Volte丢包率优化案例
Volte-VoLTE语音质量优化案例精编个

VoLTE语音质量优化案例1:VoLTE窄带与宽带语音质量对比【问题现象】在3GPPLTE中,VoLTE业务编码有AMR-NB窄带和AMR-WB宽带两种编码,两种编码速率具有不同的话音质量,所以又分别称为VoLTE标清语音(或VoLTE12.2kbps)和VoLTE高清语音(或VoLTE23.85kbps)。
【问题分析】AMR-NB和AMR-WB这2种编码具有如下特点:●每20ms产生一个语音包,包括了RTP/UDP/RLC-Security压缩头;●每160ms生成一个SID语音静默包。
●帧长20ms;AMR-NB编码特点为:● 4.75kbps到12.2kbps共8个码率,分别为:4.75、5.15、5.9、6.7、7.4、7.95、10.2、12.2kbps;●采样率为8kHz。
AMR-WB编码特点为:● 6.6kbps到23.85kbps共8个码率,分别为:6.6、8.85、12.65、14.25、15.85、18.25、19.85、23.05、23.85kbps;●采样率为16kHz。
可见两者显着的差异是采样速率不一样,窄带一个语音帧是160个点,宽带一个语音帧采样320个点。
AMRNB的语音带宽范围:300-3400Hz,8KHz采样。
AMRWB 的语音带宽范围:?50-7000Hz,16KHz采样。
用户可主观感受到话音比以前更加自然、舒适和易于分辨。
AMRWB与AMRNB不同之处在于AMRWB按16kHz采样,分别按频率带50~6400Hz?和6400~7000Hz进行编码。
用来降低复杂度,AMRWB将位算法集中到更重要的频率区。
低频带使用ACELP算法进行编码。
添加几个特征来达到一个高的主观质量。
线性预测(LP)算法是在每隔20ms的帧要进行一次线性预测算法,每5ms搜索一次自适应码本,这个过程是在12.8Kbs速率下进行。
高频带是在解码器端使用低带和随机激励的参数重建的,目的是调整与在声音基础上的低频有关的高频带.高频带的声频通过使用由低带LP过滤器产生的LP滤波器进行重建。
精品案例_容量受限导致VoLTE丢包率高分析优化

容量受限导致VOLTE丢包率高分析优化案例目录一、问题描述 (3)二、分析过程 (3)三、解决措施 (6)四、经验总结 (7)容量受限导致VOLTE丢包率高分析优化案例【摘要】无线问题导致丢包是影响VoLTE用户感知的关键因素之一,随着VoLTE业务的快速普及、VoLTE用户数和业务量进入了快速上涨期,为更加准确找到全网VOLTE语音感知差点,发现“空口丢包”和“基站弃包”两大关键统计指标可有效表征VoLTE语音感知,减少“空口丢包”和“基站(终端)弃包”是VoLTE语音质量优化提升的重要方向。
【关键字】VoLTE VoLTE上行丢包【业务类别】参数优化一、问题描述日常监控中发现CZ-滁州-乌衣双语小区-ZFTA-435870-53丢包率较高,具体如下:二、分析过程1、丢包的原理机制在基站(或终端)在空口发送PDCP SDU之前,由于容量或空口质量问题, PDCP discardtimer定时器(目前配置为100ms)超时后会发生主动弃包。
例如基站调度了序列号为1/2/3/4/5共5个包,而4/5两个包因容量受限或空口质差在100ms内没有被调度出去,基站侧根据认为超过PDCP丢弃时长而主动丢弃,下行弃包率为2/5=40%。
在无线空口,按照协议IP包进一步被转换成PDCP包,PDCP包就是空口传输的有效数据。
PDCP包在终端和基站间传输异常会导致应用层RTP包的丢失,从而引起语音感知差。
2.无线空口丢包主要因素:影响Volte丢包的因素有故障告警、无线环境、大话务、系统干扰等诸多因素,传输侧链路故障和干扰原因发重传都会大量消耗无线资源,若基站因为传输不及时或缺乏有效的无线资源无法完成对PDCP包的及时调度,会造成基站或终端主动丢弃VoLTE语音包。
