2019年北京海淀区一模数学(理科)(海淀一模)试卷及答案
北京市海淀区2019年中考一模数学试题及答案

此为过程稿,请以纸质版为准!海 淀 区 九 年 级 第 二 学 期 期 中 练 习数 学(一模)2019.5页,共五道大一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.13-的绝对值是A . 3-B . 3C . 13-D . 132. 据教育部通报,2019年参加全国硕士研究生入学考试的人数约为1720000. 数字1720000用科学记数法表示为A .517.210⨯B .61.7210⨯C .51.7210⨯D .70.17210⨯3.下列图形中,既是轴对称图形又是中心对称图形的是AB C D4.一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为A .23 B .12 C .13D .16 5.如图,AB 为⊙O 的弦,OC ⊥AB 于C ,AB=8,OC =3,则⊙O 的半径长为AB .3C .4D .56.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数x 与方差2s :根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 A .甲 B .乙 C .丙 D .丁 7.如图,在ABCD 中,∠ABC 的平分线交AD 于E ,∠BED=150°,则∠A 的大小为 A .150° B .130° C .120°D .100°8.如图,点P 是以O 为圆心, AB 为直径的半圆的中点,AB=2,等腰直角三角板45°角的顶点与点P 重合, 当此三角板绕点P 旋转时,它的斜边和直角边所在的直线与直径AB 分别相交于C 、D 两点.设线段AD 的长为x ,线段BC 的长为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A B C D 二、填空题(本题共16分,每小题4分)E DCB A9.分解因式:24xy x -= .10.已知关于x 的方程220x x a -+=有两个不相等的实数根,则a 的取值范围是_________. 11.如图,矩形台球桌ABCD 的尺寸为2.7m ⨯1.6m ,位于AB 中点处的台球E 沿直线向BC 边上的点F 运动,经BC 边反弹后恰好落入点D 处的袋子中,则BF 的长度为 m.12.在一次数学游戏中,老师在A B C 、、三个盘子里分别放了一些糖果,糖果数依次为0a ,0b ,0c ,记为0G =(0a ,0b ,0c ). 游戏规则如下: 若三个盘子中的糖果数不完全相同,则从糖果数最多的一个盘子中拿出两个,给另外两个盘子各放一个(若有两个盘子中的糖果数相同,且都多于第三个盘子中的糖果数,则从这两个盘子字母序在前的盘子中取糖果),记为一次操作. 若三个盘子中的糖果数都相同,游戏结束. n 次操作后的糖果数记为n G =(n a ,n b ,n c ).(1)若0G =(4,7,10),则第_______次操作后游戏结束;(2)小明发现:若0G =(4,8,18),则游戏永远无法结束,那么2014G =________. 三、解答题(本题共30分,每小题5分)13.计算:0(3π)-++︒60tan211()3--14. 解不等式组:49132.2x x x x >-⎧⎪⎨+>⎪⎩,15. 已知2340x x +-=,求代数式2(3)(3)(23)x x x +++-的值. 16.如图,在△ABC 中,∠ACB =90º, D 是AC 上的一点,且AD=BC ,DE ⊥AC 于D , ∠EAB =90º. 求证:AB=AE .17.列方程(组)解应用题:某市计划建造80万套保障性住房,用于改善百姓的住房状况. 开工后每年建造保障性住房的套数比原计划增加25%,结果提前两年保质保量地完成了任务. 求原计划每年建造保障性住房多少万套?EDCB AF EDCB A 1.6m2.7m18.如图,在平面直角坐标系xOy 中,一次函数y ax a =-(a为常数)的图象与y 轴相交于点A ,与函数2(0)y x x=>的图象相交于点B (m ,1).(1)求点B 的坐标及一次函数的解析式;(2)若点P 在y 轴上,且△P AB 为直角三角形,请直接写出点P 的坐标. 四、解答题(本题共20分,每小题5分)19. 如图,在△ABC 中,∠ACB =90º,∠ABC =30º,BC=AC 为边在△ABC 的外部作等边△ACD ,连接BD . (1)求四边形ABCD 的面积; (2)求BD 的长.20. 社会消费品通常按类别分为:吃类商品、穿类商品、用类商品、烧类商品,其零售总额是反映居民生活水平的一项重要数据.为了了解北京市居民近几年的生活水平,小红参考北京统计信息网的相关数据绘制了统计图的一部分:(1)北京市2019年吃类商品的零售总额占社会消费品零售总额的百分比为 ; (2)北京市2019年吃类商品零售总额约为1673亿元,那么当年的社会消费品零售总额约为 亿元;请补全条形统计图,并标明相应的数据.......; (3)小红根据条形统计图中的数据,绘制了北京市2010至2019年社会消费品零售总额年增长率统计表(如下表),其中2019年的年增长率为 (精确到1%);请你估算,如果按照2019年的年增长率持续增长,当年社会消费品零售总额超过10000亿元时,最早要到 年(填写年份).北京市2010至2019年社会消费品零售总额年增长率统计表5310 622969007703 总额/亿元年份 吃类商品 8.7% 64.1% 7.2%用类商品 穿类商品 烧类商品北京市2009至2013年社会消费品零售总额统计图 北京市2013年各类社会消费品零售总额分布统计图A CD21.如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与边BC 、AC 分别交于D 、E 两点, DF ⊥AC 于F . (1)求证:DF 为⊙O 的切线; (2)若3cos 5C =,CF =9,求AE 的长.22.阅读下面材料:在学习小组活动中,小明探究了下面问题:菱形纸片ABCD 的边长为2,折叠菱形纸片,将B 、D 两点重合在对角线BD 上的同一点处,折痕分别为EF 、GH .当重合点在对角线BD 上移动时,六边形AEFCHG 的周长的变化情况是怎样的? 小明发现:若∠ABC =60°, ①如图1,当重合点在菱形的对称中心O 处时,六边形AEFCHG 的周长为_________; ②如图2,当重合点在对角线BD 上移动时,六边形AEFCHG 的周长_________(填“改变”或“不变”).请帮助小明解决下面问题:如果菱形纸片ABCD 边长仍为2,改变∠ABC 的大小,折痕EF 的长为m . (1)如图3,若∠ABC =120°,则六边形AEFCHG 的周长为_________;(2)如图4,若∠ABC 的大小为2α,则六边形AEFCHG 的周长可表示为________.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy 中,二次函数2()y mx m n x n =-++(0m <)的图象与y 轴正半轴交于A 点.(1)求证:该二次函数的图象与x 轴必有两个交点; (2)设该二次函数的图象与x 轴的两个交点中右侧的交点为点B ,若45ABO ∠=,将直线AB 向下平移2个单位得到直线l ,求直线l 的解析式;(3)在(2)的条件下,设M (,)p q 为二次函数图象上的一个动点,当30p -<<时,点M 关于x 轴的对称点都在直线l 的下方,求m 的取值范围.24.在△ABC 中,AB=AC ,将线段AC 绕着点C 逆时针旋转得到线段CD ,旋转角为α,且0180α<<,连接AD 、BD .(1)如图1,当∠BAC =100°,60α=时,∠CBD 的大小为_________; (2)如图2,当∠BAC =100°,20α=时,求∠CBD 的大小;(3)已知∠BAC 的大小为m (60120m <<),若∠CBD 的大小与(2)中的结果相同,请直接写出α的大小.25. 对于平面直角坐标系 x Oy 中的点P (a ,b ),若点P '的坐标为(ba k+,ka b +)(其中k 为常数,且0k ≠),则称点P '为点P 的“k 属派生点”. 例如:P (1,4)的“2属派生点”为P '(1+42,214⨯+),即P '(3,6). (1)①点P (-1,-2)的“2属派生点”P '的坐标为____________;②若点P 的“k 属派生点” P '的坐标为(3,3),请写出一个符合条件的点P 的坐标____________;(2)若点P 在x 轴的正半轴上,点P 的“k 属派生点”为P '点,且△OPP '为等腰直角三角形,则k 的值为____________; (3)如图, 点Q 的坐标为(0,),点A 在函数y =(0x <)的图象上,且点A 是点B的“,当线段B Q 最短时,求B 点坐标.DCBAABCD此为过程稿,请以纸质版为准! 海淀区九年级第二学期期中测评数学试卷答案及评分参考2019.5一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分)13. 解:0(3π)-++︒60tan 211()3-=13+-…………………………………………………………………4分=4 ……………………………………………………………………………5分14. 解:49132. 2x x x x >-⎧⎪⎨+>⎪⎩, ①②由①,得3x >-, ……………………………………………………………………2分由②,得1x <, ……………………………………………………………………4分 ∴原不等式组的解集为31x -<<. …………………………………………………5分15. 解: 2(3)(3)(23)x x x +++-22=69239x x x x ++++- 2=39.x x + ……………………………………………………………………………3分2340,x x +-= 23 4.x x ∴+=∴原式()233x x =+=34=12.⨯ ………………………………………………………5分16. 证明:∵∠EAB =90º,EDCBA∴∠EAD+∠CAB =90º. ∵∠ACB =90º, ∴∠B+∠CAB =90º.∴∠B =∠EAD . ……………………………………………………………………1分 ∵ED ⊥AC , ∴∠EDA =90º.∴∠EDA =∠ACB . ………………………………………………………………2分 在△ACB 和△EDA 中, ,,,B EAD BC AD ACB EDA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACB ≌△EDA . ……………………………………………………………4分 ∴AB=AE . …………………………………………………………………………5分17. 