等差等比数列基本量刘秋杏含详解
高考数学专题讲座第4讲等差数列与等比数列

高考数学专题讲座 第4讲 等差数列与等比数列一、考纲要求1.理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能够应用这些知识解决一些问题.2.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能够运用这些知识解决一些问题.二、基础过关1.在首项为81,公差为-7的等差数列{}n a 中,最接近零的是第( ).A . 11项B .12项C .13项D .14项2.已知等差数列{}n a 中,0≠n a ,若1>m ,且0211=-++-m m m a a a ,3812=-m S ,则m 等于( ) .A .38B .20C .10D .93.数列{}n a 中,11=a ,对所有*N n ∈都有221n a a a n = ,则=+53a a ( ).A .1661 B .925 C .1625 D .15314.(03年全国)设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na n 2+a n +1a n =0(n=1,2,3,…),它的通项公式是__ _.5.如果一个数列{}n a 满足h a a n n =+-1,其中h 为常数,2,*≥∈n N n ,则称数列{}n a 为等和数列,h 为公和,n S 是其前n 项和.已知等和数列{}n a 中311-==h a ,,则=2004a ,=2005S .6.设数列{}n a ,{}n b 分别为正项等比数列,n n R T ,分别为数列{}n a lg 与{}n b lg 的前n 项和,且12+=n nR T n n ,则55log a b 的数值为_________. 三、典型例题例1 已知数列{}n a 中,b na a a a n n +=-=+11,40,其中a ,b 为常数,且∈n N *,∈a N *,b 为负整数.(1)用a ,b 表示n a ;(2)若0,087<>a a ,求通项公式.例2 (04年湖南)已知数列{}n a 是首项为a 且公比不等于1的等比数列,S n 是其前n 项和,a 1,2a 7,3a 4成等差数列.(1)证明12S 3, S 6, S 12-S 6成等比数列;(2)求和 T n =a 1+2a 4+3a 7+---+na 3n -2 .例3 数列{}n a 中,2,841==a a 且满足)(212N n a a a n n n ∈-=++.(1)求数列{}n a 的通项公式;(2)设n n a a a S +++= 21,求n S ; (3)设)12(1n n a n b -=,)(21N n b b b T n n ∈+++= ,是否存在最大的整数m ,使得对任意n ∈N ,均有32mT n >成立?若存在,求出m 的值;若不存在,请说明理由. 例 4 在直角坐标平面上有一点列 ),(,),(),,(222111n n n y x P y x P y x P ,对一切正整数n ,点n P 位于函数4133+=x y 的图象上,且n P 的横坐标构成以25-为首项,1-为公差的等差数列{}n x . (1)求点n P 的坐标;(2)设抛物线列 ,,,,,321n c c c c 中的每一条的对称轴都垂直于x 轴,第n 条抛物线n c 的顶点为n P ,且过点)1,0(2+n D n ,记与抛物线n c 相切于n D 的直线的斜率为n k ,求:nn k k k k k k 13221111-+++ . (3)设{}1,,2|≥∈==n N n x x x S n ,{}1,4|≥==n y y y T n ,等差数列{}n a 的任一项T S a n ∈,其中1a 是T S 中的最大数,12526510-<<-a ,求{}n a 的通项公式.四、热身演练1.(20XX 年天津文)等差数列}{n a 中,已知311=a ,452=+a a ,33=n a ,则n 为( ). A .48B .49C .50D .512.(20XX 年天津)若S n 是数列{}n a 的前n 项和,且,2n S n =则}{n a 是( ).A .等比数列,但不是等差数列B .等差数列,但不是等比数列C .等差数列,而且也是等比数列D .既非等比数列又非等差数列3.(20XX 年福建)设n S 是等差数列{}n a 的前n 项和,若9535=a a ,则=59S S( ). A .1 B .1- C .2 D .214.(20XX 年上海)若数列{}n a 前8项的值各异,且n n a a =+8,对任意的*N n ∈都成立,则下列数列中可取遍{}n a 前8项值的数列为( ).A .{}12+k aB .{}13+k aC .{}14+k aD .{}16+k a5.等差数列{}n a 共有2n 项,其中奇数项的和为90,偶数项的和为72,且3312-=-a a n ,则该数列的公差为( ).A .3B .3-C .2-D .1-6.等差数列{}n a 中,104,36139-=-=S S ,已知等比数列{}n b 的7755,a b a b ==,则=6b .7.(04年北京)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和. 5,______________,这个数列的前n ________________.8.(99年全国)在等差数列{}n a 中,满足7473a a =,且01>a ,n S 是数列{}n a 前n 项的和,若n S 取得最大值,则n = .9.