岩石的工程地质性质
合集下载
岩体的工程地质性质

1.整体块状结构岩体的工程地质性质 2.层状结构岩体的工程地质性质 3.碎裂结构岩体的工程地质性质 4.散体结构岩体的工程地质性质
岩体是在漫长的地质历史中形成与演变过来 的地质体,它被许许多多不同方向、不同规模的 断层面、节理面、裂隙面、层面、不整合面、接 触面等各种地质界面切割为形状不一、大小不等 的各种各样的块体。所以,岩体是指一定工程范 围内,一种或多种岩石中的各种结构面、结构体 的总体。因此,岩体不能以单块岩石为代表,单 块岩石强度较高,但被结构面切割破碎时,其构 成的岩体的强度却较小。所以岩体中结构面的发 育程度,性质及连通程度等,对岩体的工程地质 性质都有很大的影响。
岩体内结构面连通性
结构面的张开度和填充情况
结构面的张开度是指结构面的两壁隔开的距离。 以张开度的大小区分,主要分为:闭合的,微张开 的,张开的,宽张的。 闭合的结构面的力学性质取决于结构面两壁的 岩石性质和结构面粗糙程度。微张的结构面的剪切 强度比张开的结构面大。张开的和宽张的结构面, 其抗剪强度取决于填充物的成分和厚度。填充物为 黏土时比为砂质时强度低;为砂质时比砾质低。
块状结构岩体
层状结构岩体
碎裂结构岩体
散体结构岩体
谢~谢!
结构面的密度
它反映了节理的发育程度和岩体的完整性, 通常以线密度(条/m)或结构面的间距来表示. 节理发育程度分级
分级 节理间距(m) 节理发育程度 岩体完整性 Ⅰ >2 不发育 Ⅱ 0.5~2 较发育 Ⅲ 0.1~0.5 发育 Ⅳ <0.1 极发育
完整
块状
碎裂
破碎
结构面的连通性(贯通性、延展性) 在一定空间范围内的岩体中,结构面的走向、 倾向方向的连通程度。如图所示:
2.结构体类型 结构体是指岩体中被各类各级结构面切 割并包围的岩石块体及岩石集合体。根据其 外形特征结构体分为柱状、块状、板状、楔 形、菱形和锥形等六种基本形态。
岩体是在漫长的地质历史中形成与演变过来 的地质体,它被许许多多不同方向、不同规模的 断层面、节理面、裂隙面、层面、不整合面、接 触面等各种地质界面切割为形状不一、大小不等 的各种各样的块体。所以,岩体是指一定工程范 围内,一种或多种岩石中的各种结构面、结构体 的总体。因此,岩体不能以单块岩石为代表,单 块岩石强度较高,但被结构面切割破碎时,其构 成的岩体的强度却较小。所以岩体中结构面的发 育程度,性质及连通程度等,对岩体的工程地质 性质都有很大的影响。
岩体内结构面连通性
结构面的张开度和填充情况
结构面的张开度是指结构面的两壁隔开的距离。 以张开度的大小区分,主要分为:闭合的,微张开 的,张开的,宽张的。 闭合的结构面的力学性质取决于结构面两壁的 岩石性质和结构面粗糙程度。微张的结构面的剪切 强度比张开的结构面大。张开的和宽张的结构面, 其抗剪强度取决于填充物的成分和厚度。填充物为 黏土时比为砂质时强度低;为砂质时比砾质低。
块状结构岩体
层状结构岩体
碎裂结构岩体
散体结构岩体
谢~谢!