解:设原计划每年建造保障性住房x 万套. ………………………………………1分根据题意可得:80802(125%)x x-=+ . ……………………………………………2分 解方程,得 8x =. …………………………………………………………………3分 经检验:8x =是原方程的解,且符合题意. ………………………………………4分答:原计划每年建造保障性住房8万套. ……………………………………………5分18.解:(1)∵B (1)m ,在2(0)y x x=>的图象上, ∴2m =.∴B (2, 1). …………………………………………………………………………1分 ∵B (2, 1)在直线y ax a =-(a 为常数)上, ∴12,a a =-∴ 1.a = ……………………………………………………………………………2分 ∴一次函数的解析式为 1.y x =- …………………………………………………3分 (2)P 点的坐标为(0,1)或(0,3). ……………………………………………5分四、解答题(本题共20分,每小题5分)19. 解:(1)∵在△ABC 中,∠ACB =90º,∠ABC =30º,BD =∴1cos ,2BC ABC AC AB AB ∠==,90903060BAC ABC ∠=-∠=-=.∴14,42cos 2BC AB AC ABC ====⨯=∠. …………………………1分∵△ACD 为等边三角形,∴2AD CD AC ===,60DAC ∠=. 过点D 作DE AC ⊥于E , 则sin 2sin603DE AD DAC =∠=⨯=∴ABC ACD ABCD S S S =+△△四边形1122AC BC AC DE =⋅+⋅112222=⨯⨯⨯=. ………………………………………3分 (2)过点D 作DF AB ⊥于F .∵180180606060DAF BAC DAC ∠=-∠-∠=--=, ∴sin 2sin603DF AD DAF =⋅∠==cos 2cos601AF AD DAF =⋅∠==. ………………………………………4分∴415BF AB AF =+=+=. ∵DF AB ⊥,∴在Rt BDF △中,22222528BD DF BF =+=+=.∴BD = …………………………………………………………………5分20. 解:(1)20.0%; ……………………………………………………………………1分(2)8365; ……………………………………………………………………………2分………………………………………………3分(3)9%,2019. …………………………………………………………………………5分53106229 69007703 总额/亿元 年份北京市2009至2013年社会消费品零售总额统计图836521. 解:(1)连接,OD AD .∵AB 是⊙O 的直径, ∴90ADB ∠=. 又∵AB AC =,∴D 为BC 的中点. 又∵O 为AB 的中点, ∴OD //AC .∵DF ⊥AC , ∴DF ⊥OD .又∵OD 为⊙O 的半径,∴DF 为⊙O 的切线.………………………………………………………………2分 (2)∵DF ⊥AC ,9CF =,∴cos CFC CD =. ∴3915cos 5CF CD C ==÷=.…………………3分 ∵90ADB ∠=, ∴90ADC ∠=. ∴cos CDC AC =. ∴31525cos 5CD AC C ==÷=. . ……………………………………………………4分 连接BE .∵AB 是⊙O 的直径,∴90AEB ∠=. 又∵DF ⊥AC , ∴DF //BE .∴1CF CDEF BD ==. ∴9EF CF ==.∴25997AE AC EF CF =--=--=. ……………………………………5分22. 解:①6;………………………………………………………………………………1分 ②不变. ……………………………………………………………………………2分(1) ……………………………………………………………………3分 (2)4+4sin α. ………………………………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 解:(1)令2()=0mx m n x n -++,则22=()4=()m n mn m n ∆+--. ………………………………………………………1分 ∵二次函数图象与y 轴正半轴交于A 点,∴(0,)A n ,且0n >.又0m <,∴0m n -<.∴2=()0m n ∆->.∴该二次函数的图象与x 轴必有两个交点.………………………………………2分(2)令2()=0mx m n x n -++,解得:121,n x x m==. 由(1)得0n m<,故B 的坐标为(1,0). ………………………………………3分 又因为45ABO ∠=,所以(0,1)A ,即=1n .则可求得直线AB 的解析式为1y x =-+.再向下平移2个单位可得到直线:1l y x =--. …………………………………4分(3)由(2)得二次函数的解析式为2(1)1y mx m x =-++∵M (,)p q 为二次函数图象上的一个动点,∴2(1)1q mp m p =-++.∴点M 关于x 轴的对称点M '的坐标为(,)p q -.∴点M '在二次函数2(1)1y mx m x =-++-上.∵当30p -<<时,点M 关于x 轴的对称点都在直线l 的下方,当0p =时,1q =;当3p =-时,124q m =+; ……………………………5分 结合图象可知:(124)2m -+≤, 解得:12m ≥-,………………………………………………………………………6分 ∴m 的取值范围为102m -≤<.……………………………………………………7分 24.解:(1)30°;……………………………… ………………………………………1分 (2)如图作等边△AFC ,连结DF 、BF .∴AF=FC=AC , ∠F AC=∠AFC=60°. ∵∠BAC =100°,AB=AC ,∴∠ABC =∠BCA =40°. ∵∠ACD =20°,∴∠DCB=20°. ∴∠DCB=∠FCB=20°. ①∵AC=CD ,AC=FC ,∴DC=FC . ② 2∵BC=BC ,③∴由①②③,得 △DCB ≌△FCB ,∴DB=BF , ∠DBC=∠FBC.∵∠BAC =100°, ∠F AC=60°,∴∠BAF =40°. ∵∠ACD =20°,AC=CD ,∴∠CAD=80°. ∴∠DAF=20°. ∴∠BAD=∠F AD=20°. ④ ∵AB=AC , AC=AF ,∴AB= AF . ⑤∵AD= AD ,⑥∴由④⑤⑥,得 △DAB ≌△DAF .∴FD= BD .∴FD= BD=FB .∴∠DBF=60°. ∴∠CBD=30°. ………………………………………………………………………4分 (3)120m α=︒-, α=60° 或 240m α=︒- . ……………………………7分 25. 解:(1)①(-2,-4); ……………………………………………………………1分②答案不唯一,只需横、纵坐标之和为3即可,如(1,2) .……………3分(2)±1; ……………………………………………………………………………5分 (3)设B (a ,b ).∵B 的“属派生点”是A ,∴A (a b +). ………………6分∵点A 还在反比例函数y =的图象上,∴a b -+()∴212b ()=.∵0b >∴b =∴b =+.∴B 在直线y +上.…………………7分过Q 作y =+的垂线Q B 1,垂足为B 1,∵(Q ,且线段BQ 最短,∴1B 即为所求的B 点,∴易求得3(2B .…………………………………………………………8分注:其他解法请参照给分.。
北京市海淀区2019届高三第二学期期中练习(一模)数学(理科)试题(解析版)

【点睛】本题主要考查三角函数值的符号判断,考查了诱导公式,三角函数的符号是解决本题的关键.
3.已知等差数列
满足
,则 中一定为零的项是( )
A.
B.
C.
D.
【答案】 A
【解析】
【分析】
利用等差数列通项公式即可得到结果 .
【详解】由
得,
,解得:
,
所以,
,
故选 A
【点睛】本题考查等差数列通项公式,考查计算能力,属于基础题
.
4.已知
,则下列各式中一定成立(
)
A.
B.
C.
D.
【答案】 D
【解析】
【分析】
利用不等式的性质与指数函数性质即可作出判断
.
【详解】 x, y 的符号不确定,当 x= 2, y=- 1 时,
,
对于 A,
不成立,所以错误;
对于 B、
也错;
对于 C,
是减函数,所以,
也错;
对于 D,因为
,所以,
,正确,
故选 D
【点睛】本题考查不等式的性质,指数函数的单调性及均值不等式,考查反例法,属于基础题
.
5.执行如图所示的程序框图,输出的
值为( )
A.
B.
C.
D.
【答案】 B 【解析】 【分析】 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,即可得出结论. 【详解】 解: 第 1 步: S=2, x= 4, m= 2;
( 3)生物 B 层 1 班,政治 2 班,物理 A 层 1 班;
( 4)生物 B 层 1 班,政治 2 班,物理 A 层 4 班;
( 5)生物 B 层 1 班,政治 3 班,物理 A 层 1 班;
2019年北京市海淀区初三一模数学含答案,推荐文档

一、选择题(本题共 16 分,每小题 2 分)
题号
1
2
3
4
5
6
7
8
答案
B
A
A
C
C
B
A
D
2019.05
二、填空题(本题共 16 分,每小题 2 分)
9.圆柱
10.7
11.(9, 1 )
12. 1 , 2 (答案不唯一)
13.110
14.4
15. 8 8 720 x 10x
(1)
x /cm 0 0.3 0.5 0.8 1 1.5 2
3
4
5
6
7
y1 /c 0 0.28 0.49 0.79 1 1.48 1.87 2.37 2.61 2.72 2.76 2.78 m
y2 /c 0 0.08 0.09 0.06 0 0.29 0.73 1.82 3.02 4.20 5.33 6.41 m
∴a c . (2)∵方程有一个根是 0,
∴c 0 .
∴ ax2 2ax 0 ,
即 ax(x 2) 0 .
∴方程的一个根为 x 2 .
21.(本小题满分 5 分)
(1) 证明:∵ E,F 分别为 AC,BC 的中点,
∴ EF∥AB, EF 1 AB ,CF 1 BC .
2
2∵ AB∥CD,Fra bibliotek∴ EF∥CD.
∵ AB=2CD,
∴ EF=CD. ∴ 四边形 CDEF 是平行四边形.
∵ AB=BC,
∴ CF=EF.
∴ 四边形 CDEF 是菱形.