(20XX 年浙江)已知数列{}n a 的前n 项和为n S ,))(1(31*N n a S n n ∈-=. (1)求21,a a ;(2)求证:数列{}n a 是等比数列.10.设n S 是等差数列{}n a 的前n 项和,已知434131S S 与的等比中项为551S ,434131S S 与的等差中项为1,求等差数列{}n a 的通项. 11.(04年重庆)设a 1=1,a 2=35,a n +2=35a n +1-32a n (n =1,2,---),令b n =a n +1-a n (n =1,2---). (1)求数列{b n }的通项公式; (2)求数列{na n }的前n 项的和S n .12.已知数列{}n a 是公差0≠d 的等差数列,其前n 项和为n S .(1)求证:点),(,),2,2(),1,1(2211nS n P SP S P n n 在同一条直线1l 上; (2)过点),2(),,1(2211a Q a Q 作直线2l ,设θ的夹角为与21l l ,求证:42tan ≤θ.答案 二、基础过关 1、C 2、C 3、A 4、n 1 5、-4,-3005 6、199三、案例探究1、 解:(1) b na a a n n +=-+1 ,()()()()()()b a b a na b a na a a a a a a n n n n ++++-++-=-++-+-∴--- 212211 又40)1(2)1(,401+-+-=∴=b n a n n a a n .(2)为负整数,且,b N a b a a b a a ,,040728040621*87∈<++=>++= ∴由线性规划知识知:,10,1-==b a5022122+-=∴n n a n 2、 (Ⅰ)证明 由4713,2,a a a 成等差数列, 得41734a a a +=,即 .3436aq a aq += 变形得 ,0)1)(14(33=-+q q 所以14133=-=q q 或(舍去).由 .1611211)1(121)1(123316136=+=----=q qq a q q a S S .1611111)1(1)1(166611216126612==-+=-----=-=-q q q q a q q a S S S S S 得.12661236S S S S S -= 所以12S 3,S 6,S 12-S 6成等比数列. (Ⅱ)解:.3232)1(36323741--++++=++++=n n n naqaq aq a na a a a T 即 .)41()41(3)41(212a n a a a T n n --⋅++-⋅+-⋅+= ①①×)41(-得: a n a n a a a T n n n )41()41()41(3)41(24141132---⋅++-⋅+-⋅+=--.)41()54(54)41()41(1])41(1[a n a a n a n n n -⋅+-=-⋅-----=所以 .)41()542516(2516a n a T n n -⋅+-=3、解 (1)由a n+2=2a n+1-a n ⇒a n+2-a n+1=a n+1-a n ,可知{a n }成等差数列,d=1414--a a =-2 ∴a n =10-2n(2)由a n =10-2n ≥0得n ≤5,∴当n ≤5时,S n =-n 2+9n ;当n>5时,S n =n 2-9n+40故S n =⎪⎩⎪⎨⎧+-+-409922n n n n 551>≤≤n n (n ∈N )(3)b n =)12(1n a n -=)22(·1+n n =21(n 1-11+n )∴T n = b 1+b 2+…+b n=21[(1-21)+(21-31)+…+(n 1-11+n )] =12121)1(2T T T nn n n n n >>>=->+--∴要使T n >32m 总成立,需32m <T 1=41恒成立,即m<8,(m ∈Z ).故适合条件的m 的最大值为7.4、解:(1)23)1()1(25--=-⨯-+-=n n x n 1353533,(,3)4424n n n y x n P n n ∴=⋅+=--∴----(2)n c 的对称轴垂直于x 轴,且顶点为n P .∴设n c 的方程为:,4512)232(2+-++=n n x a y 把)1,0(2+n D n 代入上式,得1=a ,n c ∴的方程为:1)32(22++++=n x n x y .32|0'+===n y k x n ,)321121(21)32)(12(111+-+=++=∴-n n n n k k n nn n k k k k k k 13221111-+++∴ )]321121()9171()7151[(21+-+++-+-=n n =641101)32151(21+-=+-n n (3)}1,),32(|{≥∈+-==n N n n x x S ,}1,),512(|{≥∈+-==n N n n y y T }1,,3)16(2|{≥∈-+-==n N n n y y ,S T T ∴=T 中最大数171-=a .设}{n a 公差为d ,则)125,265(91710--∈+-=d a ,由此得 ).