50道解二元一次方程组答案

合集下载

七年级下册50道解二元一次方程组含答案

七年级下册50道解二元一次方程组含答案

七年级下册50道解二元一次方程组含答案1、求解方程组:begin{cases} x+y= \\ x-y=2 \end{cases}$$改写为:begin{cases} x+y=a \\ 2x=a+2y \end{cases}$$其中,$a$为待求解的常数。

解得:$x=\frac{a+2}{2}$,$y=\frac{a-2}{2}$,因此方程的解为$(\frac{a+2}{2},\frac{a-2}{2})$。

2、求解方程组:begin{cases} y=2x \\ x+y=3 \end{cases}$$将第一个方程代入第二个方程,得到$3x=3$,解得$x=1$,因此$y=2$,方程的解为$(1,2)$。

3、求解方程组:begin{cases} x-y=6 \\ 2x+31y=-11 \end{cases}$$将第一个方程变形为$x=6+y$,代入第二个方程得到$2(6+y)+31y=-11$,解得$y=-\frac{23}{33}$,因此$x=\frac{55}{33}$,方程的解为$(\frac{55}{33},-\frac{23}{33})$。

4、求解方程组:begin{cases} x+y=1 \\ 3x-y=3 \end{cases}$$将第一个方程变形为$y=1-x$,代入第二个方程得到$3x-(1-x)=3$,解得$x=1$,因此$y=0$,方程的解为$(1,0)$。

5、求解方程组:begin{cases} y=2x-3 \\ 3x+2y=8 \end{cases}$$将第一个方程代入第二个方程,得到$3x+2(2x-3)=8$,解得$x=2$,因此$y=1$,方程的解为$(2,1)$。

6、求解方程组:begin{cases} x+y=1 \\ 4x+y=10 \end{cases}$$将第一个方程变形为$y=1-x$,代入第二个方程得到$4x+(1-x)=10$,解得$x=3$,因此$y=-2$,方程的解为$(3,-2)$。

完整版)二元一次方程组应用题经典题及答案

完整版)二元一次方程组应用题经典题及答案

完整版)二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:列二元一次方程组解决——行程问题变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时。

类型二:列二元一次方程组解决——工程问题变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。

若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。

解:设甲、乙公司每周的工钱分别为x、y万元,依题意得:6(x+y)=5.24x+9y=4.8解得:x=0.8,y=0.4若只选一个公司单独完成,小明家应选择乙公司,因为乙公司每周工钱更少,从节约开支的角度考虑更优。

类型三:列二元一次方程组解决——商品销售利润问题变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩。

解二元一次方程50道练习题(带答案)

解二元一次方程50道练习题(带答案)

解二元一次方程50道练习题(带答案)
1. 解方程组:
{2x - y = 3
{3x + 2y = 8
解答:
首先,可以通过消元法来解决这个问题。

将第一个方程乘以2,并将第二个方程乘以3,得到:
{4x - 2y = 6
{9x + 6y = 24
接下来,将第一个方程的两倍加到第二个方程上,得到:
{4x - 2y = 6
{13x + 4y = 30
然后,将第一个方程的2倍加到第二个方程上,得到:
{4x - 2y = 6
{8x - 8y = 12
接下来,将第二个方程的两倍加到第一个方程上,得到:
{36x = 18
{8x - 8y = 12
最后,解方程得到:
{x = 0.5
{y = 2
2. 解方程组:
{3x + 2y = 7
{5x + 3y = 11
解答:
可以使用消元法来解决这个方程组。

将第一个方程乘以3,并将第二个方程乘以2,得到:
{9x + 6y = 21
{10x + 6y = 22
接下来,将第二个方程的两倍减去第一个方程,得到:
{9x + 6y = 21
{2x = 1
最后,解方程得到:
{x = 0.5
{y = 2
3. ...
...
50. ...
...
这是前面五道解二元一次方程的练习题,你可以根据相同的方法解答剩下的题目。

希望这些练习题对你有帮助!。

列二元一次方程组解应用题专项练习50题(有答案)ok

列二元一次方程组解应用题专项练习50题(有答案)ok

列二元一次方程组解应用题专项练习50题(有答案)ok1、已知某铁路桥长800m,火车从开始上桥到完全过桥共用45s,整列火车完全在桥上的时间是35s,求火车的速度和长度。

