,或者可见光激发出红外线。但是后来人们发现,其实有些材料可以实现与上述定律正好相反的发光效果,于是我们称其为反斯托克斯发光,又称上转换发光。 上转换发光技术的发展: 早在1959年就出现了上转换发光的报道,Bloembergc在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。1966年Auzcl在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。整个60-70年代,以Auzal 为代表,系统地对掺杂稀土离子的上转换特性及其机制进行了深入的研究,提出掺杂稀土离子形成亚稳激发态是产生上转换功能的前提。迄今为止,上转换材料主要是掺杂稀土元素的固体化合物,利用稀土元素的亚稳态能级特性,可以吸收多个低能量的长波辐射,从而可使人眼看不见的红外光变成可见光。 80年代后期,利用稀土离子的上转换效应,覆盖红绿蓝所有可见光波长范围都获得了连续室温运转和较高效率、较高输出功率的上转换激光输出。1994年Stanford大学和IBM公司合作研究了上转换应用的新生长点——双频上转换立体三维显示,并被评为1996年物理学最新成就之一。2000年Chen 等对比研究了Er/Yb:FOG氟氧玻璃和Er/Yb:FOV钒盐陶瓷的上转换特性,发现后者的上转换强度是前者的l0倍,前者发光存在特征饱和现象,提出了上转换发光机制为扩散.转移的新观点。近几年,人们对上转换材料的组成与其上转换特性的对应关系作了系统的研究,得到了一些优质的上转换材料。 上转换发光的机理:

量子点发光材料简介

量子点发光材料综述 1.1 量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm 左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2 量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为,也就是说量子点比表面积随着颗粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。 1.2.3 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序阵列,载流子共同越过多个势垒时,在宏观上表现为导通状态。因此这种现象又称为宏观量子隧道效应[6][7]。 1.2.4 介电限域效应

量子点总结

量子点总结

1.前言 在最近的几十年里,量子点(QDs)即半导体纳米晶体(NCs)由于具有独特的电子和发光性质以及量子点在生物标记,发光二极管,激光和太阳能电池等领域的应用成为大家关注的焦点。量子点尺寸大约为1-10 纳米,它的尺寸和形状可以精确的通过反应时间、温度、配体来控制。当量子点尺寸小于它的波尔半径的时候,量子点的连续能级开始分离,它的值最终由它的尺寸决定。随着量子点的尺寸变小,它的能隙增加,导致发射峰位置蓝移。由于这种量子限域效应,我们称它为“量子点”。1998 年 , Alivisatos 和 Nie 两个研究小组首次解决了量子点作为生物探针的生物相容性问题, 他们利用MPA 将量子点从氯仿转移到水溶液,标志着量子点的生物应用的时代的到来。目前,量子点最引人瞩目的的应用领域之一就是在生物体系中做荧光探针。 与传统的有机染料相比,量子点具有无法比拟的发光性能,比如尺寸可调的荧光发射,窄且对称的发射光谱宽且连续的吸收光谱,极好的光稳定性。通过调节不同的尺寸,可以获得不同发

射波长的量子点。窄且对称的荧光发射使量子点成为一种理想的多色标记的材料。 由于宽且连续的吸收光谱,用一个激光源就可以同时激发一系列波长不同荧光量子点量子点良好的光稳定性使它能够很好的应用于组织成像等。量子点集中以上诸多优点是十分难得的,因此这就要求我们制备出宽吸收带,窄且对称的发射峰,高的量子产率稳定和良好生物兼容性的稳定量子点。 现在用作荧光探针的量子点主要有单核量子点(CdSe,CdTe,CdS)和核壳式量子点(CdSe/ZnS[39], CdSe/ZnSe[40])。量子点的制备方法主要分为在水相体系中合成和在有机相体系中合成。本文主要以制备量子点的结构及合成方法为主线分为两部分:第一部分综述了近十几年量子点在有机相中的制备方法的演变历程,重点包括前体的选择,操作条件和合成量子点结构。第二部分介绍了近十几年量子点在水相中制备方法的改进历程,重点包括保护剂的选择及水热法及微波辅助法合成方法。