结构面的密度
它反映了节理的发育程度和岩体的完整性, 通常以线密度(条/m)或结构面的间距来表示. 节理发育程度分级
分级 节理间距(m) 节理发育程度 岩体完整性 Ⅰ >2 不发育 Ⅱ 0.5~2 较发育 Ⅲ 0.1~0.5 发育 Ⅳ <0.1 极发育
完整
块状
碎裂
破碎
结构面的连通性(贯通性、延展性) 在一定空间范围内的岩体中,结构面的走向、 倾向方向的连通程度。如图所示:
2.结构体类型 结构体是指岩体中被各类各级结构面切 割并包围的岩石块体及岩石集合体。根据其 外形特征结构体分为柱状、块状、板状、楔 形、菱形和锥形等六种基本形态。
岩石的工程地质性质

第五节 岩石的工程地质性质
一、岩石的工程地质性质指标
物理性质 密度,孔隙率,吸水性 力学性质 强度,变形 水理性质 透水性,溶解性,软化性,抗冻性
(一)物理性质
1.密度 岩石单位体积的质量。
2.相对密度 固体岩石的质量与同体积4℃水的质量的比值。
3.岩石的孔隙率 岩石中孔隙、裂隙的体积与岩石总体积的比值。
2.变形模量 应力与总应变的比值。
3.泊松比 轴向压力作用下的模向应变和纵向应变的比值。
(三)水理性质
1.透水性 2.溶解ห้องสมุดไป่ตู้ 3.软化性 4. 抗冻性
二、影响岩石工程性质的因素
1. 矿物成分 2. 结构
岩石按结构分类:结晶联结、胶结物联结 强度上的一般规律:
结构:结晶联结>胶结物联结 胶结物:
硅质胶结>铁质胶结>钙质胶结>泥质胶结 胶结方式(图1-4):
接触胶结>孔隙胶结>基底胶结
二、影响岩石工程性质的因素
3. 构造 一些强度底、易风化的矿物,多沿一定的
方向富集,或成条带状风布,或成局部的聚集体, 从而使岩石的强度在这些部位出现弱化。
4. 水的作用
5. 风化
4.吸水率 指在常压条件下岩石所吸水分质量与干燥岩石质量 的比值。
(二)力学性质
强度指标
1.抗压强度 岩石在单向压力作用下,抵抗压碎破坏的能力。
2.抗拉强度 岩石单向拉伸时,抵抗拉断破坏的能力。
3.抗剪强度 岩石抵抗剪切破坏的能力。可分为抗剪断强度、抗 剪强度和抗切强度。
(二)力学性质
变形指标
1.弹性模量 应力与弹性应变的比值。
一、岩石的工程地质性质指标
物理性质 密度,孔隙率,吸水性 力学性质 强度,变形 水理性质 透水性,溶解性,软化性,抗冻性
(一)物理性质
1.密度 岩石单位体积的质量。
2.相对密度 固体岩石的质量与同体积4℃水的质量的比值。
3.岩石的孔隙率 岩石中孔隙、裂隙的体积与岩石总体积的比值。
2.变形模量 应力与总应变的比值。
3.泊松比 轴向压力作用下的模向应变和纵向应变的比值。
(三)水理性质
1.透水性 2.溶解ห้องสมุดไป่ตู้ 3.软化性 4. 抗冻性
二、影响岩石工程性质的因素
1. 矿物成分 2. 结构
岩石按结构分类:结晶联结、胶结物联结 强度上的一般规律:
结构:结晶联结>胶结物联结 胶结物:
硅质胶结>铁质胶结>钙质胶结>泥质胶结 胶结方式(图1-4):
接触胶结>孔隙胶结>基底胶结
二、影响岩石工程性质的因素
3. 构造 一些强度底、易风化的矿物,多沿一定的
方向富集,或成条带状风布,或成局部的聚集体, 从而使岩石的强度在这些部位出现弱化。
4. 水的作用
5. 风化
4.吸水率 指在常压条件下岩石所吸水分质量与干燥岩石质量 的比值。
(二)力学性质
强度指标
1.抗压强度 岩石在单向压力作用下,抵抗压碎破坏的能力。
2.抗拉强度 岩石单向拉伸时,抵抗拉断破坏的能力。
3.抗剪强度 岩石抵抗剪切破坏的能力。可分为抗剪断强度、抗 剪强度和抗切强度。
(二)力学性质
变形指标
1.弹性模量 应力与弹性应变的比值。
第2章 岩石的工程地质特征

2.0 概述