(247,24),(12,129248**N n n a d N m m d T a d n n ∈-=∴-=∴∈-=∴∈-<<- 又 四、热身演练1、C2、B3、A4、B5、B6、24±7、3 当n当n8、99、解 (1)由)1(3111-=a S 得)1(3111-=a a ,211-=∴a ,又)1(3122-=a S ,即)1(31221-=+a a a ,得412=a . (2)当2≥n 时,1113131)1(31)1(31----=---=-=n n n n n n n a a a a S S a ,得211-=-n n a a ,所以{}n a 是首项为21-,公比为21-的等比数列.10、解法一:设等差数列{a n }的首项a 1=a ,公差为d ,则其通项为根据等比数列的定义知S 5≠0,由此可得解法二:依题意,得11、解:(I )因121+++-=n n n a a b n n n n n n b a a a a a 32)(323235111=-=--=+++故{b n }是公比为32的等比数列,且故,32121=-=a a b ),2,1()32(==n b n n (II )由得nn n n a a b )32(1=-=+)()()(121111a a a a a a a a n n n n n -++-+-=--++])32(1[232)32()32()32(21n n n -=++++=-注意到,11=a 可得),2,1(3231 =-=-n a n n n . 记数列}32{11--n n n 的前n 项和为T n ,则n n n n n T n T )32()32(23232,)32(322121⋅++⋅+=⋅++⋅+=- 两式相减得,)32(])32(1[3)32()32()32(3213112n n n n n n n T --=-++++=-1832)3()1(232)21(32,32)3(9)32(3])32(1[911211-+++=-+++=+++=+-=--=-+-n n nn n n nn n n n n n T n na a a S n n T 从而故12、证明:(1)因为等差数列{a n }的公差d ≠0,所以Kp 1p k 是常数(k=2,3,…,n).(2)直线l 2的方程为y-a 1=d(x-1),直线l 2的斜率为d .。
等差,等比数列的性质及应用

a1 + a2 + ⋯ + a6 = 36 ① 解:由题意知, an + an −1 + ⋯ + an − 5 = 180 ②
6( ∴①+②得: a1 + a n ) = 216, ∴ a1 + a n = 36
又 sn = 324
∴
n ( a1 + a n ) 2
= 324
即
n × 36 2
, 往往求解复杂,故常转换思路利用 整体代换和化归思想方法来解决。
练习: 练习
s 在等差数列{ 在等差数列{an}中, 2
则
= 7, s6 = 90,
s4
37 =______.
二.典型例题 典型例题 例4: 在等比数列{an}中,an>0(n∈N*),
公比 q∈(0,1),且a1a5+2a3a5+a2a8=25, 又a3与a5的等比中项为2. (1)求数列{an}的通项公式; (2)设bn=log2an ,数列{bn}的前n项和
S1 S 2 Sn + +⋯ + 最大时,求n的值. 1 2 n
解:由(1)知:
bn = log2 an = log2 2 =5−n
5−n
∵ bn +1 − bn = [5 − (n + 1) ] − ( 5 − n ) = −1
∴ {bn } 是以4为首项,-1为公差的等差数列
∴ Sn =
9 n − n2 2
2.等比数列 {a n } 中, a15 = 10, a 45 = 90 等比数列
则 a 60 =
±270
四.总结:
1.应用等差、等比数列的性质解题时,
等差等比 数列求和 刘秋杏(解析版)

练习题1.(2017·桂林调研)等差数列{a n }中,a 4+a 8=10,a 10=6,则公差d =( ) A .14 B .12 C .2D .-12解析:选A 由a 4+a 8=2a 6=10,得a 6=5,所以4d =a 10-a 6=1,解得d =14,故选A .2.等差数列{a n }的前n 项之和为S n ,若a 5=6,则S 9为( ) A .45 B .54 C .63D .27解析:选B 法一:∵S 9=a 1+a 92=9a 5=9×6=54.故选B .法二:由a 5=6,得a 1+4d =6,∴S 9=9a 1+9×82d =9(a 1+4d )=9×6=54,故选B .3.(2017·陕西质量监测)已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( )A .21B .22C .23D .24解析:选C 3a n +1=3a n -2⇒a n +1=a n -23⇒{a n }是等差数列,则a n =473-23n .∵a k +1·a k <0,∴⎝ ⎛⎭⎪⎫473-23k ⎝ ⎛⎭⎪⎫453-23k <0,∴452<k <472,又∵k ∈N *,∴k =23.4.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________. 解析:∵⎩⎨⎧a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎨⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 5求sn 最大项最小项5.(2017·合肥质检)已知等差数列{a n }的前n 项和为S n ,a 8=1,S 16=0,当S n 取最大值时n 的值为( )A .7B .8C .9D .10解析:选B法一:由⎩⎨⎧a 8=a 1+7d =1,S 16=16a 1+16×152d =0,解得⎩⎨⎧a 1=15,d =-2,则S n =-n 2+16n=-(n -8)2+64,则当n =8时,S n 取得最大值.