针对VoLTE丢包可进行关联分析的指标有:➢无线环境包括TA占比、MR弱覆盖、干扰、RRC重建、切换、邻区漏配等;➢容量包括:PRB利用率、单板利用率、CCE利用率、小区用户数等;3、处理步骤1.异常告警及系统干扰核查:网管核查CZ-滁州-乌衣双语小区-ZFTA-435870-53小区无任何异常告警,查询并统计小区上行干扰指标,系统上行每个PRB干扰噪声平均值为-118(毫瓦分贝),排除干扰原因导致。
VoLTE语音质量优化案例(14个)

VoLTE语音质量优化案例1:VoLTE窄带与宽带语音质量对比【问题现象】在3GPP LTE中,VoLTE业务编码有AMR-NB窄带和AMR-WB宽带两种编码,两种编码速率具有不同的话音质量,所以又分别称为VoLTE标清语音(或VoLTE 12.2kbps)和VoLTE 高清语音(或VoLTE 23.85kbps)。
【问题分析】AMR-NB和AMR-WB这2种编码具有如下特点:●每20ms产生一个语音包,包括了RTP/UDP/RLC-Security压缩头;●每160ms生成一个SID语音静默包。
●帧长20ms;AMR-NB编码特点为:● 4.75kbps到12.2kbps共8个码率,分别为:4.75、5.15、5.9、6.7、7.4、7.95、10.2、12.2kbps;●采样率为8kHz。
AMR-WB编码特点为:● 6.6kbps到23.85kbps共8个码率,分别为:6.6、8.85、12.65、14.25、15.85、18.25、19.85、23.05、23.85kbps;●采样率为16kHz。
可见两者显著的差异是采样速率不一样,窄带一个语音帧是160个点,宽带一个语音帧采样320个点。
AMR NB的语音带宽范围:300-3400Hz,8KHz采样。
AMR WB的语音带宽范围:50-7000Hz,16KHz采样。
用户可主观感受到话音比以前更加自然、舒适和易于分辨。
AMR WB与AMR NB不同之处在于AMR WB按16kHz采样,分别按频率带50~6400Hz 和6400~7000Hz 进行编码。
用来降低复杂度,AMR WB将位算法集中到更重要的频率区。
低频带使用ACELP算法进行编码。
添加几个特征来达到一个高的主观质量。
线性预测(LP)算法是在每隔20ms 的帧要进行一次线性预测算法,每5ms搜索一次自适应码本,这个过程是在12.8Kbs 速率下进行。
高频带是在解码器端使用低带和随机激励的参数重建的, 目的是调整与在声音基础上的低频有关的高频带. 高频带的声频通过使用由低带LP 过滤器产生的LP 滤波器进行重建。
安徽:VoLTE丢包率优化指导手册(1010)

VoLTE丢包率优化指导手册本文针对弱覆盖、干扰、切换差、大话务等造成VoLTE高丢包的4大类主要原因,分别从分原因处理高丢包小区、利用质量切换和功控调优等策略提升网络级指标、运用新功能针对性改善特性区域指标等方面,开展VoLTE丢包分析和优化,根据优化成果,总结了VoLTE 丢包优化方法,以供日常丢包优化工作中使用,提高优化效果和处理效率。
1. 基于劣化原因快速处理VOLTE高丢包小区1.1. VoLTE高丢包问题原因分析通过统计分析日常督办VoLTE高丢包小区问题原因,主要存在4方面,分别为弱覆盖、干扰、切换问题和高话务造成的资源受限,4类问题小区占比分别达87.5%、3.55%、2.13%、1.7%。
而在TDD制式中,VoLTE上行覆盖受限和资源受限问题较突出,在分析高丢包小区时,重点需定位上行弱覆盖、上行干扰、切换及上行CCE等资源受限问题,先通过参数优化,快速降低丢包率,改善语音感知。