(2) 解:∵ 四边形 CDEF 是菱形, DF 2 ,
2019届北京市海淀区高三第二学期期中练习(一模)数学(理)试题(解析版)

2019届北京市海淀区高三第二学期期中练习(一模)数学(理)试题一、单选题1.已知集合,且,则可以是()A.B.C.D.【答案】A【解析】利用子集概念即可作出判断.【详解】∵∴,即故选:A【点睛】本题考查子集的概念,属于基础题.2.若角的终边在第二象限,则下列三角函数值中大于零的是()A.B.C.D.【答案】D【解析】利用诱导公式化简选项,再结合角的终边所在象限即可作出判断.【详解】解:角的终边在第二象限,=<0,A不符;=<0,B不符;=<0,C不符;=>0,所以,D正确故选:D【点睛】本题主要考查三角函数值的符号判断,考查了诱导公式,三角函数的符号是解决本题的关键.3.已知等差数列满足,则中一定为零的项是()A.B.C.D.【答案】A【解析】利用等差数列通项公式即可得到结果.【详解】由得,,解得:,所以,,故选A【点睛】本题考查等差数列通项公式,考查计算能力,属于基础题.4.已知,则下列各式中一定成立()A.B.C.D.【答案】D【解析】利用不等式的性质与指数函数性质即可作出判断.【详解】x,y的符号不确定,当x=2,y=-1时,,对于A,不成立,所以错误;对于B、也错;对于C,是减函数,所以,也错;对于D,因为,所以,,正确,故选D【点睛】本题考查不等式的性质,指数函数的单调性及均值不等式,考查反例法,属于基础题. 5.执行如图所示的程序框图,输出的值为()A.B.C.D.【答案】B【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,即可得出结论.【详解】解:第1步:S=2,x=4,m=2;第2步:S=8,x=6,m=;第3步:S=48,x=8,m=,退出循环,故选B【点睛】解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6.已知复数,则下面结论正确的是()A.B.C.一定不是纯虚数D.在复平面上,对应的点可能在第三象限【答案】B【解析】利用共轭复数概念,模的计算,及几何意义即可作出判断.【详解】的共轭复数为:,所以A错误;,所以B正确;当时,是纯虚数,所以C错误;对应的点为(,1),因为纵坐标y=1,所以,不可能在第三象限,D也错误.故选B.【点睛】本题考查了复数的基本概念,考查了复数模的求法,是基础题.7.椭圆与双曲线的离心率之积为1,则双曲线的两条渐近线的倾斜角分别为()A.,B.,C.,D.,【答案】C【解析】运用椭圆和双曲线的离心率公式,可得关于a,b的方程,再由双曲线的渐近线方程,即可得到结论.【详解】椭圆中:a=2,b=1,所以,c=,离心率为,设双曲线的离心率为e则,得,双曲线中,即,又,所以,得,双曲线的渐近线为:,所以两条渐近线的倾率为倾斜角分别为,.故选C.【点睛】本题考查椭圆和双曲线的方程和性质,主要考查离心率和渐近线方程的求法,考查运算能力,属于易错题.8.某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在层班级,生物在层班级,该校周一上午课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有()层化学化学层层生物层生物层A.8种B.10种C.12种D.14种【答案】B【解析】根据表格进行逻辑推理即可得到结果.【详解】张毅不同的选课方法如下:(1)生物B层1班,政治1班,物理A层2班;(2)生物B层1班,政治1班,物理A层4班;(3)生物B层1班,政治2班,物理A层1班;(4)生物B层1班,政治2班,物理A层4班;(5)生物B层1班,政治3班,物理A层1班;(6)生物B层1班,政治3班,物理A层2班;(7)生物B层2班,政治1班,物理A层3班;(8)生物B层2班,政治1班,物理A层4班;(9)生物B层2班,政治3班,物理A层1班;(10)生物B层2班,政治3班,物理A层3班;共10种,故选B.【点睛】本题以实际生活为背景,考查了逻辑推理能力与分类讨论思想,属于中档题.二、解答题9.已知函数的最大值为.(1)求的值;(2)求函数的单调递增区间.【答案】(1);(2).【解析】(1)化简f(x)为A sin(ωx+φ)+b的形式,根据最大值列出方程解出a;(2)结合正弦函数的单调性列出不等式解出【详解】(1)因为,所以函数的最大值为 ,所以,所以 .(2)因为的单调递增区间为,, 令 ,所以,函数的单调递增区间为,.【点睛】本题考查了三角函数的恒等变换,三角函数的最值及单调性,属于基础题.10.据《人民网》报道,“美国国家航空航天局发文称,相比20年前世界变得更绿色了.卫星资料显示中国和印度的行动主导了地球变绿.”据统计,中国新增绿化面积的来自于植树造林,下表是中国十个地区在2017年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)单位:公顷(1)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;(2)在这十个地区中,任选一个地区,求该地区人工造林面积占造林总面积的比值超过的概率是多少?(3)在这十个地区中,从新封山育林面积超过五万公顷的地区中,任选两个地区,记为这两个地区中退化林修复面积超过六万公顷的地区的个数,求的分布列及数学期望.【答案】(1)甘肃省,青海省;(2);(3).【解析】(1)根据表格即可得到结果;(2)利用古典概型概率公式即可得到结果;(3)的取值为0,1,2,分别求出相应的概率值,即可得到的分布列及数学期望.【详解】(1) 人工造林面积与总面积比最大的地区为甘肃省,人工造林面积与总面积比最小的地区为青海省.(2) 设在这十个地区中,任选一个地区,该地区人工造林面积占总面积的比值超过为事件在十个地区中,有7个地区(内蒙、河北、河南、陕西、甘肃、宁夏、北京)人工造林面积占总面积比超过,则.(3)新封山育林面积超过五万公顷有个地区:内蒙、河北、河南、重庆、陕西、甘肃、新疆、青海,其中退化林修复面积超过六万公顷有个地区:内蒙、河北、重庆,所以的取值为所以,,.随机变量的分布列为.【点睛】本题考查离散型随机变量的分布列与期望,考查古典概型概率公式,考查分析问题解决问题的能力,属于中档题.11.如图,在直三棱柱中,,点分别为棱的中点.(1)求证:平面;(2)求证:平面平面;(3)在线段上是否存在一点,使得直线与平面所成的角为?如果存在,求出线段的长;如果不存在,说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)1.【解析】(1)方法一:取中点为,连结,,要证平面,即证:,;方法二:以为原点,分别以为轴,轴,轴,建立空间直角坐标系,求出平面的法向量为,又因为,即可得证.(2)方法一:要证平面平面,转证平面即证;方法二:分别求出两个平面的法向量即可得证.(3)建立空间直角坐标系,利用坐标法即可得到结果.【详解】方法一:(1)取中点为,连结,由且,又点为中点,所以 ,又因为分别为,中点,所以 ,所以,所以共面于平面 ,因为,分别为中点, 所以,平面,平面,所以平面 .方法二:在直三棱柱中,平面又因为,以为原点,分别以为轴,轴,轴,建立空间直角坐标系,由题意得,.所以,,设平面的法向量为,则,即,令,得,于是 ,又因为,所以 ,又因为平面,所以平面 .(2)方法一:在直棱柱中,平面,因为,所以,又因为,且,所以平面 ,平面,所以,又,四边形为正方形,所以 ,又,所以,又,且,所以平面 ,又平面,所以平面平面 .方法二:设平面的法向量为,,,即 ,令,得,于是 ,,即,所以平面平面.(3)设直线与平面所成角为,则,设,则 ,,所以 ,解得或(舍),所以点存在,即的中点,.【点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.12.已知函数.(1)求曲线在点处的切线方程;(2)当时,求证:函数存在极小值;(3)请直接写出函数的零点个数.【答案】(1);(2)证明见解析;(3)当或时,函数有一个零点;当且时,函数有两个零点.【解析】(1) 求出函数f(x)的导数,可得切线的斜率和切点,可得切线的方程;(2),说明有可变零点即可;(3)由题意可得函数的零点个数.【详解】(1)的定义域为因为所以切点的坐标为因为所以切线的斜率,所以切线的方程为(2)方法一:令因为且,所以,,从而得到在上恒成立所以在上单调递增且,所以在上递减,在递增;所以时,取得极小值,问题得证方法二:因为当时,当时,,所以当时,,所以所以在上递减,在递增;所以时,函数取得极小值,问题得证.(3)当或时,函数有一个零点;当且时,函数有两个零点.【点睛】本题考查函数的导数的运用:求切线的方程,确定函数的极值,考查函数的零点个数判断,以及分类讨论思想方法,属于中档题.13.已知抛物线,其中.点在的焦点的右侧,且到的准线的距离是与距离的3倍.经过点的直线与抛物线交于不同的两点,直线与直线交于点,经过点且与直线垂直的直线交轴于点.(1)求抛物线的方程和的坐标;(2)判断直线与直线的位置关系,并说明理由.【答案】(1),;(2)平行.【解析】(1)由到的准线的距离是与距离的3倍可得p值,从而得到抛物线的方程和的坐标;(2)方法一:设直线的方程为,对m分类讨论,分别计算二者的斜率,即可作出判断.方法二:先考虑直线的斜率不存在时,在考虑直线的斜率存在,设直线的方程为,,联立求点坐标,利用两点斜率公式求出,即可得出结论.【详解】(1)抛物线的准线方程为,焦点坐标为 ,所以有,解得 ,所以抛物线方程为,焦点坐标为 .(2)直线 ,方法一:设,,设直线的方程为联立方程消元得,,所以, ,,显然,直线的方程为 ,令,则,则,因为,所以 ,直线的方程为,令,则,则① 当时,直线的斜率不存在,,可知,直线的斜率不存在,则② 当时,,,则综上所述,方法二:直线(i) 若直线的斜率不存在,根据对称性,不妨设,直线的方程为,则直线的方程为,即,令,则,则直线的斜率不存在,因此(ii) 设,,当直线的斜率存在,设直线的方程为,联立方程,消元得,,整理得,由韦达定理,可得,,因为,可得.显然,直线的方程为令,则,则因为,所以直线的方程为,令,则,则,则综上所述, .【点睛】本题考查了抛物线的简单性质,直线和抛物线的位置关系,直线的斜率和直线的位置关系,属于中档题.14.首项为O的无穷数列同时满足下面两个条件:①;②.(1)请直接写出的所有可能值;(2)记,若对任意成立,求的通项公式;(3)对于给定的正整数,求的最大值.【答案】(1);(2);(3)当为奇数时的最大值为; 当为偶数时,的最大值为.【解析】(1)由递推关系得到的所有可能值;(2)由题意可知数列的偶数项是单调递增数列,先证明数列中相邻两项不可能同时为非负数,即可得到结果;(3)由(2)的证明知,不能都为非负数,分类讨论即可得到结果.【详解】(1)的值可以取 .(2)因为,因为对任意成立,所以为单调递增数列,即数列的偶数项是单调递增数列,根据条件,,所以当对成立,下面我们证明“数列中相邻两项不可能同时为非负数”,假设数列中存在同时为非负数,因为,若则有,与条件矛盾,若则有,与条件矛盾,所以假设错误,即数列中相邻两项不可能同时为非负数,此时对成立,所以当时,,即,所以,,所以,即,其中,即,其中,又,,所以是以,公差为的等差数列,所以 .(3)记,由(2)的证明知,不能都为非负数,当,则,根据,得到,所以,当,则,根据,得到,所以,所以,总有成立,当为奇数时,,故的奇偶性不同,则,当为偶数时,,当为奇数时,,考虑数列:,,可以验证,所给的数列满足条件,且,所以的最大值为,当为偶数时,,考虑数列:,,-,, ,可以验证,所给的数列满足条件,且,所以的最大值为.【点睛】本题考查数列的性质和应用,解题时要注意归纳总结能力的培养,考查了转化能力和运算能力,属于难题.三、填空题15.已知成等比数列,且,则____.【答案】4【解析】利用等比中项可得=16,结合对数运算性质可得结果.【详解】解:依题意,得:=16,所以,=4故答案为:4【点睛】本题考查了等比数列的性质,对数的运算性质,考查计算能力.16.在中,,则_______;_________.【答案】6【解析】利用余弦定理可得c值,由平方关系得到,借助可得结果.【详解】解:由余弦定理,得:=36,所以,c=6,由得:,所以,=【点睛】本题考查余弦定理,平方关系,以及三角形的面积公式的应用,熟练掌握公式是解题的关键.17.已知向量,同时满足条件①,②的一个向量的坐标为_____ .【答案】(答案不唯一)【解析】设=(x,y),由∥得:y=-2x,结合,可得x的范围,进而可得结果.【详解】解:设=(x,y),由∥得:y=-2x,+=(1+x,-2+y),由,得:,把y=-2x代入,得:,化简,得:,解得:,取x=-1,得y=2,所以,=(-1,2)(答案不唯一)故答案为:=(-1,2)(答案不唯一)【点睛】本题考查向量共线的性质,考查平面向量的坐标运算,属于基础题.18.在极坐标系中,若圆关于直线对称,则_____.【答案】【解析】把极坐标方程化为普通直角方程,利用圆心在直线上,得到a值.【详解】解:圆方程化为:,化为直角坐标方程为:,直线化为直角坐标方程为:,圆关于直线对称,则直线经过圆的圆心(,0),所以,,解得:=-1.故答案为:-1【点睛】本题考查极坐标与直角坐标的互化,考查直线与圆的位置关系,属于基础题.19.设关于的不等式组表示的平面区域为.记区域上的点与点距离的最小值为,则(1)当时,____;(2)若,则的取值范围是____.【答案】2【解析】(1)当时,作出可行域,数形结合即可得到结果,(2)恒过定点(0,1),对k分类讨论,数形结合即可得到结果.【详解】(1)当时,不等式组为,表示的平面区域如下图1,区域上的点B与点距离的最小,最小值为|AB|=2,所以, 2(2)恒过定点(0,1),(i)当k>0时,如图1,,符合题意(ii)当k=0时,如图2,,符合题意(iii)当k<0时,如图3,,解得:,综上可知的取值范围是.【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.20.已知函数,,其中.若,使得成立,则____.【答案】【解析】根据题意可得,分别求两边的范围,利用子集关系,得到结果. 【详解】解:依题意,得:,化简,得:,因为.,所以,,即,所以,,因为,且,因为,有成立,所以,,所以,所以,,所以,.故答案为:【点睛】本题考查了函数的单调性与值域,考查了推理能力与计算能力,属于中档题.。