一、岩石与土工程地质性质的差别: 其次,岩石虽然比起土来具有强度高、不易变形以及整体性 和抗水性好的优点,但作为地下工程体(如井筒、巷道、硐室、 隧道等)、建筑物地基或建筑物环境的岩体,也具有缺陷,这 就是岩体中存在着断层、节理等结构面,使岩体受到不同程度 的切割,完整性遭到破坏,导致岩体物理、力学性质变差和严 重不均匀。当断裂破坏严重时,岩体甚至破碎分散犹如碎屑土。 这种被称为构造岩的破碎岩石,有的属于半坚硬岩石,有的已 经成为松软土。岩体中的这种结构面分割情况,在土中是见不 到的,只有在某些裂隙黏土或老黄土中才有微弱的裂隙分布。 因此岩体的结构比土体复杂。即使是坚硬完整的岩块,在其内 部也存在有微裂隙和缺陷,如节理面、微破裂面等,这就程度 不同地削弱了岩块的强度,同时也导致了岩块力学性质的各向 异性。
2.1 岩石的基本特征
三、岩石的分类
工程中的岩石分类方式较多,现就常见的几种分类方式介绍 如下。 2、按照其坚固性划分 按照岩石的坚固性划分可分为两类:硬质岩石和软质岩石。 (1)硬质岩石是指其饱和单轴极限抗压强度≥30MPa 的岩石。 常见的硬质岩石有花岗岩、石灰岩、石英岩、闪长岩、玄武岩、 石英砂岩、硅质砾岩和花岗片麻岩等。 (2)软质岩石是指其饱和单轴极限抗压强度<30MPa的岩石。 常见的软质岩石有页岩、泥岩、绿泥石片岩和云母片岩等。 除此之外,岩石按照其风化程度可分为五类,即未风化、微 风化、弱风化、中等风化和强风化。(也有资料分三类/四类, 即微风化 /弱风化、中等风化和强风化。)
2.1 岩石的基本特征
二、岩石的结构与构造 1、岩石的结构 岩石的结构是指岩石中矿物的结晶程度、颗粒大小和形状以 及彼此间的组合方式。 这主要决定于地质作用进行的环境,在同一大类岩石中,由 于他们生成的环境不同,就产生了种种不同的结构。 2、岩石的构造 岩石的构造是指岩石中矿物集合体之间或矿物集合体与岩石 的其他组成部分之间的排列方式以及充填方式。这反映着地质 作用的性质。 由岩浆作用生成的岩浆岩大多具有块状构造;由变质作用生 成的变质岩,多数情况下他们的组成矿物一般都依一定方向平 行排列,具有片理状构造;由外力地质作用生成的沉积岩,是 逐层沉积的,多具有层状构造。
岩石的硬度、成因及工程地质性质

岩石的硬度、成因及工程地质性质
一、岩石的主要矿物
构成岩石的矿物称为造岩矿物。
矿物的成分、性质及其在各种因素影响下的变化,都会对岩石造成影响。
例如,岩石中的石英含量越多,钻孔的难度就越大,钻头、钻机等消耗量也就越多。
物理性质是鉴别矿物的主要依据。
依据颜色鉴定矿物的成分和结构,依据光泽鉴定风化程度,依据硬度鉴定矿物类别。
表1矿物硬度表
二、岩石的成因类型及其特征
三、岩浆岩、沉积岩和变质岩的地质特征
四、岩石的工程地质性质
1.岩石的物理力学性质
(1)岩石的主要物理性质
(2)岩石的主要力学性质。
1.5岩石的工程地质性质

软化系数表示。 软化系数kd:等于岩石在饱和状态下的极限抗压强度与
在风干状态下极限抗压强度的比。用小数表示。其值越小, 表明岩石在水作用下的强度和稳定性越差。
岩石的软化性决定于岩石的矿物成分、结构和构造特征。 岩浆岩和变质岩的软化系数大都接近于1.0;粘土矿物含量 高、孔隙度大、吸水率高的岩石,软化系数越小,如泥灰 岩和页岩。
降低岩石的强度。在工程中应当重视岩石中这些低强度 矿物含量的增长对岩石强度的降低作用。
但也不能简单地认为,含有高强度矿物的岩石,其强度一定就 高。因为岩石受力作用后,内部应力是通过矿物颗粒的直接接 触来传递的,如果强度较高的矿物在岩石中互不接触,则应力 的传递必然会受中间低强度矿物的影响,岩石不一定就能显示 出高的强度。
180~300
岩石名称 辉绿岩
抗压强度 (MPa)
200~350
岩石名称 页岩
抗压强度 (MPa)
10~100
100~250
玄武岩
150~300
砂岩
20~200
180~300
石英岩
150~350
砾岩
10~150
100~250 100~250 80~250
大理岩 片麻岩 灰岩
100~250 50~200 20~200
岩体 = 结构面 + 结构体
岩块的强度高,岩体的强度不一定高。
结构面的发育程度、性质、充填情况以 及连通程度等,对岩体的工程性质有很 大的影响。