法二:因为{a n }是等差数列,所以S 16=8(a 1+a 16)=8(a 8+a 9)=0,则a 9=-a 8=-1,即数列{a n }的前8项是正数,从第9项开始是负数,所以(S n )max =S 8,选项B 正确.性质1. 【2010全国1,文4】已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6等于( )A ..7 C .6 D . 【答案】:A【解析】数列{a n }为等比数列,由a 1a 2a 3=5得32a =5,由a 7a 8a 9=10得38a =10,所以32a 38a =50,即(a 2a 8)3=50,即65a =50,所以35a = (a n >0).所以a 4a 5a 6=35a =.2.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解:由题意知a 1+a 2+…+a 6=36,①a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36, 又S n =n a 1+a n2=324,∴18n =324,∴n =18.答案:183. 【2009全国卷Ⅰ,文14】设等差数列{a n }的前n 项和为S n .若S 9=72,则a 2+a 4+a 9=__________. 【答案】:24 【解析】:∵2)(972919a a S +==,∴a 1+a 9=16. ∵a 1+a 9=2a 5,∴a 5=8.∴a 2+a 4+a 9=a 1+a 5+a 9=3a 5=24.4.设S n 是等差数列{a n }的前n 项和,若a 6a 5=911,则S 11S 9=( ) A .1 B .-1 C .2D .12解析:选A S 11S 9=a 1+a 112a 1+a 92=11a 69a 5=119×911=1. 5.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________.解析:依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.答案:200求和性质 s 奇偶(选做)6.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意正整数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________.解析:因为{a n },{b n }为等差数列, 所以a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. 因为S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, 所以a 6b 6=1941.答案:1941数列求和一般数列求和的方法:①分组转化法,一般适用于等差数列+等比数列的形式; ②裂项相消法求和,一般适用于,等的形式;③错位相减法求和,一般适用于等差数列⨯等比数列的形式;④倒序相加法求和,一般适用于首末两项的和是一个常数,这样可以正着写和与倒着写和,两式相加除以2即可得到数列求和.基本量 、分组求和1.[2016·北京卷] 已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.15.解:(1)等比数列{b n }的公比q =b 3b 2=93=3,1+=n n n a a cc nn c c n ++=1所以b 1=b 2q=1,b 4=b 3q =27.设等差数列{a n }的公差为d . 因为a 1=b 1=1,a 14=b 4=27, 所以1+13d =27,即d =2,所以a n =2n -1(n =1,2,3,…). (2)由(1)知,a n =2n -1,b n =3n -1, 因此c n =a n +b n =2n -1+3n -1, 从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1 =n (1+2n -1)2+1-3n1-3=n 2+3n -12.裂项求和2.【2017年高考全国III 卷文数】设数列{}n a 满足123(21)2n a a n a n +++-=.(1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.【答案】(1)122-=n a n ;(2)122+n n.【解析】(1)因为 +3 +…+(2n −1) =2n , 故当n ≥2时, +3 +…+( −3) =2(n −1). 两式相减得(2n −1) =2, 所以 =(n ≥2). 又由题设可得 =2,从而{ }的通项公式为 =.(2)记{}的前n 项和为 ,由(1)知 = = −.则 = − + − +…+ − =.【思路点拨】(1)先由题意得2≥n 时,)1(2)32(3121-=-+++-n a n a a n ,再作差得122-=n a n ,验证1=n 时也满足; (2)由于121121)12)(12(212+--=+-=+n n n n n a n ,所以利用裂项相消法求和. 【名师点睛】裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类是隔一项的裂项求和,如1(1)(3)n a n n =++或1(2)n a n n =+.3. 【2013课标全国Ⅰ,文17】(本小题满分12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和.