稀土上转换发光材料应用文章

稀土上转换发光及其光电产品推荐 目录 一、什么是上转换发光? 二、镧系掺杂稀土上转换发光的发光原理 三、稀土上转换发光材料的应用 四、相关光电产品推荐 五、几个容易混淆的“上转换”概念 一、什么是上转换发光? 斯托克斯(Stokes)定律认为材料只能受到高能量的光激发,发射出低能量的光,即经波长短、频率高的光激发,材料发射出波长长、频率低的光。而上转化发光则与之相反,上转换发光是指连 续吸收两个或者多个光子,导致发射波长短于激发波长的发光类型,我们亦称之为反斯托克斯 (Anti-Stokes)。 Figure 1.常规发光和上转换发光能级跃迁图Figure 2.样品被绿光激光激发之后产生荧光 (左边样品为Stokes emission,右边样品为Anti-stokes emission) 上转换发光在有机和无机材料中均有所体现,但其原理不同。 有机分子实现光子上转换的机理是能够通过三重态-三重态湮灭(Triplet-triplet annihilation,TTA),典型的有机分子是多环芳烃(PAHs)。 无机材料中,上转换发光主要发生在镧系掺杂稀土离子的化合物中,主要有NaYF4、NaGdF4、LiYF4、YF3、CaF2等氟化物或Gd2O3等氧化物的纳米晶体。NaYF4是上转换发光材料中的典型基质材 料,比如NaYF4:Er,Yb,即镱铒双掺时,Er做激活剂,Yb作为敏化剂。本应用文章我们着重讲讲稀 土掺杂上转换发光材料(Upconversion nanoparticles,UCNPs)。 二、镧系掺杂稀土上转换发光的发光原理 无机材料有三个基本发光原理:激发态吸收(Excited-state absorption, ESA),能量传递上转换(Energy transfer upconversion, ETU)和光子雪崩(Photon avalanche, PA)。

一文解析量子点技术的发光原理

一文解析量子点技术的发光原理 很多东西都是偶然发现的引力、青霉素、新大陆现在这个名单又有了新成员:美国能源部劳伦斯伯克利国家实验室的科学家发现了,为什么一项制造量子点和纳米柱的技术到目前为止还不能令人满意。而且,他们还发现了如何纠正这个问题。 伯克利实验室的化学家Paul Alivisatos和Illinois大学的化学家Prashant Jain领导一组研究者发现,为什么溶液中的多种成分结晶而成的纳米晶体经过阳离子置换后,色泽变差了。他们发现,问题的根源是最终的产品不纯。研究小组还指出,这些杂质可以通过加热去除。图片左边的瓶子里装的是净化前的晶体,右边的瓶子里是把杂质去除后的纳米晶体。 所谓量子点量子点是指直径小于纳米的半导体超微颗粒。1纳米相当于十亿分之一米,足见量子点颗粒之小。简单比较来说,如果世界的大小假定为1,那么量子点(0.000000001)就相当于一个足球那么大。它比时下已成为问题的空气中的超细微颗粒(2.5m)都要小一千倍。量子点是由无机物材料,直径为2~10纳米的内核和外壳组成,最终由高分子涂层包裹而成的构造。最具代表性的量子点材料是镉。由于镉对环境有害,三星开发了新的量子点技术,即使没有镉材料,依旧可以保持量子点的高性能。目前这项技术正投入使用中。量子点的发光原理量子点的独特之处在于,即使向同一种物质发光或供给电流,根据粒子的大小却会展现出不同的颜色。粒子若小则会看到蓝色的短波光,粒子若大则会看到红色的长波光,因而可以通过粒子的大小来表现不同的颜色。 量子点显示的分类①QDEF-LCD (Quantum Dot Enhancement Film LCD) 目前应用量子点技术的产品如已上市的三星SUHD电视等,主要使用的就是QDEF技术。就是在基准的LCD上添加量子薄膜。其具体方式就是将含有量子点的量子薄膜如上图所示插入在发光的背光模组之上,让穿过薄膜的光通过液晶和彩色滤光片的方式展现颜色。构造虽与LCD的方式无异,但通过QDEF技术可以得到相当好的色彩再现效果。 ②QDCF-LCD (Quantum Dot Color Filter LCD) 与QDEF的方式在LCD的背光模组上添加量子薄膜不同,QDCF技术是直接将基准的LCD 彩色滤光片(color filter)材料换成QD来表现所需的颜色。这项技术的优势在于量子点的