现网VoLTE高丢包小区4类主要原因:➢大话务,资源受限,导致大量CCE分配失败;➢弱覆盖场景(现网的主要问题是上行弱覆盖);➢上行干扰➢切换问题(包括切换失败、乒乓切换、切换不及时、邻区缺失等)2022-3-22 第1页, 共48页1.2. 高丢包小区劣化原因的定义和识别处理VoLTE高丢包小区的第一步是要对丢包原因进行定位。
将上述的4类丢包原因定义为4个劣化场景,通过MR大数据关联分析,并结合前期已优化解决小区详情,找到小区劣化场景识别标准和方法,可大大提高问题分析效率。
场景定义:空口的丢包主要为弱覆盖,干扰和大话务、切换差4种场景,每种场景会有对应的外在表现,通过网管的相关指标可以识别。
识别思路如下:➢上行弱覆盖场景下,PUSCH PRSP<-124dBm比例打,同时CCE聚合比例和上行iBler也变大;MR统计时,主要表现为无上行干扰但小区PUSCH SINR低于0dBm的比例和PHR<0占比较高。
4G优化案例:VOLTE丢包率指标优化提升案例

VoLTE丢包率指标优化提升案例XXXX年XX月目录一、问题描述 (3)1、高丢包定义: (3)2、丢包影响 (3)3、影响丢包的因素 (3)4、XX电信VoLTE丢包率总体情况 (4)二、分析过程 (5)1、VoLTE参数核查 (5)2、高干扰小区情况分析 (5)3、TTIBundling特性功能优化提升 (7)三、解决措施 (10)1、实施方案 (10)2、优化效果 (11)四、经验总结 (15)VoLTE丢包率指标优化提升案例XX【摘要】随着电信网络LTE用户不断提升,VoLTE承载语音越来越重要,随着VoLTE用户增长,VoLTE各项指标出现不同程度的波动。
XXVoLTE上下行丢包率全省排名靠后,影响用户感知,需重点优化。
【关键字】LTE用户、 VoLTE、丢包率【业务类别】优化方法、参数优化一、问题描述1、高丢包定义:VoLTE上行高丢包小区(语音):>5%且小区QCI为1的DRB业务PDCP SDU上行期望收到的总包数>1000。
VoLTE下行高丢包小区(语音):>5%且小区QCI为1的DRB业务PDCP SDU下行发送的包数>1000。
2、丢包影响丢包对VoLTE语音质量的影响较大,当丢包率大于10%时,已不能接受,而在丢包率为5%时,基本可以接受。
因此,要求IP承载网的丢包率小于5%。
VoLTE丢包率是MOS值的一个重要影响因素,严重的丢包影响通话质量,甚至导致掉话,导致用户感知降低。
3、影响丢包的因素影响VoLTE丢包的因素有故障告警、无线环境、大话务、传输、核心网、参数等多因素,详细如下:针对VoLTE丢包可进行关联分析的指标有:无线环境包括TA占比、MR弱覆盖、干扰、RRC重建、切换、邻区漏配等;容量包括:PRB利用率、单板利用率、CCE利用率、小区用户数等;4、XX电信VoLTE丢包率总体情况XXVoLTE丢包率指标排名仍相对靠后,为痛点难点,需重点优化。
4G优化案例:上行覆盖不足影响VoLTE丢包案例

上行覆盖不足影响VoLTE丢包案例XXXX年XX月目录一、问题描述 (2)二、功率余量报告(PHR)原理 (3)二、问题分析 (5)(1)告警核查,无影响业务告警 (5)(2)干扰核查,无干扰 (5)(3)覆盖核查,上行覆盖不足 (6)(4)指标分析,上行丢包严重 (7)(5)现场CQT测试,下行SINR质差 (7)三、解决方案 (7)(1)优化思路和方法 (7)(2)效果验证 (8)四、经验总结 (9)上行覆盖不足影响VoLTE丢包案例XX【摘要】本案例以黄村荔院LTE-RRU06GZV2347高质差小区整治为例,研究分析发现,该小区因PHR(功率余量)为负,存在上行覆盖不足问题,从而导致数据传输过程中丢包严重,大大影响VoLTE质差。
通过FDD PDCP SDU丢弃定时器参数调整,以取得良好的VoLTE上行丢包率和感知的平衡,降低丢包率,有效改善了问题小区性能指标和用户VoLTE通话感知。