29/35
1. 结构面
结构面:存在于岩体中的各种地质界面。
(1)结构面类型: 原生结构面:成岩时形成
沉积结构面:层面、层理、夹层等 火成结构面:原生节理、流纹面、接触面等等 变质结构面:片麻理、片理等等
在风干状态下极限抗压强度的比。用小数表示。其值越小, 表明岩石在水作用下的强度和稳定性越差。
岩石的软化性决定于岩石的矿物成分、结构和构造特征。 岩浆岩和变质岩的软化系数大都接近于1.0;粘土矿物含量 高、孔隙度大、吸水率高的岩石,软化系数越小,如泥灰 岩和页岩。
降低岩石的强度。在工程中应当重视岩石中这些低强度 矿物含量的增长对岩石强度的降低作用。
但也不能简单地认为,含有高强度矿物的岩石,其强度一定就 高。因为岩石受力作用后,内部应力是通过矿物颗粒的直接接 触来传递的,如果强度较高的矿物在岩石中互不接触,则应力 的传递必然会受中间低强度矿物的影响,岩石不一定就能显示 出高的强度。
180~300
岩石名称 辉绿岩
抗压强度 (MPa)
200~350
岩石名称 页岩
抗压强度 (MPa)
10~100
100~250
玄武岩
150~300
砂岩
20~200
180~300
石英岩
150~350
砾岩
10~150
100~250 100~250 80~250
大理岩 片麻岩 灰岩
100~250 50~200 20~200
岩体 = 结构面 + 结构体
岩块的强度高,岩体的强度不一定高。
结构面的发育程度、性质、充填情况以 及连通程度等,对岩体的工程性质有很 大的影响。
29/35
1. 结构面
结构面:存在于岩体中的各种地质界面。
(1)结构面类型: 原生结构面:成岩时形成
沉积结构面:层面、层理、夹层等 火成结构面:原生节理、流纹面、接触面等等 变质结构面:片麻理、片理等等
地质学:岩石的工程性质及工程分类

岩石的释荷
岩 石从 地 下 深 处 变 到 地表 条 件 时 由 于 上 覆静 压 力 减 小 而 产 生张 应 力 形 成 一 系 列与 地 表 平 行 的 宏 观和 微 观 的 内 部 破 裂面 。 形 成 这 种 裂 隙构 造 的 作 用称为剥离作用。
在物理风化作用强烈的地区,其结果是在陡坡、山 麓和沟谷中产生大量的危石、碎石和岩屑,这是造成崩 坍、落石、泥石洪流的基本条件。
岩浆岩:(酸性岩>基性岩)
变质岩:(浅变质>深变质)
2.矿物成分
岩浆岩抗风化能力的强弱与矿 橄榄石 ↓ 基性斜长石 物从岩浆中分异出来的顺序相反。 辉石 ↓ ↓ 单矿岩的抗风化能力强于复矿 中性斜长石 角闪石 岩; ↓ ↓ 浅色矿物(如正长石)抗风化 黑云母 酸性斜长石 ↙ ↘ 能力强于暗色矿物(如:橄榄石 正长石 等)。 ↓ 同种元素在不同的矿物中抗风 化能力不同。如石灰岩中的Ca易风 化,而斜长石中的Ca相对难风化。 白云母 ↓ 石英 抗 风 化 能 力 增 强
ds=ρs /ρw
孔隙比(e)与孔隙度(n)
e n ; 1 e n e 1 n
裂隙率(KT) ρ、ρs↑,n、e↓,岩石的工程性质↑
常见岩石的比重 (2.60~2.90)
岩石名称 花岗岩 比 重 2.50~2.84 岩石名称 泥灰岩 比 重 2.70~2.80
流纹岩
凝灰岩 闪长岩 斑岩
2.65左右
回弹强度: 用回弹仪弹击岩石面获得
回弹值,再由回弹值换算成抗压强度。
3、岩石破坏形式:
脆性破坏(没有明显变形突
然破坏)
塑性破坏(破坏前变形较大 )
二、风化作用
地表及地面以下一定深度的岩石,在气温
变化、水溶液、气体及生物等各种营力的作用 下,逐渐产生裂隙、发生机械破碎和矿物成分 的改变,丧失完整性的过程。
工程地质学-第二章 岩石的工程地质性质-1-岩石的物理性质

吸水性较大的岩石吸水后往往会产生膨胀,给井巷支护造 成很大压力。
在公路建筑材料中 Ks→1,石料抗冻性能差, Ks >0.85的 石料寒冷地区不用。
2、岩石的透水性