错位相减法4.【2017年高考山东卷文数】已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==. (1)求数列{}n a 的通项公式;(2){}n b 为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列{}nnb a 的前n 项和n T .【答案】(1)2n n a =;(2)2552n nn T +=- 【解析】(1)设{}n a 的公比为q , 由题意知22111(1)6,a q a q a q +==.又0n a >,解得12,2a q ==,所以2n n a =.(2)由题意知:121211(21)()(21)2n n n n b b S n b +++++==+,又2111,0,n n n n S b b b +++=≠所以21n b n =+, 令n n n b c a =,则212n n n c +=, 因此122313572121,22222n n n n n n T c c c --+=+++=+++++ 又234113572121222222n n n n n T +-+=+++++, 两式相减得2111311121()222222n n n n T -++=++++-, 所以2552n nn T +=-.5.【2017年高考天津卷文数】已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(1)求{}n a 和{}n b 的通项公式; (2)求数列2{}n n a b 的前n 项和*()n ∈N .【答案】(1)32n a n =-,2nn b =;(2)2(34)216n n +-+.【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=.又因为0q >,解得2q =,所以2nn b =.由3412b a a =-,可得138d a -=①; 由11411S b =,可得1516a d +=②,联立①②,解得11,3a d ==,由此可得32n a n =-.所以,{}n a 的通项公式为32n a n =-,{}n b 的通项公式为2nn b =.(2)设数列2{}n n a b 的前n 项和为n T ,由262n a n =-,有2342102162(62)2n n T n =⨯+⨯+⨯++-⨯,2341242102162(68)2(62)2n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得23112(1426262612n nn n T n n +⨯--=⨯+⨯+⨯++⨯--⨯=----122)2(34)216n n n ++⨯=---,得2(34)216n n T n +=-+.所以,数列2{}n n a b 的前n 项和为2(34)216n n +-+.【名师点睛】利用等差数列和等比数列通项公式及前n 项和公式列方程组求数列的首项和公差或公比,进而写出通项公式及前n 项和公式,这是等差数列、等比数列的基本要求,数列求和的方法有倒序相加法、错位相减法、裂项相消法和分组求和法等,本题考查的是错位相减法求和.。
单招等差等比数列知识点归纳总结

单招等差等比数列知识点归纳总结数列是数学中一种常见的数值序列,而等差数列和等比数列是数列中较为常见和重要的两种类型。
对于学习数学的同学来说,掌握等差数列和等比数列的概念、性质以及求解方法非常重要。
本文将对等差数列和等比数列的基本概念、常见性质和解题方法进行归纳总结。
一、等差数列的概念和性质等差数列是指一个数列中,从第二项开始,每一项与前一项的差相等的数列。
设等差数列的首项为a₁,公差为d,则等差数列的一般形式为an = a₁ + (n-1)d。
(n≥1)等差数列常见的性质有:1. 通项公式:an = a₁ + (n-1)d2. 首项和末项的求解:a₁ = an - (n-1)d,an = a₁ + (n-1)d3. 前n项和的求解:Sn = (n/2)[2a₁ + (n-1)d]4. 累加求和公式:Sn = (n/2)(a₁ + an)5. 通项之和为定值:an + an-1 = a₁ + ∑(n-1) + d = 2a₁ + (n-1)d6. 通项相等时的和:Sn = n(a₁ + an)/2二、等比数列的概念和性质等比数列是指一个数列中,从第二项开始,每一项与前一项的比相等的数列。
设等比数列的首项为a₁,公比为r,则等比数列的一般形式为an = a₁ * r^(n-1)。
(n≥1)等比数列常见的性质有:1. 通项公式:an = a₁ * r^(n-1)2. 首项和末项的求解:a₁ = an / r^(n-1),an = a₁ * r^(n-1)3. 前n项和的求解:Sn = a₁ * (1 - r^n) / (1 - r),当|r|<1时,Sn = (a₁ - an * r) / (1 - r)4. 累乘求积公式:Sn = a₁ * a₂ * a₃ * ... * an = a₁^n * r^(1+2+...+n-1) = a₁^n * r^(n(n-1)/2)5. 通项之和为定值:an * r - an₋₁ = a₁ * (r - 1) * (r^(n-1) - 1) / (r - 1) = a₁ * (r^n - 1) / (r - 1)6. 通项相等时的和:Sn = a₁n三、等差数列和等比数列的应用等差数列和等比数列是数学中非常重要的概念,它们不仅在数学中有着广泛的应用,而且在实际生活中也随处可见。
3、等差数列和等比数列的基本运算(二)