解:设火车的速度为v,长度为l,则有:l + 800 = vt (火车在桥上的时间)l = v(t-10) (火车在桥上外的时间)联立得:v = 80m/s,l = 2400m。

2、现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?解:设用x张铁皮制盒身,y张铁皮制盒底,则有:8x = 22y (每张铁皮做8个盒身或做22个盒底)x = 2y/7190 = 9x + 11y (总共用了190张铁皮)代入得:x = 60,y = 35.3、用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,一个桶身一个桶底正好配套做一个水桶,现在有63张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?解:设用x张铁皮做桶身,y张铁皮做桶底,则有:x + y/8 = 63 (每张铁皮能做1个桶身或8个桶底)代入得:x = 35,y = 224.4、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:货车种类 | 货车辆数(辆) | 累计运货吨数(吨) |甲。

| 2.| 15.5.|乙。

| 5.| 35.|现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,则货主应付运费多少元?解:设甲、乙两种货车每辆运输的吨数分别为x、y,则有:2x + 5y = 50 (过去两次租用的情况)3x + 5y = 70 (现在租用的情况)联立得:x = 10,y = 8.应付运费为:(15.5+35) * 30 = 1650元。

5、某工厂第一季度生产甲、乙两种机器共480台,计划第二季度生产这两种机器共554台,其中甲种机器要比第一季度增产10%,乙种机器产量要比第一季度增产20%,该厂第一季度生产甲、乙两种机器各多少台?解:设第一季度甲、乙两种机器分别生产x、y台,则有:x + y = 4801.1x + 1.2y = 554 (第二季度计划生产的情况)联立得:x = 280,y = 200.6、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?解:设种茄子的亩数为x,种西红柿的亩数为y,则有:x + y = 252600x + 2600y = - 1700x - 1800y (总花费为元)联立得:x = 10,y = 15.总获纯利为:2600 * 10 + 2600 * 15 = 元。

二元一次方程组精选(内附答案)

二元一次方程组精选(内附答案)

二元一次方程组解法练习题精选一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3.解方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b 的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2).13.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1)(2).16.解下列方程组:(1)(2)参考答案一、1,B ;2,B ;3,C ;4,D ;5,B ;6,C ;7,B ;8,C ;9,C ;10,D 。

二、11,ax 2+bx +c 、≠0、常数;12,x =1;13,y =2x 2+1;14,答案不唯一。

如:y =x 2+2x ; 15,C >4的任何整数数;16,112;17,二;18,x =3、1<x <5。

三、19,43;20,(1)设这个抛物线的解析式为c bx ax y ++=2由已知,抛物线过)0,2(-A ,B(1,0),C (2,8)三点,得⎪⎩⎪⎨⎧=++=++=+-8240024c b a c b a c b a 解这个方程组,得4,2,2-===c b a ∴ 所求抛物线的解析式为y =2x 2+2x -4.(2)y =2x 2+2x -4=2(x 2+x -2)=2(x +12)2-92;∴ 该抛物线的顶点坐标为)29,21(--. 21,(1)y =-x 2+4x =-(x 2-4x +4-4)=-(x -2)2+4,所以对称轴为:x =2,顶点坐标:(2,4).(2)y =0,-x 2+4x =0,即x (x -4)=0,所以x 1=0,x 2=4,所以图象与x 轴的交点坐标为:(0,0)与(4,0).22,(1)因为AD =EF =BC =x m ,所以AB =18-3x .所以水池的总容积为 1.5x (18-3x )=36,即x 2-6x +8=0,解得x 1=2,x 2=4,所以x 应为2或4.(2)由(1)可知V 与x 的函数关系式为V =1.5x (18-3x )=-4.5x 2+27x ,且x 的取值范围是:0<x <6.(3)V =-4。

二元一次方程组练习题(含答案)

二元一次方程组练习题(含答案)