【关键字】UE功率余量、上行覆盖不足、FDD PDCP SDU丢弃定时器【业务类别】参数优化一、问题描述提取最近一周指标,黄村荔院LTE-RRU06GZV2347小区平均每天质差次数达到6次且质差比达到55.56%,严重影响用户感知。
该问题小区周边环境如下图所示,主要覆盖区域有高速、商务区等场景。
二、功率余量报告(PHR)原理PH,全称Power Headroom,中文为功率余量,即UE允许的最大传输功率与当前评估得到的PUSCH传输功率之间的差值,用公式可以简单的表示为:PH = UEAllowedMaxTransPower - PuschPower。
它表示的是除了当前PUSCH传输所使用的传输功率之外,UE还有多少传输功率可以使用。
PH的单位是dB,范围是[-23dB,+40dB]。
如果PH 值为负,表示当前的PUSCH传输功率已经超过UE允许的最大传输功率(PH是计算值,不是UE的实际传输功率,因此有可能超过最大功率导致该值为负),在下次调度时可以考虑减少该UE的RB资源分配;而如果PH值为正,那么后续分配的RB数目还可以继续增加。
4G优化案例:VoLTE RTP丢包优化案例

VoLTE RTP丢包优化案例XXXX 年 XX 月目录RTP丢包优化指导报告 (3)1 RTP丢包的生成 (3)1.1 Volte特性 (3)1.2 RTP丢包特征 (4)2RTP丢包分析思路 (5)2.1 硬件故障排查 (5)2.2 弱覆盖优化 (6)2.3 干扰排查 (7)2.4 RRC重建优化 (8)2.5 切换优化 (9)2.6 高负荷优化 (9)3功能参数详解&方案实施 (10)3.1 功能参数详解 (10)3.1.1 Feature功能类 (11)3.1.2 RLC参数 (11)3.1.3 上行功控参数 (11)3.1.4 空闲参数 (11)3.1.5 异频门限参数 (12)3.2 方案实施 (12)4效果对比 (13)4.1 TcpOptimization&HoOscCtrlUE功能效果 (13)4.1.1 RTP丢包率 (13)4.1.2 切换成功率 (13)4.2 RLC相关参数优化结果 (14)4.3 TOPn问题小区优化效果 (14)4.4 整体优化效果 (15)5 经验总结及推广 (15)VoLTE RTP丢包优化指导报告XX【摘要】不同地区由于不同的人文和地理环境造就了各自独特的网络环境分布,RTP丢包是影响用户感知的关键因素之一,随着VoLTE业务的快速普及,VoLTE用户数和业务量进入了快速上涨期,为更加准确找到全网VoLTE语音感知差点,通过深入分析空口语音调度机制,了解RTP丢包的生成,掌握RTP丢包原因,为后续优化volte语音质量提供保障。
【关键字】RTP丢包、语音感知、调度机制【业务类别】volte1 RTP丢包的生成1.1 Volte特性VOLTE是经过长期演进一种语音承载,是一个面向手机和数据终端的高速无线通信标准。
与2G、3G通信网络不同的是,在4G网络中CS域节点已经消失,无论是语音、多媒体业务、数据业务等都走PS域。
1.2 RTP丢包特征VoLTE语音编码采用AMR-WB,VoLTE高清语音编码速率为23.85kbps,终端每20ms 生成一个VoLTE语音包,使用RTP实时流媒体协议传输,再加上UDP包头、IP包头,在应用层最终打包成IP包进行传输。
精品案例_VOLTE丢包率优化分析与功能参数验证

VOLTE丢包率优化分析与功能参数验证目录VOLTE丢包率优化分析与功能参数验证 (3)一、问题描述 (3)二、分析过程 (3)三、解决措施 (5)四、经验总结 (9)VOLTE丢包率优化分析与功能参数验证【摘要】自从电信VOLTE商用以来,随着市场推广,电信VOLTE用户逐渐增多,VOLTE丢包率对用户语音质量影响较大,为提升用户感知,现针对VOLTE语音业务丢包进行优化分析验证,提升用户VOLTE使用感知。