§3.2等差数列与等比数列的基本运算(二)【复习目标】1.灵活运用等差、等比数列的定义及通项公式的性质简化数列的有关运算;2.在解题中总结方法和规律,加深对等差数列和等比数列的理解。
【重点难点】在解题中总结方法和规律,简化数列的有关运算【课前预习】1.在等比数列{an }中,已知首项为89,末项为31,公比为32,则项数n是()A.3B.4C.5D.62.等比数列{an }中,a1+a2=30,a3+a4=120,则a5+a6是()A.240B.±240C.480D.±4803.设{an }是一个等差数列,且a4+a7+a10=17,a4+a5+a6+…+a14=77,如果ak=13,那么k等于A.16B.18C.20D.22 ()实用文档实用文档【典型例题】例1 已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 9成等比数列,求5261654321a a a a a a a a a a +++的值。
例2 已知一个等差数列前10项的和为100,前100项的和为10,求前110项的和。
例3 已知等差数列{}n a 的前n 项和为n s ,令n n s b 1=,且.21,215333=+=⋅s s b a 求数列{}n b 的通项公式。
实用文档例4 已知数列}{n a 的前n 项和为n n S n 182+-=,试求数列|}{|n a 的前n 项和n T 的表述式。
【巩固练习】1.在各项均为正数的等比数列{a n }中,若a 5a 6=9,则log 3a 1+log 3a 2+…+log 3a 10的值为 .2.在等比数列{a n }中,已知a 2a 8=9,则a 3a 5a 7等于 . 3.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 9成等比数列,则1042931a a a a a a ++++的值是 。
【本课小结】【课后作业】实用文档1. 设a,b,c 成等比数列,x 为a,b 的等差中项,y 为b,c 的等差中项,求证2a cx y+=. 2. 若a+b+c,b+c —a,a+c -b,a+b -c 成等比数列,公比为q,求q+q 2+q 3的值。
等差数列等比数列知识点归纳总结

等差数列等比数列知识点归纳总结等差数列和等比数列是高中数学中非常重要的概念,它们在解决各种数学问题中都起着重要的作用。
本文将对等差数列和等比数列的基本概念、性质、求和公式以及应用进行归纳总结。
一、等差数列等差数列是指一个数列中的每一项与前一项之间的差都相等。
这个相等的差值被称为等差数列的公差,通常用字母d表示。
1. 基本概念一个等差数列可以以通项公式的形式表示为:an = a1 + (n - 1) * d,其中an表示数列的第n项,a1表示第一项,d表示公差。
2. 性质(1)公差:等差数列的公差d是等差数列中相邻两项的差,公差可以是正数、负数或零。
(2)公式:等差数列的通项公式为an = a1 + (n - 1) * d,其中n表示项数。
(3)前n项和:等差数列的前n项和可以通过求和公式Sn = n * (a1 + an) / 2来计算。
3. 应用等差数列广泛应用于数学和物理等领域,常见的应用包括:(1)数学题目中的差额、间隔、递推关系等。
(2)物理问题中的匀速直线运动、连续等差分布等。
(3)经济学中的利润、销售额等。
二、等比数列等比数列是指一个数列中的每一项与前一项之间的比都相等。
这个相等的比值被称为等比数列的公比,通常用字母r表示。
1. 基本概念一个等比数列可以以通项公式的形式表示为:an = a1 * r^(n-1),其中an表示数列的第n项,a1表示第一项,r表示公比。
2. 性质(1)公比:等比数列的公比r是等比数列中相邻两项的比值,公比可以是正数、负数或零。
(2)公式:等比数列的通项公式为an = a1 * r^(n-1),其中n表示项数。
(3)前n项和:等比数列的前n项和可以通过求和公式Sn = a1 * (1 - r^n) / (1 - r)来计算。
3. 应用等比数列也广泛应用于数学和物理等领域,常见的应用包括:(1)数学题目中的倍数关系、增长衰减等。
(2)物理问题中的连续等比分布、指数增长等。
2021年高考数学考前三轮复习第7讲:等差数列与等比数列(含详解)

第 1 页 共 4 页 2021年高考数学考前三轮复习
等差数列与等比数列
题型预测
两个基本数列(等差数列和等比数列),以及通过适当转化可化成这两个数列的问题是高考考查的重点.要注意n S q d a n n ,,,,之间的内在联系,注意相邻项,相邻若干项之间的内在联系及相互转化.
范例选讲
例1 已知数列{}n a 的前n 项和=n S 292++-n n ()N n ∈.
(Ⅰ) 判断数列{}n a 是否为等差数列;
(Ⅱ) 设n n a a a R +++= 21,求n R ;
(Ⅲ) 设n n n n b b b T N n a n b +++=∈-= 21),()12(1
,是否存在最小的自然
数0n ,使得不等式32
0n T n <
对一切自然数n 总成立?如果存在,求出0n 的值;如果不存在,说明理由. 讲解:本题中,求出数列{}n a 的通项公式是关键.
(Ⅰ) ∵ =n S 292++-n n ()N n ∈,
∴ 当1=n 时,1011==S a ,
当2≥n 时,=-=-1n n n S S a ()292++-n n ()()[]
21912+-+---n n n 210-=, ∴ ⎩⎨⎧≥-==2
210110n n n a n .
∴ 数列{}n a 不是等差数列.