透水性:在一定的水压作用下,水穿透岩石的能 力。地下水存在于岩石孔隙、裂隙之中,而且大多数岩石 的孔隙裂隙是连通的,因而在一定的水压作用下,地下水 可以在岩石中渗透。岩石的这种能透水的性能称为岩石的 透水性。岩石的透水性大小不仅与岩石的孔隙度大小有关, 而且还与孔隙大小及其贯通程度有关。
I d 2 mr / ms %
试验前的试件烘干质量 mr ; 残留在筒内的试件烘干质量 ms 。
3.岩石的膨胀性 评价膨胀性岩体工程的稳定。
1)自由膨胀率:无约
束条件下,浸水后胀变形 与原尺寸 之比 轴向自由膨胀
VH H / H (%)
H——试件高度 径向自由膨胀
VD D / D (%)
n0Leabharlann Vn0 V Ws V
Vn0 Ws
d 2 w
式中:Ws为干燥岩石重量;γd,γw干燥岩石和水的重度。
(3)岩石的饱水系数(Ks)
岩石吸水率与饱水率之比称为岩石的饱水系数,即
Ks
1 2
饱水系数反映了岩石中大开空隙和小开空隙的相对含量。 饱水系数越大,岩石中的大开空隙越多,而小开空隙越少。
Vnb Ws
Ws Vnb1 d1
V W1
w
式中:W s为干燥岩石的重量;γd,γw分别为干燥岩石和水的重度。
(2)岩石的饱水率(ω2)
岩石的饱水率指在高压(150个大气压)或真空
条件下,岩石吸入水的重量Wω2与岩石干重量Ws之比,
即:
岩体工程地质性质

散介质的岩体结构,一般是工程清
挖的对象。
三、岩体的工程地质质量分类
作为工程建筑的地基、围岩或是材料的岩体,因为
其岩石质量不同,岩体结构类型不同,岩体结构面类型也
有差异,再加上水的参与,风化作用的影响等等,使岩体
质量的评定因素十分复杂。但为了满足工程建设的实际需
要必须对岩体的工程地质质量进行分类。
1.岩石质量指标(R、Q、D—Rock, quality designation)分类
一、岩体结构面类型
指切割岩石的所有地质界面,如岩层面、断层面、节理面等。 依据结构面成因将其分为三种类型。 1.原生结构面:与岩石同时形成,如层面、片理,收缩裂隙。
2.次生结构面:岩石形成后叠加形成的,节理面,断层面等。
3.软弱结构面:是一类特殊的结构面,特指岩体中具有一定
厚度的结构面。它可以是原生的,也可以是次生的,工程地质 勘察中应予以特别重视。如砂岩中的泥岩夹层,花岗岩中的裂 隙风化带等。
弹塑性变形 --褶皱
弹脆性变形 --断层
(1)微裂隙压密阶段:岩石中微裂隙 在荷重下压密,此阶段δ 变化小而ε 变 化大 (2)弹性变形阶段:裂隙进一步密合, 不产生新裂隙,δ 、ε 近乎同步增加(曲 线外切线近45°),最高点称弹性极限抗
δ
屈服点
ε
压强度,亦称屈服点。
(3)裂隙发展和破坏阶段:新裂隙产生并发展,δ 增加不 多,而ε 快速增加,直至最高点,岩石发生整体破坏,此点的 δ 值称单轴极限抗压强度。 (4)峰值后阶段:岩石大变形,δ 下降至稳定。
(1)整体结构:即完整岩体,强度高、力学性质稳定。 (2)块状结构:整体强度高、
块度均匀,与完整岩体相近。 (3)镶嵌结构:块度具有显著两分性,但整体强度仍较高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、岩石矿物成分 2、岩石结构、构造(矿物颗粒间的连结、颗粒大 小与形状、空隙性等) 3、岩石含水状态 4、实验条件:如试件形状、大小、高径比、加荷 速率
(2)岩石的抗拉强度——岩石单向受拉时,能承受的最 大拉应力。 用于岩体稳定性评价
①直接拉伸试验
②劈裂法
t
2Pt
d l
③岩点石荷载的试抗验拉强度远低于其抗压强度
1/10
P64表5-6
(3)岩石的剪切强度——岩石受剪力作用时抵抗剪切破坏 的最大剪应力。岩体稳定性计算必需的参数:C和φ
①抗剪断强度
泊松比μ 工程上,常采用应力—应变曲线上抗压强度50%的应变点
的横向应变与轴向应变之比。
二、单向受力条件下的岩石强度
根据外力的性质
岩石的抗压强度 岩石的抗拉强度 岩石 剪断破坏
为什么岩石破坏的类型只有拉断和剪断 两种,而没有“压坏”的说法?