2019年北京市高考数学一模试卷(理科)(解析版)

2019年北京市高考数学一模试卷(理科)(解析版)2019年北京市高考数学一模试卷(理科)一、选择题共8个小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数z=i(1+i),则|z|等于()A。
2B。
√2C。
1D。
2√22.在方程r=2cosθ+3sinθ(θ为参数)所表示的曲线上的点是()A。
(2.-7)B。
(3.1)C。
(1.5)D。
(2.1)3.设公差不为零的等差数列{an}的前n项和为Sn,若a4=2(a2+a3),则Sn=()A。
5anB。
6anC。
7anD。
14an4.将函数y=sin2x的图象向左平移π/4个单位后得到函数y=g(x)的图象。
则函数g(x)的一个增区间是()A。
(π/4.3π/4)B。
(3π/4.5π/4)C。
(5π/4.7π/4)D。
(7π/4.9π/4)5.使“a>b”成立的一个充分不必要条件是()A。
a>b+1B。
a>b-1C。
a^2>b^2D。
a^3>b^36.下列函数:①y=-|x|;②y=(x-1)^3;③y=log2(x-1);④y=-6.在x中,在(1.+∞)上是增函数且不存在零点的函数的序号是()A。
①④B。
②③C。
②④D。
①③④7.某三棱锥的正视图和侧视图如图所示,则该三棱锥的俯视图的面积为()A。
6B。
8C。
10D。
128.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是()A。
336B。
510C。
1326D。
3603二、填空题共6小题,每小题5分,共30分。
9.在(1-x)^5的展开式中,x^2的系数为______(用数字作答)。
答案:1010.已知向量a=(1.b)。
b=(-2.-1),且向量a+b的模长为√10.则实数x=______。
北京市海淀区2019届高三第二学期期中练习(一模)数学(理科)试题(解析版)

北京市海淀区2019届高三第二学期期中练习(一模)数学(理科)试题第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.1.已知集合,且,则可以是()A. B. C. D.【答案】A【解析】【分析】利用子集概念即可作出判断.【详解】∵∴,即故选:A【点睛】本题考查子集的概念,属于基础题.2.若角的终边在第二象限,则下列三角函数值中大于零的是()A. B. C. D.【答案】D【解析】【分析】利用诱导公式化简选项,再结合角的终边所在象限即可作出判断.【详解】解:角的终边在第二象限,=<0,A不符;=<0,B不符;=<0,C不符;=>0,所以,D正确故选:D【点睛】本题主要考查三角函数值的符号判断,考查了诱导公式,三角函数的符号是解决本题的关键.3.已知等差数列满足,则中一定为零的项是()A. B. C. D.【答案】A【解析】【分析】利用等差数列通项公式即可得到结果.【详解】由得,,解得:,所以,,故选A【点睛】本题考查等差数列通项公式,考查计算能力,属于基础题.4.已知,则下列各式中一定成立()A. B. C. D.【答案】D【解析】【分析】利用不等式的性质与指数函数性质即可作出判断.【详解】x,y的符号不确定,当x=2,y=-1时,,对于A,不成立,所以错误;对于B、也错;对于C,是减函数,所以,也错;对于D,因为,所以,,正确,故选D【点睛】本题考查不等式的性质,指数函数的单调性及均值不等式,考查反例法,属于基础题.5.执行如图所示的程序框图,输出的值为()A. B. C. D.【答案】B【解析】【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,即可得出结论.【详解】解:第1步:S=2,x=4,m=2;第2步:S=8,x=6,m=;第3步:S=48,x=8,m=,退出循环,故选B【点睛】解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6.已知复数,则下面结论正确的是()A. B.C. 一定不是纯虚数D. 在复平面上,对应的点可能在第三象限【答案】B【解析】【分析】利用共轭复数概念,模的计算,及几何意义即可作出判断.【详解】的共轭复数为:,所以A错误;,所以B正确;当时,是纯虚数,所以C错误;对应的点为(,1),因为纵坐标y=1,所以,不可能在第三象限,D也错误.故选B.【点睛】本题考查了复数的基本概念,考查了复数模的求法,是基础题.7.椭圆与双曲线的离心率之积为1,则双曲线的两条渐近线的倾斜角分别为()A. ,B. ,C. ,D. ,【答案】C【解析】【分析】运用椭圆和双曲线的离心率公式,可得关于a,b的方程,再由双曲线的渐近线方程,即可得到结论.【详解】椭圆中:a=2,b=1,所以,c=,离心率为,设双曲线的离心率为e则,得,双曲线中,即,又,所以,得,双曲线的渐近线为:,所以两条渐近线的倾率为倾斜角分别为,.故选C.【点睛】本题考查椭圆和双曲线的方程和性质,主要考查离心率和渐近线方程的求法,考查运算能力,属于易错题.8.某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在层班级,生物在层班级,该校周一上午课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有()地理地理层生物生物物理物理层物理物理层A. 8种B. 10种C. 12种D. 14种【答案】B【解析】【分析】根据表格进行逻辑推理即可得到结果.【详解】张毅不同的选课方法如下:(1)生物B层1班,政治1班,物理A层2班;(2)生物B层1班,政治1班,物理A层4班;(3)生物B层1班,政治2班,物理A层1班;(4)生物B层1班,政治2班,物理A层4班;(5)生物B层1班,政治3班,物理A层1班;(6)生物B层1班,政治3班,物理A层2班;(7)生物B层2班,政治1班,物理A层3班;(8)生物B层2班,政治1班,物理A层4班;(9)生物B层2班,政治3班,物理A层1班;(10)生物B层2班,政治3班,物理A层3班;共10种,故选B.【点睛】本题以实际生活为背景,考查了逻辑推理能力与分类讨论思想,属于中档题.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9.已知成等比数列,且,则____.【答案】4【解析】【分析】利用等比中项可得=16,结合对数运算性质可得结果.【详解】解:依题意,得:=16,所以,=4故答案为:4【点睛】本题考查了等比数列的性质,对数的运算性质,考查计算能力.10.在中,,则_______;_________.【答案】(1). 6(2).【解析】【分析】利用余弦定理可得c值,由平方关系得到,借助可得结果.【详解】解:由余弦定理,得:=36,所以,c=6,由得:,所以,=【点睛】本题考查余弦定理,平方关系,以及三角形的面积公式的应用,熟练掌握公式是解题的关键.11.已知向量,同时满足条件①,②的一个向量的坐标为_____ .【答案】(答案不唯一)【解析】【分析】设=(x,y),由∥得:y=-2x,结合,可得x的范围,进而可得结果.【详解】解:设=(x,y),由∥得:y=-2x,+=(1+x,-2+y),由,得:,把y=-2x代入,得:,化简,得:,解得:,取x=-1,得y=2,所以,=(-1,2)(答案不唯一)故答案为:=(-1,2)(答案不唯一)【点睛】本题考查向量共线的性质,考查平面向量的坐标运算,属于基础题.12.在极坐标系中,若圆关于直线对称,则_____.【答案】【解析】【分析】把极坐标方程化为普通直角方程,利用圆心在直线上,得到a值.【详解】解:圆方程化为:,化为直角坐标方程为:,直线化为直角坐标方程为:,圆关于直线对称,则直线经过圆的圆心(,0),所以,,解得:=-1.故答案为:-1【点睛】本题考查极坐标与直角坐标的互化,考查直线与圆的位置关系,属于基础题.13.设关于的不等式组表示的平面区域为.记区域上的点与点距离的最小值为,则(1)当时,____;(2)若,则的取值范围是____.【答案】(1). 2(2).【解析】【分析】(1)当时,作出可行域,数形结合即可得到结果,(2)恒过定点(0,1),对k分类讨论,数形结合即可得到结果.【详解】(1)当时,不等式组为,表示的平面区域如下图1,区域上的点B与点距离的最小,最小值为|AB|=2,所以, 2(2)恒过定点(0,1),(i)当k>0时,如图1,,符合题意(ii)当k=0时,如图2,,符合题意(iii)当k<0时,如图3,,解得:,综上可知的取值范围是.【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.14.已知函数,,其中.若,使得成立,则____.【答案】【解析】【分析】根据题意可得,分别求两边的范围,利用子集关系,得到结果.【详解】解:依题意,得:,化简,得:,因为.,所以,,即,所以,,因为,且,因为,有成立,所以,,所以,所以,,所以,.故答案为:【点睛】本题考查了函数的单调性与值域,考查了推理能力与计算能力,属于中档题.三、解答题共6小题,共80分.解答应写出文字说明~演算步骤或证明过程15.已知函数的最大值为.(1)求的值;(2)求函数的单调递增区间.【答案】(1);(2).【解析】【分析】(1)化简f(x)为A sin(ωx+φ)+b的形式,根据最大值列出方程解出a;(2)结合正弦函数的单调性列出不等式解出【详解】(1)因为,所以函数的最大值为 ,所以,所以 .(2)因为的单调递增区间为,, 令 ,所以,函数的单调递增区间为,.【点睛】本题考查了三角函数的恒等变换,三角函数的最值及单调性,属于基础题.16.据《人民网》报道,“美国国家航空航天局发文称,相比20年前世界变得更绿色了.卫星资料显示中国和印度的行动主导了地球变绿.”据统计,中国新增绿化面积的来自于植树造林,下表是中国十个地区在2017年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)单位:公顷(1)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;(2)在这十个地区中,任选一个地区,求该地区人工造林面积占造林总面积的比值超过的概率是多少?(3)在这十个地区中,从新封山育林面积超过五万公顷的地区中,任选两个地区,记为这两个地区中退化林修复面积超过六万公顷的地区的个数,求的分布列及数学期望.【答案】(1)甘肃省,青海省;(2);(3).【解析】【分析】(1)根据表格即可得到结果;(2)利用古典概型概率公式即可得到结果;(3)的取值为0,1,2,分别求出相应的概率值,即可得到的分布列及数学期望.【详解】(1) 人工造林面积与总面积比最大的地区为甘肃省,人工造林面积与总面积比最小的地区为青海省.(2) 设在这十个地区中,任选一个地区,该地区人工造林面积占总面积的比值超过为事件在十个地区中,有7个地区(内蒙、河北、河南、陕西、甘肃、宁夏、北京)人工造林面积占总面积比超过,则.