顶发射有机电致发光器件 3

顶发射有机电致发光器件 摘要 有机电致发光器件(OLED)由于其自身具有能耗低、自发光、视角宽、成本低、温度范围宽、响应速度快、发光颜色连续可调、可实现柔性显示、工艺比较简单等优点而吸引了全世界信息显示技术研究领域的专家学者们的目光,它成为了最有可能取代液晶显示器件的希望之星。有机电致发光器件的研究始于1963年,近年内,越来越多的研究人员从事到有机电致发光器件的研究中来,关于利用新材料、新结构制作有机电致发光器件的报道层出不穷,有机电致发光技术也得到了飞速的发展。 有机电致发光器件按照光从器件出射方向的不同,可以分为两种结构:一种是底发射型器件(BEOLED),另一种是顶发射型器件(OLED)。由于顶发射型器件所发出的光是从器件的顶部出射,这就不受器件底部驱动面板的影响从而能有效的提高开口率,有利于器件与底部驱动电路的集成。同时顶发射型器件还具有提高器件效率、窄化光谱和提高色纯度等诸多方面的优点,因此顶发射型器件具有非常良好的发展前景。而对于顶发射型器件来说,它的有机层结构与底发射型器件的结构基本一致,所以对于顶发射型器件电极的研究具有非常重要的意义。 关键词:电致发光顶发射 Abstract Organic light-emitting diode (OLED), due to its low energy consumption, self-luminous, wide viewing angle, low cost, wide temperature range, fast response, continuously adjustable, luminous colors, flexible display, the process is relatively simple, to attract the attention of experts and scholars in display researching field all over the world. It became the star of hope which most likely to replace liquid crystal display. Researching of the organic light-emitting diode began in 1963, and in recent years, more and more researchers come to research the organic light-emitting diode. New materials, new structures of organic light-emitting diode reported in an endless stream. OLED technology has been rapid development. According to the different directions of the light emitting from the device, we can divide the OLED into two kinds. The one is bottom-emitting type device (BEOLED) and the other is top-emitting device (TEOLED). As the light emitting from the top of the TEOLED, it can ignore the effect of the bottom driving panel, so that it can effectively improve the opening rate, conducive to the integration of the device with the driving circuit. Top-emitting device can also improve the efficiency of the device, narrowing the spectrum and improve the color purity, so it has a good prospect for development. For top-emitting device, the organic layer structure and is basically the same with the bottom-emitting type device, so it has very important significance to study the electrodes of the top-emitting device.

半导体量子点发光

半导体量子点发光 一、半导体量子点的定义 当半导体的三维尺寸都小于或接近其相应物质体相材料激子的玻尔半径(约5.3nm)时,称为半导体量子点。 二、半导体量子点的原理 在光照下,半导体中的电子吸收一定能量的光子而被激发,处于激发态的电子向较低能级跃迁,以光福射的形式释放出能量。大多数情况下,半导体的光学跃迁发生在带边,也就是说光学跃迁通常发生在价带顶和导带底附近。半导体的能带结构可以用图的简化模型来表示。如图所示,直接带隙是指价带顶的能量位置和导带底的能量位置同处于一个K空间,间接带隙是指价带顶位置与导带底位置的K空间位置不同。电子从高能级向低能级跃迁,伴随着发射光子,这是半导体的发光现象。

对于半导体量子点,电子吸收光子而发生跃迁,电子越过禁带跃迁入空的导带,而在原来的价带中留下一个空穴,形成电子空穴对(即激子),由于量子点在三维度上对激子施加量子限制,激子只能在三维势垒限定的势盒中运动,这样在量子点中,激子的运动完全量子化了,只能取分立的束缚能态。激子通过不同的方式复合,从而导致发光现象。原理示意图,如图所示,激子的复合途径主要有三种形式。 (1)电子和空穴直接复合,产生激子态发光。由于量子尺寸效应的作用,所产生的发射光的波长随着颗粒尺寸的减小而蓝移。 (2)通过表面缺陷态间接复合发光。在纳米颗粒的表面存在着许多悬挂键,从而形成了许多表面缺陷态。当半导体量子点材料受光的激发后,光生载流子以极快的速度受限于表面缺陷态而产生表面态发光。量子点的表面越完整,表面对载流子的捕获能力就越弱,从而使得表面态的发光就越弱。 (3)通过杂质能级复合发光。杂质能级发光是由于表面分子与外界分子发生化学反应生成其它杂质,这些杂质很容易俘获导带中的电子形成杂质能级发光。 以上三种情况的发光是相互竞争的。如果量子点的表面存在着许多缺陷,对电子和空穴的俘获能力很强,电子和空穴一旦产生就被俘获,使得它们直接复合的几率很小,从而使得激子态的发光就很弱,甚至可以观察不到,而只有表面缺陷态的发光。 为了消除由于表面缺陷引起的缺陷态发光而得到激子态的发光,常常设法制备表面完整的量子点或者通过对量子点的表面进行修饰来减少其表面缺陷,从而使电子和空穴能够有效地直接复合发光。