(Ⅱ) 由⎩
⎨⎧≥-==2210110n n n a n 可知:当5≤n 时,n n a a =,当5>n 时,n n a a -=.。
数列中的等比数列与等差数列——数列知识要点

数列中的等比数列与等差数列——数列知识要点数列是数学中的一个重要概念,广泛应用于各个领域。
其中,等差数列和等比数列是数列中的两种常见类型。
本文将重点介绍数列中的等差数列和等比数列的基本概念、性质以及应用。
一、等差数列等差数列是指数列中相邻两项之差保持恒定的数列。
设数列为{an},其中a1为首项,d为公差,则有以下关系式:an = a1 + (n-1)d等差数列的性质如下:1. 公差d:等差数列中相邻两项之差保持恒定,这个差值称为公差。
2. 通项公式:等差数列的通项公式为an = a1 + (n-1)d,可以通过该公式计算数列中任意一项的值。
3. 首项和末项:等差数列的首项为a1,末项为an。
4. 数列元素之和:等差数列的前n项和Sn可以通过以下公式计算:Sn = (n/2)(a1 + an)等差数列在实际问题中的应用非常广泛,例如计算机算法中的循环结构、金融领域中的利息计算等都可以归纳为等差数列的应用。
二、等比数列等比数列是指数列中相邻两项之比保持恒定的数列。
设数列为{an},其中a1为首项,r为公比,则有以下关系式:an = a1 * r^(n-1)等比数列的性质如下:1. 公比r:等比数列中相邻两项之比保持恒定,这个比值称为公比。
2. 通项公式:等比数列的通项公式为an = a1 * r^(n-1),可以通过该公式计算数列中任意一项的值。
3. 首项和末项:等比数列的首项为a1,末项为an。
4. 数列元素之和:等比数列的前n项和Sn可以通过以下公式计算(当r≠1时):Sn = a1 * (1 - r^n) / (1 - r)等比数列也有广泛的应用,例如在科学领域中的指数增长问题、经济领域中的复利计算等都可以归纳为等比数列的应用。
三、等差数列与等比数列的联系与区别等差数列和等比数列都是数列中常见的类型,它们之间有一些联系和区别。
联系:1. 通项公式:等差数列和等比数列都有通项公式,可以通过该公式计算数列中任意一项的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列—等差等比数列基本量运算1.【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________.【答案】100【解析】设等差数列{}n a 的公差为d ,根据题意可得317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩ 101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 【名师点睛】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键.2.【2019年高考全国III 卷文数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩,解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 3.【2019年高考全国I 卷文数】记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________.【答案】58【解析】设等比数列的公比为q ,由已知223111314S a a q a q q q =++=++=,即2104q q ++=. 解得12q =-,所以441411()(1)521181()2a q S q ---===---. 【名师点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式的计算,部分考生易出现运算错误.一题多解:本题在求得数列的公比后,可利用已知计算3343431315()428S S a S a q =+=+=+-=,避免繁分式计算.4.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是__________. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 5.【2017年高考江苏卷】等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =___________.【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路:①利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;②利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质成立的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.6.【2018年高考北京卷文数】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】B【解析】当14,1,1,4a b c d ====时,,,,a b c d 不成等比数列,所以不是充分条件;当,,,a b c d 成等比数列时,则ad bc =,所以是必要条件.综上所述,“ad bc =”是“,,,a b c d 成等比数列”的必要不充分条件,故选B.【名师点睛】证明“ad bc =”⇒“,,,a b c d 成等比数列”只需举出反例即可,论证“,,,a b c d 成等比数列”⇒“ad bc =”可利用等比数列的性质.7.【2017年高考浙江卷】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=,结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.【名师点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组. 8. 【2018年高考北京卷文数】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为 A .32f B .322f C .1252fD .1272f【答案】D【解析】因为每一个单音的频率与前一个单音的频率的比都为122,所以()*12122,n n a a n n -=≥∈N,又1a f =,则()71277128122a a q f f ===,故选D.【名师点睛】此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若1n n a q a +=(*0,q n ≠∈N )或1n n aq a -=(*0,2,q n n ≠≥∈N ),数列{}n a 是等比数列;(2)等比中项公式法,若数列{}n a 中,0n a ≠且212n n n a a a --=⋅(*3,n n ≥∈N ),则数列{}n a 是等比数列.9.【2017年高考全国II 卷文数】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S . 【答案】(1);(2)当时,.当时,.【解析】设的公差为d ,的公比为q ,则.由得d +q =3.①(1)由得②联立①和②解得(舍去),因此的通项公式为.(2)由得. 解得.当时,由①得,则. 当时,由①得,则.【名师点睛】在解决等差、等比数列的运算问题时,有两种处理思路:一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.(1)根据等差数列及等比数列通项公式表示条件,得关于公差与公比的方程组,解方程组得公比,代入等比数列通项公式即可;(2)由等比数列前三项的和求公比,分类讨论,求公差,再根据等差数列前三项求和.10.【2019年高考全国I 卷文数】记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.