答: 岩石的破坏实质上是由于岩石内部的某个(些)面
.. ..
非稳定裂隙扩展至岩石结构破坏阶段:
微裂隙迅速增加和不断扩展,形成局部拉裂或剪裂 面。体积变形由压缩变为膨胀,最终导致岩石结构完全 破坏,但仍具有整体性。
..
上界应力称为峰值强度(单轴抗压强度)
微裂隙聚结与扩展阶段:
裂隙扩展成分叉状,并相互联合形成宏 观断裂面,应力随应变增加而降低。
. .
弹性极限(比例极限) 屈服极限 峰值强度(单轴抗压强度) 残余强度
微裂隙及孔隙闭合阶段 A
可恢复弹性变形阶段 B
部分弹性变形至微裂隙 扩展阶段 C 非稳定裂隙扩展至岩石结 构破坏阶段 D 微裂隙聚结与扩展阶段 E
沿破断面滑移阶段 F
微裂隙及孔隙闭合阶段: 裂隙及孔隙逐渐被压密。非线性变形,曲线上凹
某些岩石的饱水、干抗压强度及软化系数
万州川东制革厂泥岩、粉砂质泥岩软化
随库水位升 降变化,岩 石含水性发
生变化
岩石的透水性
岩石能被水透过的性质,常用渗透系数 来表示。其大小取决于空隙的数量、大小、 方向及连通情况,一般认为,水在岩石中 的流动符合达西定律。
渗透流速
渗透系数
水力坡度
V kI
岩石渗透系数K 用达西渗透仪(室内)测定
携带式岩、土力学性质 多功能试验仪
试验项目:
1、岩石变形试验; 2、岩石抗压强度试验; 3、岩石抗拉强度试验; 4、岩石点荷载强度试验; 5、完整岩石直剪试验; 6、岩石结构面与软弱岩石 直剪试验; 7、土直剪试验(直接测试 钻孔取心土的抗剪指标); 8、碎石土天然或饱和状态 直剪试验。
影响岩石抗压强度的因素分析——P64-65
..
沿破断面滑移阶段: 分离成一系列的碎块体,并在外力作用下相
互滑移,变形不断增加。
应力降至某一稳定值,称为残余强度
.
单轴压缩岩石变形—破坏的典型应力-应变曲线 (受矿物成分及结构影响)
(2)岩石的变形参数
P62表5-5
变形模量E0(轴向应力σ /轴向应变ε L)
弹性模量;变形模量(初始模量Ei、切线模量Et、割线模量Es)
的特点,但当岩体中结构面发育时,岩体的完整性被破坏, 将导致其力学性质变差,且表现出不均匀性(非均质性、 各向异性);
3.岩体中具有较高的地应力,地应力的存在使岩体的物
理、力学性质变得更加复杂。土体中地应力相对较小。
第二节 岩石的物理性质
一、岩石的密度 二、岩石的空隙性 三、岩石的吸水性 四、岩石的软化性
试件制备
圆柱体:φ=48~54mm 高径比:2.0~2.5
加载、测量系统
分级施加单轴压力, 测量变形(应变片)
σ ~ε
横向应变
应力
σ( )
体积应变
σ ~ε
σ ~ε
轴向应变
应变 ε
三种应力-应变曲线
(1)岩石的应力-应变(轴向应变)曲线特征
. ... .. ..
岩石典型的完整应力-应变曲线
...
(1)岩石的抗压强度 b — 岩石单向受压时,能承受
的最大压应力。 用于岩体工程分类、岩体稳定性评价
①岩石单向受压条件下 的应力—应变曲线上的峰
.