(3)新封山育林面积超过五万公顷有个地区:内蒙、河北、河南、重庆、陕西、甘肃、新疆、青海,其中退化林修复面积超过六万公顷有个地区:内蒙、河北、重庆,所以的取值为所以,,.随机变量的分布列为.【点睛】本题考查离散型随机变量的分布列与期望,考查古典概型概率公式,考查分析问题解决问题的能力,属于中档题.17.如图,在直三棱柱中,,点分别为棱的中点.(1)求证:平面;(2)求证:平面平面;(3)在线段上是否存在一点,使得直线与平面所成的角为?如果存在,求出线段的长;如果不存在,说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)1.【解析】【分析】(1)方法一:取中点为,连结,,要证平面,即证:,;方法二:以为原点,分别以为轴,轴,轴,建立空间直角坐标系,求出平面的法向量为,又因为,即可得证.(2)方法一:要证平面平面,转证平面即证;方法二:分别求出两个平面的法向量即可得证.(3)建立空间直角坐标系,利用坐标法即可得到结果.【详解】方法一:(1)取中点为,连结,由且,又点为中点,所以 ,又因为分别为,中点,所以 ,所以,所以共面于平面 ,因为,分别为中点, 所以,平面,平面,所以平面 .方法二:在直三棱柱中,平面又因为,以为原点,分别以为轴,轴,轴,建立空间直角坐标系,由题意得,.所以,,设平面的法向量为,则,即,令,得,于是 ,又因为,所以 ,又因为平面,所以平面 .(2)方法一:在直棱柱中,平面,因为,所以,又因为,且,所以平面 ,平面,所以,又,四边形为正方形,所以 ,又,所以,又,且,所以平面 ,又平面,所以平面平面 .方法二:设平面的法向量为,,,即 ,令,得,于是 ,,即,所以平面平面.(3)设直线与平面所成角为,则,设,则 ,,所以 ,解得或(舍),所以点存在,即的中点,.【点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.18.已知函数.(1)求曲线在点处的切线方程;(2)当时,求证:函数存在极小值;(3)请直接写出函数的零点个数.【答案】(1);(2)证明见解析;(3)当或时,函数有一个零点;当且时,函数有两个零点.【解析】【分析】(1) 求出函数f(x)的导数,可得切线的斜率和切点,可得切线的方程;(2),说明有可变零点即可;(3)由题意可得函数的零点个数.【详解】(1)的定义域为因为所以切点的坐标为因为所以切线的斜率,所以切线的方程为(2)方法一:令因为且,所以,,从而得到在上恒成立所以在上单调递增且,所以在上递减,在递增;所以时,取得极小值,问题得证方法二:因为当时,当时,,所以当时,,所以所以在上递减,在递增;所以时,函数取得极小值,问题得证.(3)当或时,函数有一个零点;当且时,函数有两个零点.【点睛】本题考查函数的导数的运用:求切线的方程,确定函数的极值,考查函数的零点个数判断,以及分类讨论思想方法,属于中档题.19.已知抛物线,其中.点在的焦点的右侧,且到的准线的距离是与距离的3倍.经过点的直线与抛物线交于不同的两点,直线与直线交于点,经过点且与直线垂直的直线交轴于点.(1)求抛物线的方程和的坐标;(2)判断直线与直线的位置关系,并说明理由.【答案】(1),;(2)平行.【解析】【分析】(1)由到的准线的距离是与距离的3倍可得p值,从而得到抛物线的方程和的坐标;(2)方法一:设直线的方程为,对m分类讨论,分别计算二者的斜率,即可作出判断.方法二:先考虑直线的斜率不存在时,在考虑直线的斜率存在,设直线的方程为,,联立求点坐标,利用两点斜率公式求出,即可得出结论.【详解】(1)抛物线的准线方程为,焦点坐标为 ,所以有,解得 ,所以抛物线方程为,焦点坐标为 .(2)直线 ,方法一:设,,设直线的方程为联立方程消元得,,所以, ,,显然,直线的方程为 ,令,则,则,因为,所以 ,直线的方程为,令,则,则① 当时,直线的斜率不存在,,可知,直线的斜率不存在,则② 当时,,,则综上所述,方法二:直线(i) 若直线的斜率不存在,根据对称性,不妨设,直线的方程为,则直线的方程为,即,令,则,则直线的斜率不存在,因此(ii) 设,,当直线的斜率存在,设直线的方程为,联立方程,消元得,,整理得,由韦达定理,可得,,因为,可得.显然,直线的方程为令,则,则因为,所以直线的方程为,令,则,则,则综上所述, .【点睛】本题考查了抛物线的简单性质,直线和抛物线的位置关系,直线的斜率和直线的位置关系,属于中档题.20.首项为O的无穷数列同时满足下面两个条件:①;②.(1)请直接写出的所有可能值;(2)记,若对任意成立,求的通项公式;(3)对于给定的正整数,求的最大值.【答案】(1);(2);(3)当为奇数时的最大值为; 当为偶数时,的最大值为.【解析】【分析】(1)由递推关系得到的所有可能值;(2)由题意可知数列的偶数项是单调递增数列,先证明数列中相邻两项不可能同时为非负数,即可得到结果;(3)由(2)的证明知,不能都为非负数,分类讨论即可得到结果.【详解】(1)的值可以取 .(2)因为,因为对任意成立,所以为单调递增数列,即数列的偶数项是单调递增数列,根据条件,,所以当对成立,下面我们证明“数列中相邻两项不可能同时为非负数”,假设数列中存在同时为非负数,因为,若则有,与条件矛盾,若则有,与条件矛盾,所以假设错误,即数列中相邻两项不可能同时为非负数,此时对成立,所以当时,,即,所以,,所以,即,其中,即,其中,又,,所以是以,公差为的等差数列,所以 .(3)记,由(2)的证明知,不能都为非负数,当,则,根据,得到,所以,当,则,根据,得到,所以,所以,总有成立,当为奇数时,,故的奇偶性不同,则,当为偶数时,,当为奇数时,,考虑数列:,,可以验证,所给的数列满足条件,且,所以的最大值为,当为偶数时,,考虑数列:,,-,, ,可以验证,所给的数列满足条件,且,所以的最大值为.【点睛】本题考查数列的性质和应用,解题时要注意归纳总结能力的培养,考查了转化能力和运算能力,属于难题.。
2019北京海淀区初三一模数学试题答案

2019北京海淀区初三一模数学试题答案2019.05一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.圆柱 10.7 11.(9,1-)12.1-,2-(答案不唯一)13.11014.415.8872010x x-=16.54三、解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题6分;第27-28题,每小题7分) 17.(本小题满分5分)解:原式=411?-)18.(本小题满分5分)解:原不等式组为512(1)324x x x x ,.ì->+ïí+>ïî①②解不等式①,得1x >. 解不等式②,得2x <.∴原不等式组的解集为12x <<.19.(本小题满分5分)(1)补全的图形如图所示:(作弧交半圆于Q 点1分,直线PQ 1分)(2)»QB, 等弧所对的圆周角相等, 内错角相等,两直线平行.l20.(本小题满分5分)解:(1)依题意可知,00a ≠∆=,. ∴4()0a a c -=. ∴a c =.(2)∵方程有一个根是0, ∴0c =. ∴220ax ax +=,即(2)0ax x +=.∴方程的一个根为2x =-. 21.(本小题满分5分)(1)证明:∵ E ,F 分别为AC ,BC 的中点,∴ EF ∥AB ,12EF AB =,12CF BC =. ∵ AB ∥CD , ∴ EF ∥CD . ∵ AB =2CD , ∴ EF =CD .∴ 四边形CDEF 是平行四边形. ∵ AB =BC , ∴ CF =EF .∴ 四边形CDEF 是菱形.(2)解:∵ 四边形CDEF 是菱形,2DF =,∴ DF ⊥AC ,112DG DF ==. 在Rt △DGC 中,53CD =,可得43CG =.∴ 43EG CG ==,823CE CG ==. ∵ E 为AC 中点,∴ 83AE CE ==.∴ 4AG AE EG =+=.A在Rt△DGA中,AD=22.(本小题满分5分)(1)证明:∵PC与⊙O相切于点C,∴OC⊥PC.∴∠OCP=90°.∵∠AOC=∠CPB,∠AOC+∠BOC=180°,∴∠BOC+∠CPB=180°.在四边形PBOC中,∠PBO=360°-∠CPB-∠BOC-∠PCO=90°.∴半径OB⊥PB.∴PB是⊙O的切线.(2)解法1:连接OP,如图.∵AB是⊙O的直径,AB=∴12OC OB AB===∵弦CD⊥AB于点E,CD=6,∴132CE CD==.在Rt△CEO中,sinCECOECO∠==.∴∠COE=60°.∵PB,PC都是⊙O的切线,∴∠CPO=∠BPO,∠OCP=∠OBP.∴∠COP=∠BOP=60°.∴PB= OB· t an60°= 6.解法2:连接BC,如图.∵ AB 是⊙O的直径,AB =∴12OC AB ==. ∵弦CD ⊥AB 于点E ,CD =6,∴132CE CD ==.在Rt △CEO中,sin CE COE CO ∠==. ∴∠COE =60°.∴∠CPB =∠COE =60°,1302ABC COE ∠=∠=︒.∴ BC =2CE = 6.∵ PB ,PC 都是⊙O 的切线, ∴ PB =PC .∴△PBC 为等边三角形. ∴PB =BC = 6.23.(本小题满分6分)(1)∵直线2y x b =+经过点A (1,m ),B (1-,1-),∴1b =.又∵直线2y x b =+经过点A (1,m ), ∴3m =.(2)①C (0,1-),D (1,1).②函数ky x=的图象经过点A 时,3k =. 函数ky x=的图象经过点D 时,1k =,此时双曲线也经过点B , 结合图象可得k 值得范围是0113k k <<<≤或.24.(本小题满分6分)解:本题答案不唯一,如:(1)(2)y2 1(3)5.49或2.50. 25.(本小题满分6分)解:(1)A . (2)乙.理由:甲校优秀率40%,低于乙校,说明乙校综合展示水平优秀人数更多;通过图表,估计甲校平均数为79,低于乙校,说明乙校整体水平高于甲校;甲校中位数为81.25,乙校为84,说明乙校综合展示水平一半的同学高于84分,而甲校一半同学的综合展示水平仅高于81.25.综合以上三个(两个)理由,说明乙校的综合素质展示水平更高.(3)88.5.26.(本小题满分6分)解:(1)由题意可得3093c a b c -=⎧⎨=++⎩,.∴3c =-,310a b +-=.(2)由(1)可得2(13)3y ax a x =+-- (0)a >.∵抛物线在A B ,两点间,从左到右上升, ∴3102a a-≤. ∵0a >,∴310a -≤,即103a <≤. (3)抛物线不能经过点(1)(4)M m n N m n -+-,,,.理由如下:若抛物线经过(1)(4)M m n N m n -+-,,,,则抛物线的对称轴为32x =. 由抛物线经过点A ,可知抛物线经过点(3,3-),与抛物线经过点B (3,0)矛盾. 所以抛物线不能经过点(1)(4)M m n N m n -+-,,,.27.(本小题满分7分)(1)补全图形,如图.(2) 解:∵ AB =BC ,∠ABC =90°,∴ ∠BAC =∠BCA =45°. ∵ ∠ACE =α, ∴ 45ECB α??.∵ CF ⊥BD 交BD 的延长线于点E , ∴ ∠BEF =90°. ∴ ∠F +∠ABD =90°. ∵ ∠F +∠ECB =90°, ∴45ABD ECB α???.(3)① DG 与BC 的位置关系:DG ⊥BC .证明:连接BG 交AC 于点M ,延长GD 交BC 于点H ,如图.∵ AB =BC ,∠ABD =∠ECB ,BD =CG , ∴ △ABD ≌△BCG . ∴ ∠CBG =∠BAD =45°. ∴ ∠ABG =∠CBG =∠BAC =45°. ∴ AM =BM ,∠AMB =90°. ∵ AD =BG , ∴ DM =GM .∴ ∠MGD =∠GDM =45°. ∴ ∠BHG =90° ∴ DG ⊥BC .②2222CG DG AB =+.28.(本小题满分7分)解:(1)是.∵(11)A -,,(02)B ,,(11)C ,-到x 轴的距离分别是1,1,2,且1+1=2, ∴这三点为图形M 关于直线l 的一个基准点列,它的基准距离为2. (2)① ∵12-1n n P P P P ,,,,L L 是⊙T 关于直线l 的一个基准点列, ∴12-1+++=n n d d d d L L .∴n d 的最大值为⊙T 上的点到直线l 的最大距离.当T 为原点时,过O 作OH ⊥l 与点H ,延长HO 交⊙O 于点F ,则FH 的长度为n d 的最大值.设函数3y =-+的图象与x 轴,y 轴分别交于点D ,E ,则0)D ,(03)E ,.∴OD ,3OE =,∠DOE =90°. ∴∠OED =30°. 又∵∠OHE =90°,∴1322OH OE ==.∴52FH =. 例如,⊙O 上存在点1234P P P P ,,,满足123413552442d d d d ====,,,.∴n d 的最大值为52. ②圆心T 的纵坐标t 的取值范围为105t <?或2965t ?.。