发光材料综述

结构与物性结课作业 发 光 材 料 综 述 学院:物理与电子工程学院 专业:材料物理13-01 学号:541311020102 姓名:陈强

发光材料综述 摘要: 能够以某种方式吸收能量,将其转化成光辐射(非平衡辐射)物质叫做发光材料。发光是辐射能量以可见光的形式出现。辐射或任何其他形式的能量激发电子从价带进入导带,当其返回到价带时便发射出光子(能量为 1.8~3.1eV)。如果这些光子的波长在可见光范围内,那么,便产生了发光现象。 0引言 发光材料是国家重要战略能源,在人们的日常生活中也占据着重要地位,被广泛应用于各个领域,因此对发光材料的研制和运用受到越来越多的关注。 本文基于发光材料研究现状,分析发光材料种类和制备方式,并介绍几种不同发光材料在生活中的应用,以期推动我国发光材料研究探索,为国家建设和人们生活水平提高提供助力。发光材料是人类生活重要材料之一,在航天科技、海洋运输、医学医疗、出版印刷等各个领域被广泛应用,具有极为重要的战略地位。 随着科学技术的发展,发光材料研究已经成为了我国科学界广泛关注的焦点,其运用技术直接关系到人们日常生活质量和国防建设,因此如何推动发光材料研制,将其更加安全、合理、高效的应用于生产生活中,成为了亟待解决的问题。 1发光材料分类 发光材料按激发的方式可分为以下几类: 1.1光致发光材料 用紫外、可见及红外光激发发光材料而产生的发光称为光致发光,该发光材料称为光致发光材料。 光致发光过程分为三步:①吸收一个光子;②把激光能转移到荧光中心;③

由荧光中心发射辐射。 发光的滞后时间约为10-8s的称为荧光,衰减时间大于10-8s的称为磷光。 光致发光材料一般可分为荧光灯用发光材料、长余辉发光材料和上转换发光材料。 按发光驰豫时间分类,光致发光材料分为荧光材料和磷光材料。 图1 1.2电致发光材料 所谓电致发光是在直流或交流电场作用下,依靠电流和电场的激发使材料发光的现象,又称场致发光。这种发光材料称为电致发光材料,或称场致发光材料。 1. 本征式场致发光 简单地说,本征式场致发光就是用电场直接激励电子,电场反向后电子与中心复合而发光的现象。 2. 注入式发光 注人式场致发光是由Ⅱ- Ⅳ族和Ⅲ - Ⅴ族化合物所制成的有 p - n 结的二极管,注人载流子,然后在正向电压下,电子和空穴分别由 n 区和 p 区注人到结区并相互复合而发光的现象。又称p-n结电致发光 目前大概可以有以下几种材料: 1.2.1直流电压激发下的粉末态发光材料 目前常用的直流电致发光材料有Zn S:Mn,Cu,其发光亮度大约为350 cd/m。

上转换发光材料综述

Upconversion DOI:10.1002/anie.201005159 Upconverting Nanoparticles Markus Haase and Helmut Sch?fer* Angewandte Chemie Keywords: doping ·nanoparticles ·nonlinear optics ·photon upconversion ·surface chemistry 5808 https://www.360docs.net/doc/2b13724822.html, 2011Wiley-VCH Verlag GmbH &Co.KGaA,Weinheim Angew.Chem.Int.Ed.2011,50,5808–5829