【答案】(1)210n a n =-+;(2)110()n n *≤≤∈N .【解析】(1)设{}n a 的公差为d . 由95S a =-得140a d +=. 由a 3=4得124a d +=. 于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-.(2)由(1)得14a d =-,故(9)(5),2n n n n da n d S -=-=. 由10a >知0d <,故n n S a ≥等价于211100n n -+,解得1≤n ≤10. 所以n 的取值范围是{|110,}n n n *≤≤∈N .【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,等差数列的求和公式,在解题的过程中,需要认真分析题意,熟练掌握基础知识是正确解题的关键.11.【2019年高考全国II 卷文数】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.【答案】(1)212n n a -=;(2)2n S n =.【解析】(1)设{}n a 的公比为q ,由题设得22416q q =+,即2280q q --=.解得2q =-(舍去)或q =4.因此{}n a 的通项公式为121242n n n a --=⨯=.(2)由(1)得2(21)log 221n b n n =-=-, 因此数列{}n b 的前n 项和为21321n n +++-=.【名师点睛】本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题.12.【2019年高考北京卷文数】设{a n }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值.【答案】(1)212n a n =-;(2)当5n =或者6n =时,n S 取到最小值30-.【解析】(1)设{}n a 的公差为d . 因为110a =-,所以23410,102,103a d a d a d =-+=-+=-+.因为23410,8,6a a a +++成等比数列, 所以()()()23248106a a a +=++. 所以2(22)(43)d d d -+=-+. 解得2d =.所以1(1) 212n a a n d n =+-=-. (2)由(1)知,212n a n =-.所以,当7n ≥时,0n a >;当6n ≤时,0n a ≤. 所以,n S 的最小值为630S =-.【名师点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.13.【2018年高考全国I 卷文数】已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.【答案】(1)b 1=1,b 2=2,b 3=4;(2)见解析;(3)a n =n ·2n -1. 【解析】(1)由条件可得a n +1=2(1)n n a n+. 将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列. 由条件可得121n na a n n+=+,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得12n na n-=, 所以a n =n ·2n -1. 【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有根据数列的递推公式确定数列的项,根据不同数列的项之间的关系,确定新数列的项,利用递推关系整理得到相邻两项之间的关系确定数列是等比数列,根据等比数列通项公式求得数列的通项公式,借助于的通项公式求得数列的通项公式,从而求得最后的结果.14.【2018年高考全国III 卷文数】等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 【答案】(1)1(2)n n a -=-或12n n a -=;(2)6m =. 【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=. 由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-,此方程没有正整数解. 若12n n a -=,则21n n S =-. 由63m S =得264m =,解得6m =. 综上,6m =.【名师点睛】等差、等比数列中的基本量的求解,可利用通项公式及前n 项和公式建立1, a d (或q ),, ,n n n a S 五个基本量间的关系式,即“知三求二”.非等差、等比数列的求和常用三种方法:一是分组求和法,特征是原数列可以拆成几个等差或等比数列的和;二是裂项相消求和法,特征是通项是分式形式,如等差数列{}n a 的的公差是d ,则111111n n n n n b a a d a a ++⎛⎫==- ⎪⎝⎭;三是错位(项)相减求和法,特征是通项可以看成一个等差数列与一个等比数列对应项的积(或商).15.【2018年高考全国II 卷文数】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)a n =2n –9;(2)S n =n 2–8n ,最小值为–16. 【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{a n }的通项公式为a n =2n –9. (2)由(1)得S n =n 2–8n =(n –4)2–16. 所以当n =4时,S n 取得最小值,最小值为–16.【名师点睛】数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果;(2)根据等差数列前n 项和公式得n S 关于n 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.16.【2017年高考北京卷文数】已知等差数列{}n a 和等比数列{}n b 满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{}n a 的通项公式; (2)求和:13521n b b b b -++++.【答案】(1)a n =2n −1;(2)312n -. 【解析】(1)设等差数列{a n }的公差为d .因为a 2+a 4=10,所以2a 1+4d =10,解得d =2,所以a n =2n −1. (2)设等比数列{b n }的公比为q .因为b 2b 4=a 5,所以b 1qb 1q 3=9,解得q 2=3,所以2212113n n n b b q---==.从而21135********2n n n b b b b ---++++=++++=.选做.【2018年高考北京卷文数】设{}n a 是等差数列,且123ln2,5ln2a a a =+=. (1)求{}n a 的通项公式; (2)求12e e e n a aa+++.【答案】(1)ln 2n a n =;(2)122n +-. 【解析】(1)设等差数列{}n a 的公差为d , ∵235ln2a a +=, ∴1235ln2a d +=, 又1ln2a =, ∴ln2d =.∴()11ln 2n a a n d n =+-=. (2)由(1)知ln2n a n =, ∵ln 2ln2e e e =2nn a n n ==, ∴{}ena 是以2为首项,2为公比的等比数列.∴212ln2ln2ln221e e e e e e =222=22nn a a a n n ++++=++++++-.∴12e e e n a a a +++1=22n +-.【名师点睛】等差数列的通项公式及前n 项和共涉及五个基本量1,,,,n n a a d n S ,知道其中三个可求另外两个,体现了用方程组解决问题的思想.(1)设公差为d ,根据题意可列关于1,a d 的方程组,求解1,a d ,代入通项公式可得;(2)由(1)可得e 2n a n =,进而可利用等比数列求和公式进行求解.11 / 11。