【关键字】丢包率、功能参数验证【业务类别】化指标优化一、问题描述VOLTE高清语音通话的质量取决于语音传送完整和语音传送保真,用户对语音质量的感知直接受语音编码、丢包、时延以及抖动影响,所以传输时延小、误码及丢包率低是VoLTE 高清语音通话质量的关键,严重的丢包对通话质量影响,甚至导致掉话。
提取TOP指标进行筛选部分扇区进行优化验证。
二、分析过程影响VOLTE丢包的主要因素:障碍类:●LTE基站设备故障,影响业务质量覆盖类:●弱覆盖:缺站、阻挡、深度覆盖不足,距离过远●越区覆盖:超高站、波导效应●邻区漏配:邻区配置不合理导致假弱覆盖现象干扰类:●PUSCH带宽干扰:PUSCH解调能力下降,上行IBLER和BLER高●下行干扰:下行质差干扰主要来自于重叠覆盖和模三干扰,会导致UE无法检测或错检在PDCCH信道中的调度和反馈信息以及包本身调度类:●上行MCS低阶:上下行弱覆盖,或上行干扰,小区重载、边缘用户较多等原因造成基站或UE功率受限,导致MCS低●上行CCE资源不足:用户数多,弱覆盖,或边缘用户多,导致CCE8的聚合比例高●高负荷:PRB利用率高,用户多●PDCP层语音丢包弃定时器超时:上下行干扰弱覆盖造成调度不及时导致定时器超时●语数协同相关功能未开启:如上行补偿调度,RLC分片,基于TBS的MCS选阶,基于质量的SRVCC切换,边缘用户主动调度、下行CQI调整量优化开关●QCI调度优先级:设置错误可能导致调度不及时●上下行HARQ达到最大量:上下行干扰和弱覆盖高丢包问题小区优化分析思路:三、解决措施针对现网高丢包率小区,按照TOP小区处理思路,分析高丢包原因,根据不同原因输出合理优化方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V o l t e丢包率优化案例 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】
V o l t e丢包率优化方案一、概述
随着市场推广,移动VOLTE用户逐步增多,Volte丢包率对用户语音质量影响较大,为提升用户感知,现针对VOLTE上下行丢包进行优化,提升用户满意度。
二、Volte丢包率优化思路
1、影响Volte丢包率的因素
用户对语音质量的感知直接受语音编码、丢包、时延以及抖动影响。
语音编码:高速率编码消耗带宽大,低速率编码影响语音质量
丢包:数据包丢失,会显着地影响语音质量
时延:时延会带来语音变形和会话中断
抖动:效果类似丢包,某些字词听不清楚
2、Volte语音通话协议栈和接口映射
从协议上看,一个Volte语音通话的参与网元主要有:UE、eNB、SGW、IMS,既有RAN侧网元,又有传统EPC侧网元,还有IMS侧网元。
其中在无线测我们需要重点关注的网元是UE和eNB以及UE和eNB之间的Uu接口。
即主要涉及的协议是PHY、MAC、RLC、PDCP。
需要注意的是,IMS侧的控制面协议,在EPC是以用户面数据形式进行传输的,在IMS侧才会被拆分成控制面和用户面。
Volte语音通话涉及的协议图:
当前网络结构图:
三、Volte丢包率优化目标
梳理Volte语音通话中各设备的问题表现及对应的影响因素,即可明确无线优化手段:参数优化,覆盖优化,干扰优化,移动性能优化,邻区优化,容量优化,功能优化。
1、PDCP 层参数优化
PDCP 是对分组数据汇聚协议的一个简称。
它是UMTS 中的一个无线传输协议栈,它负责将IP 头压缩和解压、传输用户数据并维护为无损的无线网络服务子系统(SRNS )设置的无线承载的序列号。
涉及参数:pdb 、pdboffset 、aqmmode 、 UlPdcpSduTimerDiscardEnabled 涉及的功能:TcpOptimization?