1.Introduction In linear optics it is assumed that optical properties are independent of the intensity of the incident light.The expression “nonlinear optics”is usually used to describe all other phenomena for which the optical properties of the material depend on the radiant flux density of the exciting light.Nonlinear optics,an integral part of contemporary optics,is based on a number of nonlinear phenomena and processes.Photon upconversion (UC)is one such phenom-enon and is characterized by the conversion of long-wave-length radiation,for instance infrared or near infrared (NIR)radiation,to short-wavelength radiation,usually in the visible range.The upconversion process proceeds by different mechanisms,which are summarized and discussed in detail in several review articles [1–3]and can be roughly divided into three classes:APTE effect (for addition de photon par transferts d ’energie),later also named ETU for energy-transfer upconversion,[4,5]excited-state absorption (ESA),and photon avalanche (PA).It is worth mentioning that the expression “upconversion”is sometimes used to describe the consequence of these mechanisms,that is,the conversion from long-wavelength to short-wavelength radiation,and sometimes for a specific mechanism itself. All three mechanisms are based on the sequential absorption of two or more photons by metastable,long-lived energy states.This sequential absorption leads to the population of a highly excited state from which upconversion emission occurs.In the case of ESA,the emitting ions sequentially absorb at least two photons of suitable energy to reach the emitting level (Figure 1).In ETU,one photon is absorbed by the ion,but subsequent energy transfer from neighboring ions results in the population of a highly excited state of the emitting ion (Figure 1).Energy-transfer steps between two ions,both in excited states,leading to emission lines at short wavelength were first mentioned by Auzel in 1966.[6,7] ETU and ESA should not be confused with two other nonlinear optical processes,simultaneous two-photon absorp-tion (STPA)[1,8–10]and second-harmonic generation (SHG),which is efficient if coherent excitation sources with suffi-ciently high power are used.[11–14]Several early reviews focused on the synthesis and application of upconversion phosphors.[4,5,15,16] Important requirements for photon upconversion,such as long lifetimes of the excited states and a ladder-like arrange-ment of the energy levels with similar spacings,are realized for certain ions of the d and f elements.A large number of suitable hosts doped with transition-metal ions (3d,4d,5d)have been reported to show upconversion,for example Ti 2+-,[17,18]Ni 2+-,[19–22]Mo 3+-,[23,24]Re 4+-,[23,25,26]or Os 4+-doped solids.[27–30]Actinide-doped materials have also been inves-U pconversion (UC)refers to nonlinear optical processes in which the sequential absorption of two or more photons leads to the emission of light at shorter wavelength than the excitation wavelength (anti-Stokes type emission).In contrast to other emission processes based on multiphoton absorption,upconversion can be efficiently excited even at low excitation densities.The most efficient UC mechanisms are present in solid-state materials doped with rare-earth ions.The development of nanocrystal research has evoked increasing interest in the development of synthesis routes which allow the synthesis of highly efficient,small UC particles with narrow size distribution able to form transparent solutions in a wide range of solvents.Meanwhile,high-quality UC nanocrystals can be routinely synthesized and their solu-bility,particle size,crystallographic phase,optical properties and shape can be controlled.In recent years,these particles have been discussed as promising alternatives to organic fluorophosphors and quantum dots in the field of medical imaging. From the Contents 1.Introduction 5809 2.Selection of Suitable Dopants and Host Materials 5810 3.Synthesis,Growth,and Properties of Rare-Earth-Doped Nanocrystals 58124.Surface Functionalization by Modification of the Ligand Shell and the Particle Surface 58205.Application of Upconversion Nanocrystals 58206.Conclusions and Outlook 5822 Figure 1.UC processes for lanthanide-doped crystals:a)excited-state absorption,b)energy-transfer upconversion.d :photon excitation,a :energy transfer,c :emission.Reproduced from reference [47]by permission of The Royal Society of Chemistry. [*]Prof.Dr.M.Haase,Dr.H.Sch?fer Inorganic Chemistry I,University of Osnabrück Barbarastrasse 7,49069Osnabrück (Deutschland)E-mail:helmut.schaefer@uos.de 5809 Angew.Chem.Int.Ed.2011,50,5808–5829 2011Wiley-VCH Verlag GmbH &Co.KGaA, Weinheim

相关文档
最新文档