2019北京海淀区初三一模数学试卷及问题详解

2019北京海淀区初三一模数学试卷及答案数 学 2019.05一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.如图是圆规示意图,张开的两脚所形成的角大约是A .90°B .60°C .45°D .30° 2x 的取值范围是A .1x ³B .1x £C .1x <D .1x ¹3.实数a b c ,,在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误..的是 A .0a b +> B .0a c +> C .0b c +>D .0ac <4.若正多边形的内角和是540°,则该正多边形的一个外角为A .45°B .60°C .72°D .90°5.2019年2月,美国宇航局(NASA )的卫星监测数据显示地球正在变绿,分析发现是中国和印度的行动主导了地球变绿.尽管中国和印度的土地面积加起来只占全球的9%,但过去20年间地球三分之一的新增植被是两国贡献的,面积相当于一个亚马逊雨林.已知亚马逊雨林的面积为6 560 000km 2,则过去20年间地球新增植被的面积约为A .66.5610´km 2B .76.5610´km 2C .7210´km 2D .8210´km 26.如果210a ab --=,那么代数式222a b aba ab a 骣-琪?琪-桫的值是 A .1- B .1 C .3- D .37.下面的统计图反映了我国出租车(巡游出租车和网约出租车)客运量结构变化.abc(以上数据摘自《中国共享经济发展年度报告(2019)》) 根据统计图提供的信息,下列推断合理的是A .2018年与2017年相比,我国网约出租车客运量增加了20%以上B .2018年,我国巡游出租车客运量占出租车客运总量的比例不足60%C .2015年至2018年,我国出租车客运的总量一直未发生变化D .2015年至2018年,我国巡游出租车客运量占出租车客运总量的比例逐年增加8.如图1,一辆汽车从点M 处进入路况良好的立交桥,图2反映了它在进入桥区行驶过程中速度(千米/时)与行驶路程(米)之间的关系.根据图2,这辆车的行车路线最有可能是图1图2AB2015-2018年巡游出租车与网约出租车客运量统计图网约出租车客运量(亿人次)巡游出租车客运量(亿人次)路程(米)速度(千米/时)100200300400500600700800102030405060OC D二、填空题(本题共16分,每小题2分)9.右图为某几何体的展开图,该几何体的名称是 .10.下图是北京故宫博物院2018年国庆期间客流指数统计图(客流指数是指景区当日客流量与2018年10月1日客流量的比值).根据图中信息,不考虑其他因素,如果小宇想在今年国庆期间游客较少时参观故宫,最好选择10月 日参观.11.右图是玉渊潭公园部分景点的分布示意图,在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,当表示西桥的点的坐标为()61-,,表示中堤桥的点的坐标为()12,时,表示留春园的点的坐标为 .12.用一组a ,b 的值说明命题“若a b >,则22a b >”是错误的,这组值可以是a = ,b = .13.如图,AB 是⊙O 的直径,C ,D 为⊙O 上的点.若=20CAB а,则D Ð= °.(第13题图) (第14题图)14.如图,在矩形ABCD 中,E 是边CD 的延长线上一点,连接BE 交边AD 于点F .若AB =4,BC =6,DE =2,则AF 的长为 . 15.2019年2月,全球首个5G 火车站在上海虹桥火车站启动.虹桥火车站中5G 网络峰值速率为4G 网络峰值速率的10倍.在峰值速率下传输8千兆数据,5G 网络比4G 网络快720秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 千兆数据,依题意,可列方程为 .D16.小宇计划在某外卖网站点如下表所示的菜品.已知每份订单的配送费为3元,商家为了促销,对每份订单的总价(不含配送费)提供满减优惠:满30元减12元,满60元减30元,满100元减45元.如果小宇在购买下表中的所有菜品时,采取适当的下订单方式,那么他点餐的总费用最低可为元.水煮牛肉(小)醋(小)豉汁排骨(小)手撕包菜(小)米饭三、解答题(本题共68题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:04sin60(π1)1?--.18.解不等式组:512(1)324x xxx,.ì->+ïí+>ïî19.下面是小明设计的“过直线外一点作已知直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使PQ∥l.作法:如图,①在直线l上取一点O,以点O为圆心,OP长为半径画半圆,交直线l于A,B两点;②连接PA,以B为圆心,AP长为半径画弧,交半圆于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接PB,QB,lPl∵ PA =QB , ∴ »PA=_____, ∴ ∠PBA =∠QPB (____________________)(填推理的依据), ∴ PQ ∥l (____________________)(填推理的依据).20.关于x 的一元二次方程220ax ax c ++=.(1)若方程有两个相等的实数根,请比较a c ,的大小,并说明理由; (2)若方程有一个根是0,求此时方程的另一个根.21.如图,在四边形ABCD 中,AB ∥CD ,AB=BC=2CD ,E 为对角线AC 的中点,F 为边BC 的中点,连接DE ,EF . (1)求证:四边形CDEF 为菱形;(2)连接DF 交EC 于G ,若2DF =,53CD =,求AD 的长.22.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,在⊙O 的切线CM 上取一点P ,使得∠CPB =∠COA .(1)求证:PB 是⊙O 的切线; (2)若AB =CD =6,求PB 的长.23.在平面直角坐标系xOy 中,直线2y x b =+经过点A (1,m ),B (1-,1-).(1)求b 和m 的值;(2)将点B 向右平移到y 轴上,得到点C ,设点B 关于原点的对称点为D ,记线段BC 与AD 组成的图形为G .① 直接写出点C ,D 的坐标; ② 若双曲线ky x=与图形G 恰有一个公共点,结合函数图象,求k 的取值范围. 24.如图,线段AB 及一定点C ,P 是线段AB 上一动点,作直线CP ,过点A 作AQ CP ^于点Q .已知7AB =cm ,设A P ,两点间的距离为x cm ,A Q ,两点间的距离为1y cm ,P Q ,两点间的距离为2y cm .AM小明根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值:(212,并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题:当APQ △中有一个角为30°时,AP 的长度约为 cm .25.为迎接2022年冬奥会,鼓励更多的学生参与到志愿服务中来,甲、乙两所学校组织了志愿服务团队选拔活动.经过初选,两所学校各400名学生进入综合素质展示环节.为了了解两所学校学生的整体情况,从两校进入综合素质展示环节的学生中分别随机抽取了50名学生的综合素质展示成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a .甲学校学生成绩的频数分布直方图如下(数据分成6组:4050x ?,5060x ?,6070x ?,7080x ?,8090x ?,90100x #):b .甲学校学生成绩在8090x ?这一组的是:频数(学生人数)/分80 80 81 81.5 82 83 83 84 858686.5878888.58989c .乙学校学生成绩的平均数、中位数、众数、优秀率(85分及以上为优秀)如下:(1)甲学校学生A ,乙学校学生B 的综合素质展示成绩同为83分,这两人在本校学生中的综合素质展示排名更靠前的是______(填“A ”或“B ”); (2)根据上述信息,推断_____学校综合素质展示的水平更高,理由为_______________(至少从两个不同的角度说明推断的合理性); (3)若每所学校综合素质展示的前120名学生将被选入志愿服务团队,预估甲学校分数至少达到______分的学生才可以入选.26. 在平面直角坐标系x O y 中,抛物线2y ax bx c =++(0)a >经过点(03)A ,-和(30)B ,. (1)求c 的值及a b ,满足的关系式;(2)若抛物线在A ,B 两点间,从左到右上升,求a 的取值范围;(3)结合函数图象判断:抛物线能否同时经过点(1)(4)M m n N m n ,,,-+-?若能,写出一个符合要求的抛物线的表达式和n 的值;若不能,请说明理由.27.如图,在等腰直角△ABC 中,90ABC ?°,D 是线段AC 上一点(2CA CD > ),连接BD ,过点C 作BD 的垂线,交BD 的延长线于点E ,交BA 的延长线于点F . (1)依题意补全图形;(2)若ACE α?,求ABD Ð的大小(用含α的式子表示); (3)若点G 在线段CF 上,CG BD =,连接DG .①判断DG 与BC 的位置关系并证明; ②用等式表示DG ,CG ,AB 之间的数量关系为 .28.对于平面直角坐标系xOy 中的直线l 和图形M ,给出如下定义:12-1n n P P P P L ,,,,是图形M 上的(3)n n ³个不同的点,记这些点到直线l 的距离分别为12-1n n d d d d L ,,,,,若这n 个点满足12-1+++=n n d d d d L ,则称这n 个点为图形M 关于直线l的一个基准点列,其中n d 为该基准点列的基准距离.(1)当直线l 是x 轴,图形M 上有三点(11)A -,,(11)B ,-,(02)C ,时,判断A B C ,,是否为图形M 关于直线l 的一个基准点列?如果是,求出它的基准距离;如果不是,请说明理由;(2)已知直线l 是函数3y =+的图象,图形M 是圆心在y 轴上,半径为1的⊙T ,12-1n n P P P P L L ,,,,是⊙T 关于直线l 的一个基准点列.①若T 为原点,求该基准点列的基准距离n d 的最大值;②若n 的最大值等于6,直接写出圆心T 的纵坐标t 的取值范围.参考答案一、选择题(本题共16分,每小题2分)9.圆柱 10.7 11.(9,1-) 12.1-,2-(答案不唯一)13.11014.415.8872010x x-=16.54三、解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题6分;第27-28题,每小题7分) 17.(本小题满分5分)解:原式=411?-)18.(本小题满分5分)解:原不等式组为512(1)324x x x x ,.ì->+ïí+>ïî①②解不等式①,得1x >. 解不等式②,得2x <.∴原不等式组的解集为12x <<.19.(本小题满分5分)(1)补全的图形如图所示:(作弧交半圆于Q 点1分,直线PQ 1分)(2)»QB, 等弧所对的圆周角相等, 内错角相等,两直线平行. 20.(本小题满分5分)l解:(1)依题意可知,00a≠∆=,.∴4()0a a c-=.∴a c=.(2)∵方程有一个根是0,∴0c=.∴220ax ax+=,即(2)0ax x+=.∴方程的一个根为2x=-.21.(本小题满分5分)(1)证明:∵E,F分别为AC,BC的中点,∴EF∥AB,12EF AB=,12CF BC=.∵AB∥CD,∴EF∥CD.∵AB=2CD,∴EF=CD.∴四边形CDEF是平行四边形.∵AB=BC,∴CF=EF.∴四边形CDEF是菱形.(2)解:∵四边形CDEF是菱形,2DF=,∴DF⊥AC,112DG DF==.在Rt△DGC中,53CD=,可得43CG=.∴43EG CG==,823CE CG==.∵E为AC中点,∴83 AE CE==.∴4AG AE EG=+=.A在Rt△DGA中,AD==22.(本小题满分5分)(1)证明:∵PC与⊙O相切于点C,∴OC⊥PC.∴∠OCP=90°.∵∠AOC=∠CPB,∠AOC+∠BOC=180°,∴∠BOC+∠CPB=180°.在四边形PBOC中,∠PBO=360°-∠CPB-∠BOC-∠PCO=90°.∴半径OB⊥PB.