参数优化原理:通过修改相关参数,延长或缩短?PDCP 层的丢包定时器,从而控制丢包 具体步骤如下 参数优化建议:
RLC RLC UM 接收实体设置了一个RLC PDC 重新排列的定时器,当检测到有收到PDU 时启动定时器,如果定时器超时,UM 接收实体将不再等待未接受的PDU,而是直接将接收缓冲区的PDU 重组为SDU 交给上层。
增大treorderingul/dl 参数,能增加UM 等待未接收PDU 的时间,以减少RLC
层丢包。
参数优化建议:
一个PDCCH可以映射到1,2,4或8个CCE,CCE的个数由GINR的估算值决定,PdcchLaGinrMargin给GINR增加一个Margin,使PDCCH映射到更多CCE,以增加PDCCH的解码能力。
提高pdcchLaGinrMargin可以提高PDCCH信道的信道质量,增加PDCCH CCE的聚合度,分配给UE更多的CCE资源。
参数优化建议:
在LTE中,控制信道的目标BLER为1%,数据信道的目标BLER位10%。
当BLER不超过10%时,UE将向eNodeB上报它所能解码的最高MCS。
通过调整ulBlerTargetEnabled、ulHarqVolteBlerTarget及dlMaxHARQTx/ulMaxHARQTx 上下行HARQ最大重传次数,可降低丢包率。
参数优化建议:
2
Multi-Layer Service-Triggered Mobility功能应用及语数分层参数优化
爱立信有新功能Multi-Layer Service-Triggered Mobility,可提供分QCI的配置A2,A5以及B2参数,从而优化不同业务的互操作性能。
3、4-4和4-2的ANR功能优化
经研究对比,FDD900基站,5M带宽,覆盖较TDD F频段20M带宽的基站RSRP高13dB, 较TDD D频段RSRP高19dB. 原始规划的邻区存在严重不足,建议对差小区激活ANR功能,进一步优化邻区关系。
四、优化效果对比
5月遂宁逐步在FDD上完成了相应的参数优化,整体实施效果明显。
1. 5月2日和5月3日,陆续完成VOLTE DRX参数优化,涉及266个基站。
2. 5月8日,完成Multi-Layer Service-Triggered Mobility功能激活,并完成语数分层的A2、A5、B2参数优化,共涉及基站796个,共计参数16477条。
3. 5月15日、5月16日和5月17日,陆续完成MAC层参数、PDCCH信道参数、PDCP层参数以及RLC层参数优化入网,以及差小区的ANR功能激活,共涉及参数8043条。
参数优化前后数据对比:
Volte语音上行丢包指标提升明显,从0.24%降至0.12%。
Volte语音下行丢包指标提升较大,从0.28%降至0.26%。
Volte语音掉话率指标提升明显,从0.9%降至0.7%。
Volte语音接通率指标提升较大,从99.75%提升至99.85 %。
SRVCC指标提升明显,从96.5%提升至98 %。