二元一次方程组练习题(含答案) 二元一次方程组练题一.解答题(共16小题)1.解下列方程组:1)x+2y-1=23x-2y=52)1-yx+2/3=1/22y+3=3x3)5x+2y=11a4x-4y=6a4)2x+3y=73x-2y=15)2x-3y=75x+4y=176)2x+3y=13x-2y=57)3x-4y=-12x+5y=138)x(y+1)+y(1-x)=2x(x+1)-y-x^2=09)3x+y=72x-3y=-810)x^2+xy=2y-x+2=02.求适合的x,y的值。

已知关于x,y的二元一次方程y=kx+b的解有和。

1)求k,b的值。

2)当x=2时,y的值。

3)当y=3时,x的值为多少?解答:1.1)将第二个方程变形得到y=(3x-5)/2,代入第一个方程中,得到x=3,y=-2.2)将第一个方程变形得到y=(1/2-1+xy)/x,代入第二个方程中,得到x=3,y=-1.3)将第二个方程变形得到y=x-3/2,代入第一个方程中,得到x=2,y=1.4)将第二个方程变形得到y=(3x-1)/2,代入第一个方程中,得到x=2,y=1.5)将第一个方程变形得到y=(2x-7)/3,代入第二个方程中,得到x=1,y=-1.6)将第二个方程变形得到y=(3x-5)/2,代入第一个方程中,得到x=1,y=-1.7)将第二个方程变形得到y=(3x+1)/4,代入第一个方程中,得到x=5,y=2.8)将第一个方程变形得到y=(2-x^2)/(1-x),代入第二个方程中,得到x=1,y=1.9)将第二个方程变形得到y=(2x+8)/3,代入第一个方程中,得到x=1,y=1.10)将第一个方程变形得到y=2/x-x,代入第二个方程中,得到x=1,y=0.2.1)由于y=kx+b,所以当x=1时,y=k+b;当x=2时,y=2k+b。

又因为已知y=3时,x的值为多少,所以将y=kx+b代入得到kx+b=3,解得x=(3-b)/k。

完整版初中数学专项练习《二元一次方程组》100道解答题包含答案

完整版初中数学专项练习《二元一次方程组》100道解答题包含答案

初中数学专项练习《二元一次方程组》100道解答题包含答案一、解答题(共100题)1、南山植物园以其优美独特的自然植物景观,现已成为重庆市民春游踏青、赏四季花卉、观山城夜景的重要旅游景区.若该植物园中现有A、B两个园区,已知A园区为矩形,长为(x+y)米,宽为(x﹣y)米;B园区为正方形,边长为(x+3y)米.(1)请用代数式表示A、B两园区的面积之和并化简;(2)现根据实际需要对A园区进行整改,长增加(11x﹣y)米,宽减少(x﹣2y)米,整改后A区的长比宽多350米,且整改后两园区的周长之和为980米.若A园区全部种植C种花,B园区全部种植D种花,且C、D两种花投入的费用与吸引游客的收益如下表:C D投入(元/平方米)13 16收益(元/平方米)18 26求整改后A、B两园区旅游的净收益之和.(净收益=收益﹣投入)2、某一天,蔬菜经营户花90元从蔬菜批发市场批发了黄瓜和茄子共,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价/(元2.4 2)零售价/(元3.6 2.8)他当天卖完这些黄瓜和茄子可赚多少元钱?3、已知方程组的解满足x+y=-1,求k的值。

4、解方程组:5、甲、乙两人同求方程ax﹣by=7的整数解,甲求出一组解为,而乙把ax﹣by=7中的7错看成1,求得一组解为,试求a、b的值.6、已知方程组,王芳看错了方程(1)中的a,得到的方程组的解为,李明看错了方程(2)中的b,得到的方程组的解为,求原方程组的解.7、为了净化空气,美化环境,我县城兴华小区计划投资1.8万元种玉兰树和松柏树共80棵,已知某苗圃负责种活以上两种树苗的价格分别为:300元/棵,200元/棵,问可种玉兰树和松柏树各多少棵?8、敦煌莫高窟是世界上现存最完好的石窟艺术宝库,是重要的爱国主义教育基地,某校组织八年级540名学生去莫高窟研学参观,现租用大、小两种客车共10辆,恰好能一次性运完全部学生.已知这两种车的限载人数分别为40人和60人,求这两种客车各租用多少辆?9、请阅读求绝对值不等式和的解集过程.对于绝对值不等式,从图1的数轴上看:大于-3而小于3的绝对值是是小于3的,所以的解集为;对于绝对值不等式,从图2的数轴上看:小于-3而大于3的绝对值是是大于3的,所以的解集为或.已知关于x、y的二元一次方程组的解满足,其中m是负整数,求m的值.10、已知2a-1的算术平方根是3,3a+b-1的立方根是2,求a-2b的平方根。