∴PB是⊙O的切线.(2)解法1:连接OP,如图.∵AB是⊙O的直径,AB=∴12OC OB AB===∵弦CD⊥AB于点E,CD=6,∴132CE CD==.在Rt△CEO中,sinCECOECO∠==.∴∠COE=60°.∵PB,PC都是⊙O的切线,∴∠CPO=∠BPO,∠OCP=∠OBP.∴∠COP=∠BOP=60°.∴PB= OB· tan60°= 6.解法2:连接BC,如图.∵AB是⊙O的直径,AB=∴12OC AB==.∵弦CD⊥AB于点E,CD=6,∴132CE CD==.在Rt△CEO中,sinCECOECO∠==.∴∠COE=60°.∴∠CPB=∠COE =60°,1302ABC COE∠=∠=︒.∴BC=2CE= 6.∵PB,PC都是⊙O的切线,∴PB=PC.∴△PBC为等边三角形.∴PB=BC= 6.23.(本小题满分6分)(1)∵直线2y x b=+经过点A(1,m),B(1-,1-),∴1b=.又∵直线2y x b=+经过点A(1,m),∴3m=.(2)①C(0,1-),D(1,1).②函数kyx=的图象经过点A时,3k=.函数ky x=的图象经过点D 时,1k =,此时双曲线也经过点B , 结合图象可得k 值得范围是0113k k <<<≤或.24.(本小题满分6分) 解:本题答案不唯一,如: (1)(2)(3)5.49或2.50. 25.(本小题满分6分)解:(1)A . (2)乙.理由:甲校优秀率40%,低于乙校,说明乙校综合展示水平优秀人数更多;通过图表,估计甲校平均数为79,低于乙校,说明乙校整体水平高于甲校;甲校中位数为81.25,乙校为84,说明乙校综合展示水平一半的同学高于84分,而甲校一半同学的综合展示水平仅高于81.25.综合以上三个(两个)理由,说明乙校的综合素质展示水平更高.(3)88.5.26.(本小题满分6分)解:(1)由题意可得3093c a b c -=⎧⎨=++⎩,.∴3c =-,310a b +-=.(2)由(1)可得2(13)3y ax a x =+-- (0)a >.∵抛物线在A B ,两点间,从左到右上升, ∴3102a a-≤. ∵0a >,∴310a -≤,即103a <≤. (3)抛物线不能经过点(1)(4)M m n N m n -+-,,,.理由如下:若抛物线经过(1)(4)M m n N m n -+-,,,,则抛物线的对称轴为32x =. 由抛物线经过点A ,可知抛物线经过点(3,3-),与抛物线经过点B (3,0)矛盾. 所以抛物线不能经过点(1)(4)M m n N m n -+-,,,.27.(本小题满分7分)(1)补全图形,如图.(2) 解:∵ AB =BC ,∠ABC =90°,∴ ∠BAC =∠BCA =45°. ∵ ∠ACE =α, ∴ 45ECB α??.∵ CF ⊥BD 交BD 的延长线于点E , ∴ ∠BEF =90°.∴ ∠F +∠ABD =90°. ∵ ∠F +∠ECB =90°, ∴45ABD ECB α???.(3)① DG 与BC 的位置关系:DG ⊥BC .证明:连接BG 交AC 于点M ,延长GD 交BC 于点H ,如图.∵ AB =BC ,∠ABD =∠ECB ,BD =CG , ∴ △ABD ≌△BCG . ∴ ∠CBG =∠BAD =45°. ∴ ∠ABG =∠CBG =∠BAC =45°. ∴ AM =BM ,∠AMB =90°. ∵ AD =BG , ∴ DM =GM .∴ ∠MGD =∠GDM =45°. ∴ ∠BHG =90° ∴ DG ⊥BC .②2222CG DG AB =+.28.(本小题满分7分)解:(1)是.∵(11)A -,,(02)B ,,(11)C ,-到x 轴的距离分别是1,1,2,且1+1=2, ∴这三点为图形M 关于直线l 的一个基准点列,它的基准距离为2. (2)① ∵12-1n n P P P P ,,,,L L 是⊙T 关于直线l 的一个基准点列, ∴12-1+++=n n d d d d L L .∴n d 的最大值为⊙T 上的点到直线l 的最大距离.当T 为原点时,过O 作OH ⊥l 与点H ,延长HO 交⊙O 于点F ,则FH 的长度为n d 的最大值.设函数3y =-+的图象与x 轴,y 轴分别交于点D ,E ,则0)D ,(03)E ,.∴OD ,3OE =,∠DOE =90°. ∴∠OED =30°. 又∵∠OHE =90°, ∴1322OH OE ==.∴52FH =. 例如,⊙O 上存在点1234P P P P ,,,满足123413552442d d d d ====,,,.∴n d 的最大值为52. ②圆心T 的纵坐标t 的取值范围为105t <?或2965t ?.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学精品复习资料2019.5海淀区高三年级第二学期期中练习数 学 (理科) 20xx.4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}211,2,,,,2A B y y x x A AB ⎧⎫===∈=⎨⎬⎩⎭集合则A.⎭⎬⎫⎩⎨⎧21 B.{}2 C.{}1 D.φ 2.复数()()1i 1i z =+-在复平面内对应的点的坐标为A. (1,0)B. (0,2)C.()1,0D. (2,0) 3.下列函数()f x 图象中,满足1()(3)(2)4f f f >>的只可能是A B C D4.已知直线l 的参数方程为1,1x t y t=+⎧⎨=-+⎩(t 为参数),则直线l 的普通方程为A.02=--y xB.02=+-y xC.0x y +=D.02=-+y x 5.在数列{}n a 中,“12,2,3,4,n n a a n -==”是“{}n a 是公比为2的等比数列”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6. 小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有A. 4种B.5种C.6种D.9种7.某购物网站在11月开展“全场6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为 A.1 B.2 C.3 D.4 8. 已知(1,0)A ,点B 在曲线:G ln(1)y x =+上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.记曲线G 关于曲线M 的关联点的个数为a ,则A .0a =B .1a =C .2a =D .2a >二、填空题:本大题共6小题,每小题5分,共30分.9.一个空间几何体的三视图如图所示,该几何体的体积为______.10. 函数2y x x =-的图象与x 轴所围成的封闭图形的面积等于_______.11.如图,AB 切圆O 于B,AB =1AC =,则AO 的长为_______.12. 已知圆04122=-++mx y x 与抛物线24y x =的准线相切,则=m _______.13.如图,已知ABC ∆中,30BAD ∠=,45CAD ∠=,3,2AB AC ==,则BDDC=_____________.14.已知向量序列:123,,,,,n a a a a 满足如下条件:ABC俯视图主视图侧视图1||4||2==a d ,121⋅=-a d 且1n n --=a a d (2,3,4,n =).若10k ⋅=a a ,则k =________;123||,||,||,,||,n a a a a 中第_____项最小.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数ππ()2sin cos 66f x x x =,过两点(,()),(1,(1))A t f t B t f t ++的直线的斜率记为()g t . (Ⅰ)求(0)g 的值;(II )写出函数()g t 的解析式,求()g t 在33[,]22-上的取值范围.16. (本小题满分13分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如下:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(Ⅰ)根据表中数据写出甲公司员工A 在这10天投递的快递件数的平均数和众数;(Ⅱ)为了解乙公司员工B 的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X (单位:元),求X 的分布列和数学期望;(Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费.17. (本小题满分14分)如图1,在Rt △ABC 中,∠ACB =30°,∠ABC =90°,D 为AC 中点,AE BD ⊥于E ,延长AE 交BC 于F ,将∆ABD 沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示. (Ⅰ)求证:AE ⊥平面BCD ;(Ⅱ)求二面角A –DC –B 的余弦值.(Ⅲ)在线段AF 上是否存在点M 使得//EM 平面ADC ?若存在,请指明点M 的位置;若不存在,请说明理由.BF18. (本小题满分13分)已知曲线:e ax C y =.(Ⅰ)若曲线C 在点(0,1)处的切线为2y x m =+,求实数a 和m 的值; (Ⅱ)对任意实数a ,曲线C 总在直线l :y ax b =+的上方,求实数b 的取值范围.19. (本小题满分14分)已知,A B 是椭圆22:239C x y +=上两点,点M 的坐标为(1,0).(Ⅰ)当,A B 两点关于x 轴对称,且MAB ∆为等边三角形时,求AB 的长; (Ⅱ)当,A B 两点不关于x 轴对称时,证明:MAB ∆不可能为等边三角形.20. (本小题满分13分)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)()A n :123,,,,n A A A A 与()B n :123,,,,n B B B B ,其中3n ≥,若同时满足:①两点列的起点和终点分别相同;②线段11i i i i A A B B ++⊥,其中1,2,3,,1i n =-,则称()A n 与()B n 互为正交点列.(Ⅰ)求(3)A :123(0,2),(3,0),(5,2)A A A 的正交点列(3)B ;(Ⅱ)判断(4)A :12340,0),3,1),6,0)(((,9,1)(A A A A 是否存在正交点列(4)B ?并说明理由; (Ⅲ)5n n ∀≥∈,N ,是否都存在无正交点列的有序整点列()A n ?并证明你的结论.1图 图 2海淀区高三年级第二学期期中练习参考答案数 学 (理科) 20xx.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2.其它正确解法可以参照评分标准按相应步骤给分。