值强度,即单轴抗压强度
②岩石强度的点荷载试验(天 然状态、干样、饱水样)
③携带式岩、土力学性质多功能试验仪
岩石强度的点荷载试验(天然状态、干样、饱水样)
第五章 岩石的工程地质性质
物理性质
力学性质
第一节 岩石(体)与土(体)工程地质性质的差别
1. 岩石矿物颗粒之间存在致密而牢固的连结(结晶连结
和胶结连结),这是岩石区别于土并赋予岩石以优良工程 地质性质的主要原因;土的颗粒间无连接、胶结连结或是 水连结,连结力弱。
2.岩石比土具有强度高,不易变形及整体性、抗水性强
上相邻质点间的距离增大、超过了一定限度的结果。 压应力只能使相邻质点的距离缩短,不可能使其
增大。在这种情况下岩石之所以被破坏,是由于压力在 岩石内部诱发出了拉应力和剪应力。实际导致产生破坏 面的是这些拉应力或者剪应力。
因此,尽管从表观上看,岩石的破坏是在压力作 用下发生的,然而岩石的破坏类型,有时可能属于拉断, 有时则可能属于剪断,有时兼具有拉断和剪断的性质。
五、岩石的抗冻性 六、岩石的透水性 七、岩石的热学性
岩石的软化性——岩石浸水后强度降低的性质。
表征指标:
软化系数:
kR
cw cd
饱水抗压强度 干抗压强度
软化系数在水工建筑勘察中应用较广, 软化系数越小,说明岩石的软化性越强,抗冻性 和抗风化能力弱。
软化系数>0.75,为软化性弱的岩石。
岩石的软化性取决于它的矿物组成及空隙性
岩体渗透性可用钻孔压水试验测定 教材P216-217
变形 第三节 岩石的力学性质
强度
岩石的力学性质:岩石在外力作用下所表现 的性质。在外力作用下岩石首先产生变形(弹性变 形、塑性变形),随力的不断增加,达到或超过某 一极限时,便产生破坏。
岩石破坏时的应力即为强度(抗压、抗拉、 剪切强度)。
一、单向受压条件下的岩石变形
.
可恢复弹性变形阶段: 随荷载增加,轴向变形成比例增长,并
在很大程度上是可恢复的弹性变形。 上界应力称为弹性极限
(比例极限) 其值约等于峰值强度的30-40%。
. .
部分弹性变形至微裂隙扩展阶段: 轴向应变近似直线,体积应变明显偏离直线。
上界应力称为屈服极限
其值约等于峰值强度的80%。 此时岩石压密至最密实状态
(2)岩石的抗拉强度——岩石单向受拉时,能承受的最 大拉应力。 用于岩体稳定性评价
①直接拉伸试验
②劈裂法
t
2Pt
d l
③岩点石荷载的试抗验拉强度远低于其抗压强度
1/10
P64表5-6
(3)岩石的剪切强度——岩石受剪力作用时抵抗剪切破坏 的最大剪应力。岩体稳定性计算必需的参数:C和φ
①抗剪断强度
泊松比μ 工程上,常采用应力—应变曲线上抗压强度50%的应变点
的横向应变与轴向应变之比。
二、单向受力条件下的岩石强度
根据外力的性质
岩石的抗压强度 岩石的抗拉强度 岩石 剪断破坏
为什么岩石破坏的类型只有拉断和剪断 两种,而没有“压坏”的说法?
答: 岩石的破坏实质上是由于岩石内部的某个(些)面
.. ..
非稳定裂隙扩展至岩石结构破坏阶段:
微裂隙迅速增加和不断扩展,形成局部拉裂或剪裂 面。体积变形由压缩变为膨胀,最终导致岩石结构完全 破坏,但仍具有整体性。
..
上界应力称为峰值强度(单轴抗压强度)
微裂隙聚结与扩展阶段:
裂隙扩展成分叉状,并相互联合形成宏 观断裂面,应力随应变增加而降低。
. .
弹性极限(比例极限) 屈服极限 峰值强度(单轴抗压强度) 残余强度
微裂隙及孔隙闭合阶段 A
可恢复弹性变形阶段 B
部分弹性变形至微裂隙 扩展阶段 C 非稳定裂隙扩展至岩石结 构破坏阶段 D 微裂隙聚结与扩展阶段 E
沿破断面滑移阶段 F
微裂隙及孔隙闭合阶段: 裂隙及孔隙逐渐被压密。非线性变形,曲线上凹
某些岩石的饱水、干抗压强度及软化系数
万州川东制革厂泥岩、粉砂质泥岩软化
随库水位升 降变化,岩 石含水性发
生变化
岩石的透水性
岩石能被水透过的性质,常用渗透系数 来表示。其大小取决于空隙的数量、大小、 方向及连通情况,一般认为,水在岩石中 的流动符合达西定律。
渗透流速
渗透系数
水力坡度
V kI
岩石渗透系数K 用达西渗透仪(室内)测定
携带式岩、土力学性质 多功能试验仪
试验项目:
1、岩石变形试验; 2、岩石抗压强度试验; 3、岩石抗拉强度试验; 4、岩石点荷载强度试验; 5、完整岩石直剪试验; 6、岩石结构面与软弱岩石 直剪试验; 7、土直剪试验(直接测试 钻孔取心土的抗剪指标); 8、碎石土天然或饱和状态 直剪试验。
影响岩石抗压强度的因素分析——P64-65
..