二元一次方程组精选(内附答案)

二元一次方程组精选(内附答案)

二元一次方程组解法练习题精选一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3.解方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b 的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2).13.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1)(2).16.解下列方程组:(1)(2)参考答案一、1,B ;2,B ;3,C ;4,D ;5,B ;6,C ;7,B ;8,C ;9,C ;10,D .二、11,ax 2+bx +c 、≠0、常数;12,x =1;13,y =2x 2+1;14,答案不唯一.如:y =x 2+2x ; 15,C >4的任何整数数;16,112;17,二;18,x =3、1<x <5. 三、19,43;20,(1)设这个抛物线的解析式为c bx ax y ++=2由已知,抛物线过)0,2(-A ,B (1,0),C (2,8)三点,得⎪⎩⎪⎨⎧=++=++=+-8240024c b a c b a c b a 解这个方程组,得4,2,2-===c b a ∴ 所求抛物线的解析式为y =2x 2+2x -4.(2)y =2x 2+2x -4=2(x 2+x -2)=2(x +12)2-92;∴ 该抛物线的顶点坐标为)29,21(--. 21,(1)y =-x 2+4x =-(x 2-4x +4-4)=-(x -2)2+4,所以对称轴为:x =2,顶点坐标:(2,4).(2)y =0,-x 2+4x =0,即x (x -4)=0,所以x 1=0,x 2=4,所以图象与x 轴的交点坐标为:(0,0)与(4,0).22,(1)因为AD =EF =BC =x m ,所以AB =18-3x .所以水池的总容积为1.5x (18-3x )=36,即x 2-6x +8=0,解得x 1=2,x 2=4,所以x 应为2或4.(2)由(1)可知V 与x 的函数关系式为V =1.5x (18-3x )=-4.5x 2+27x ,且x 的取值范围是:0<x <6.(3)V =-4.5x 2+27x =-92(x -3)2+812.所以当x =3时,V 有最大值812.即若使水池有总容积最大,x 应为3,最大容积为40.5m 3.23,答案:①由题意得y 与x 之间的函数关系式30y x =+(1160x ≤≤,且x 整数)②由题意得P 与x 之间的函数关系式二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题) 1.求适合的x ,y 的值.析:解:由题意得:,,∴2.解下列方程组 (1)(2)(3)(4).故原方程组的解为故原方程组的解为)原方程组可化为,.所以原方程组的解为)原方程组可化为:,x=×.所以原方程组的解为3.解方程组::原方程组可化为所以方程组的解为4.解方程组:)原方程组化为y=.所以原方程组的解为5.解方程组::,解得所以方程组的解为6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?二元一次方程组)依题意得:,.y=x+y=y=x+7.解方程组:(1);(2).)原方程组可化为,∴方程组的解为;)原方程可化为即∴方程组的解为8.解方程组::原方程组可化为,则原方程组的解为9.解方程组::原方程变形为:,y=解之得10.解下列方程组:(1)(2))﹣代入﹣=所以原方程组的解为)原方程组整理为,所以原方程组的解为.11.解方程组:(1)(2)解得∴原方程组可化为解得∴∴原方程组的解为12.解二元一次方程组:(1);(2).则方程组的解是;)此方程组通过化简可得:则方程组的解是.13.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.代入方程组,解得:代入方程组,解得:∴方程组为,则原方程组的解是14.答:x=y=∴原方程组的解为15.解下列方程组:(1);(2).)化简整理为故原方程组的解为)化简整理为故原方程组的解为16.解下列方程组:(1)(2)∴原方程组的解为)原方程组可化为,∴原方程组的解为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档