一、选择题:本大题共8小题,每小题5分,共40分.1. C2. D3. D4. A5. B6. B7. C8. B二、填空题:本大题共6小题,每小题5分,共30分.9. 96 10.16 11. 2 12. 34 13. 14. 9;3 (本题第一空3分,第二空2分)三、解答题: 本大题共6小题,共80分.15.解: (Ⅰ)π()sin3f x x = ---------------------------2分 (1)(0)(0)1f fg -=------------------------------3分πsinsin 03=-=. -------------------------------5分 (Ⅱ)(1)()π()sin()sin 1333f t f tg t t t t t ππ+-==+-+- ------------------------------6分πππsincos cos sin sin 33333t t t ππ=+- ------------------------------7分1ππsin cos 2323t t =-+ ------------------------------8分 ππsin()33t =-- ------------------------------10分因为33[,]22t ∈-,所以ππ5ππ[,]3366t -∈-, ------------------------------11分 所以 π1sin()[1,]332t π-∈-, -----------------------------12分所以()g t 在33[,]22-上的取值范围是1[,1]2- -----------------------------13分16.解:(Ⅰ)甲公司员工A 投递快递件数的平均数为36,众数为33. --------------------------------2分(Ⅱ)设a 为乙公司员工B 投递件数,则当a =34时,X =136元,当a >35时,354(35)7X a =⨯+-⨯元,X 的可能取值为136,147,154,189,203 -------------------------------4分{说明:X 取值都对给4分,若计算有错,在4分基础上错1个扣1分,4分扣完为止} X分{说明:每个概率值给1分,不化简不扣分,随机变量值计算错误的此处不再重复扣分}13231()1361471541892031010101010E X =⨯+⨯+⨯+⨯+⨯ 1655==165.5()10元 --------------------------------------11分 (Ⅲ)根据图中数据,可估算甲公司被抽取员工该月收入4860元,乙公司被抽取员工该月收入4965元. ------------------------------------13分 17.(Ⅰ)因为平面ABD ⊥平面BCD ,交线为BD ,又在ABD ∆中,AE BD ⊥于E ,AE ⊂平面ABD所以AE ⊥平面BCD . --------------------------------------3分 (Ⅱ)由(Ⅰ)结论AE ⊥平面BCD 可得AE EF ⊥.由题意可知EF BD ⊥,又AE ⊥BD .如图,以E 为坐标原点,分别以,,EF ED EA 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系E xyz---------------------------4分不妨设2AB BD DC AD ====,则1BE ED ==. 由图1条件计算得,AE =BC =BF =则(0,0,0),(0,1,0),(0,1,0),2,0)ED B A F C --------5分 (3,1,0),(0,1,DC AD ==.由AE ⊥平面BCD 可知平面DCB 的法向量为EA . -----------------------------------6分 设平面ADC 的法向量为(,,)x y z =n ,则0,0.DC AD ⎧⋅=⎪⎨⋅=⎪⎩n n即0,0.y y +==⎪⎩令1z =,则1y x ==,所以1)=-n .------------------------------------8分平面DCB 的法向量为EA所以cos ,||||EA EA EA ⋅<>==⋅n n n ,所以二面角A DC B -- ------------------------------9分 (Ⅲ)设AM AFλ=,其中[0,1]λ∈.由于3(3AF =, 所以(3AM AF λλ==,其中[0,1]λ∈ --------------------------10分 所以3,0,(13EM EA AM λλ⎛=+=- ⎝--------------------------11分由0EM ⋅=n ,即03λ=-(1- ---------------------------12分 解得3=(0,1)4λ∈.-----------------------------13分 所以在线段AF 上存在点M 使EM ADC ∥平面,且34AM AF =.-------------14分 18.解(Ⅰ)e axy a '=, -----------------------------------2分因为曲线C 在点(0,1)处的切线为L :2y x m =+,所以120m =⨯+且0|2x y ='=. ----------------------------------4分解得1m =,2a = -----------------------------------5分 (Ⅱ)法1:对于任意实数a ,曲线C 总在直线的y ax b =+的上方,等价于 ∀x ,a R ∈,都有e ax ax b >+,即∀x ,a ∈R ,e 0ax ax b -->恒成立, --------------------------------------6分 令()e axg x ax b =--, ----------------------------------------7分 ①若a=0,则()1g x b =-,所以实数b 的取值范围是1b <; ----------------------------------------8分 ②若0a ≠,()(e 1)axg x a '=-,由'()0g x =得0x =, ----------------------------------------9分 '(),g x 的情况如下:-----------------------------------------11分 所以()g x 的最小值为(0)1g b =-, -------------------------------------------12分 所以实数b 的取值范围是1b <;综上,实数b 的取值范围是1b <. --------------------------------------13分 法2:对于任意实数a ,曲线C 总在直线的y ax b =+的上方,等价于∀x ,a R ∈,都有e ax ax b >+,即∀x ,a ∈R ,e ax b ax <-恒成立, -------------------------------------------6分 令t ax =,则等价于∀t ∈R ,e t b t <-恒成立,令()e tg t t =-,则 ()e 1tg t '=-, -----------------------------------------7分 由'()0g t =得0t =, ----------------------------------------9分 '(),()g t g t 的情况如下:分所以 ()e tg t t =-的最小值为(0)1g =, ------------------------------------------12分 实数b 的取值范围是1b <. --------------------------------------------13分 19.解:(Ⅰ) 设00(,)A x y ,00(,)-B x y , ---------------------------------------1分因为∆ABM为等边三角形,所以00|||1|3=-y x . ---------------------------------2分 又点00(,)A x y 在椭圆上,所以002200|||1|,239,y x x y ⎧=-⎪⎨⎪+=⎩消去0y , -----------------------------------------3分 得到 2003280--=x x ,解得02=x 或043=-x ,----------------------------------4分 当02=x时,||=AB 当043=-x时,||9=AB . -----------------------------------------5分{说明:若少一种情况扣2分}(Ⅱ)法1:根据题意可知,直线AB 斜率存在.设直线AB :=+y kx m ,11(,)A x y ,22(,)B x y ,AB 中点为00(,)N x y ,联立22239,⎧+=⎨=+⎩x y y kx m消去y 得222(23)6390+++-=k x kmx m , ------------------6分由0∆>得到 222960--<m k ① ----------------------------7分 所以122623+=-+kmx x k ,121224()223+=++=+my y k x x m k, ----------------------------8分 所以2232(,)2323-++km mN k k ,又(1,0)M如果∆ABM 为等边三角形,则有⊥MN AB , --------------------------9分所以1MN k k ⨯=-, 即2222313123mk k km k+⨯=---+, ------------------------------10分化简2320k km ++=,② ------------------------------11分由②得232k m k+=-,代入① 得2222(32)23(32)0k k k +-+<, 化简得 2340+<k ,不成立, -------------------------------------13分{此步化简成42291880k k k ++<或4291880k k ++<或22(32)(34)0k k ++<都给分} 故∆ABM 不能为等边三角形.-------------------------------------14分法2:设11(,)A x y ,则2211239x y +=,且1[3,3]x ∈-,所以||MA ===----------------8分 设22(,)B x y,同理可得||MB =2[3,3]x ∈- -----------------9分 因为21(3)13y x =-+在[3,3]-上单调 所以,有12x x =⇔||||MA MB =, ---------------------------------11分 因为,A B 不关于x 轴对称,所以12x x ≠.所以||||MA MB ≠, ---------------------------------13分 所以∆ABM 不可能为等边三角形. ---------------------------------14分20.解:(Ⅰ)设点列123(0,2),(3,0),(5,2)A A A 的正交点列是123,,B B B ,由正交点列的定义可知13(0,2),(5,2)B B ,设2(,)B x y ,1223(3,2),(2,2)=-=A A A A ,1223(,2)(5,2)=-=--B B x y B B x y ,,由正交点列的定义可知 12120A A B B ⋅=,23230A A B B ⋅=,即32(2)0,,2(5)2(2)0x y x y --=⎧⎨-+-=⎩ 解得25=⎧⎨=⎩x y所以点列123(0,2),(3,0),(5,2)A A A 的正交点列是123(0,2),(2,5),(5,2)B B B .------3分 (Ⅱ)由题可得 122334(3,1),(3,1)(3,1)A A A A A A ==-=,, 设点列1234,,,B B B B 是点列1234,,,A A A A 的正交点列,则可设121232343(1,3),(1,3)(1,3)λλλ=-==-B B B B B B ,,λλλ∈123,,Z因为1144,A B A B 与与相同,所以有λλλλλλ⎧⎪⎨⎪⎩123123-+-=9,(1)3+3+3=1.(2)因为λλλ∈123,,Z ,方程(2)显然不成立,所以有序整点列12340,0),3,1),6,0)(((,9,1)(A A A A 不存在正交点列;---------------8分 (Ⅲ)5n n ∀≥∈,N ,都存在整点列()A n 无正交点列. -------------------------9分5n n ∀≥∈,N ,设1(,),i i i i A A a b +=其中,i i a b 是一对互质整数,1,2,3,1i n =- 若有序整点列123,,,n B B B B 是点列123,,,n A A A A 正交点列,则1(,),1,2,3,,1λ+=-=-i i i i i B B b a i n ,则有 11=1111=11,(1).(2)n n i i i i i n n i i i i i b a a b λλ--=--=⎧-=⎪⎪⎨⎪=⎪⎩∑∑∑∑ ①当n 为偶数时,取1,(0,0)A 1,=3=,1,2,3,,1-1⎧=-⎨⎩i i i a b i n i 为奇数,,为偶数. 由于123,,,n B B B B 是整点列,所以有i λ∈Z ,1,2,3,,1i n =-.等式(2)中左边是3的倍数,右边等于1,等式不成立,所以该点列123,,,n A A A A 无正交点列;②当n 为奇数时, 取1,(0,0)A 11=3,2=a b ,1,=3=,2,3,,1-1⎧=-⎨⎩i i i a b i n i 为奇数,,为偶数, 由于123,,,n B B B B 是整点列,所以有i λ∈Z ,1,2,3,,1i n =-.等式(2)中左边是3的倍数,右边等于1,等式不成立,所以该点列123,,,n A A A A 无正交点列.综上所述,5n n ∀≥∈,N ,都不存在无正交点列的有序整数点列()A n ----------13分。