沿破断面滑移阶段: 分离成一系列的碎块体,并在外力作用下相
互滑移,变形不断增加。
应力降至某一稳定值,称为残余强度
.
单轴压缩岩石变形—破坏的典型应力-应变曲线 (受矿物成分及结构影响)
(2)岩石的变形参数
P62表5-5
变形模量E0(轴向应力σ /轴向应变ε L)
弹性模量;变形模量(初始模量Ei、切线模量Et、割线模量Es)
的特点,但当岩体中结构面发育时,岩体的完整性被破坏, 将导致其力学性质变差,且表现出不均匀性(非均质性、 各向异性);
3.岩体中具有较高的地应力,地应力的存在使岩体的物
理、力学性质变得更加复杂。土体中地应力相对较小。
第二节 岩石的物理性质
一、岩石的密度 二、岩石的空隙性 三、岩石的吸水性 四、岩石的软化性
试件制备
圆柱体:φ=48~54mm 高径比:2.0~2.5
加载、测量系统
分级施加单轴压力, 测量变形(应变片)
σ ~ε
横向应变
应力
σ( )
体积应变
σ ~ε
σ ~ε
轴向应变
应变 ε
三种应力-应变曲线
(1)岩石的应力-应变(轴向应变)曲线特征
. ... .. ..
岩石典型的完整应力-应变曲线
...
(1)岩石的抗压强度 b — 岩石单向受压时,能承受
的最大压应力。 用于岩体工程分类、岩体稳定性评价
①岩石单向受压条件下 的应力—应变曲线上的峰
.
值强度,即单轴抗压强度
②岩石强度的点荷载试验(天 然状态、干样、饱水样)
③携带式岩、土力学性质多功能试验仪
岩石强度的点荷载试验(天然状态、干样、饱水样)
第五章 岩石的工程地质性质
物理性质
力学性质
第一节 岩石(体)与土(体)工程地质性质的差别
1. 岩石矿物颗粒之间存在致密而牢固的连结(结晶连结
和胶结连结),这是岩石区别于土并赋予岩石以优良工程 地质性质的主要原因;土的颗粒间无连接、胶结连结或是 水连结,连结力弱。
2.岩石比土具有强度高,不易变形及整体性、抗水性强
上相邻质点间的距离增大、超过了一定限度的结果。 压应力只能使相邻质点的距离缩短,不可能使其
增大。在这种情况下岩石之所以被破坏,是由于压力在 岩石内部诱发出了拉应力和剪应力。实际导致产生破坏 面的是这些拉应力或者剪应力。
因此,尽管从表观上看,岩石的破坏是在压力作 用下发生的,然而岩石的破坏类型,有时可能属于拉断, 有时则可能属于剪断,有时兼具有拉断和剪断的性质。
五、岩石的抗冻性 六、岩石的透水性 七、岩石的热学性
岩石的软化性——岩石浸水后强度降低的性质。
表征指标:
软化系数:
kR
cw cd
饱水抗压强度 干抗压强度
软化系数在水工建筑勘察中应用较广, 软化系数越小,说明岩石的软化性越强,抗冻性 和抗风化能力弱。
软化系数>0.75,为软化性弱的岩石。
岩石的软化性取决于它的矿物组成及空隙性
岩体渗透性可用钻孔压水试验测定 教材P216-217
变形 第三节 岩石的力学性质
强度
岩石的力学性质:岩石在外力作用下所表现 的性质。在外力作用下岩石首先产生变形(弹性变 形、塑性变形),随力的不断增加,达到或超过某 一极限时,便产生破坏。
岩石破坏时的应力即为强度(抗压、抗拉、 剪切强度)。
一、单向受压条件下的岩石变形
.
可恢复弹性变形阶段: 随荷载增加,轴向变形成比例增长,并
在很大程度上是可恢复的弹性变形。 上界应力称为弹性极限
(比例极限) 其值约等于峰值强度的30-40%。
. .
部分弹性变形至微裂隙扩展阶段: 轴向应变近似直线,体积应变明显偏离直线。
上界应力称为屈服极限
其值约等于峰值强度的80%。 此时岩石压密至最密实状态