调节阀的特性及选择(DOC)
调节阀的特性及选择

调节阀的特性及选择调节阀是一种在空调控制系统中常见的调节设备,分为两通调节阀和三通调节阀两种。
调节阀可以和电动执行机构组成电动调节阀,或者和气动执行机构组成气动调节阀。
电动或气动调节阀安装在工艺管道上直接与被调介质相接触,具有调节、切断和分配流体的作用,因此它的性能好坏将直接影响自动控制系统的控制质量。
本文仅限于讨论在空调控制系统中常用的两通调节阀的特性和选择,暂不涉及三通调节阀。
1.调节阀工作原理从流体力学的观点看,调节阀是一个局部阻力可以变化的节流元件。
对不可压缩的流体,由伯努利方程可推导出调节阀的流量方程式为()()21221242P P D P P AQ -=-=ρζπρζ式中:Q——流体流经阀的流量,m 3/s ;P1、P2——进口端和出口端的压力,MPa ;A——阀所连接管道的截面面积,m 2; D——阀的公称通径,mm ;ρ——流体的密度,kg/m 3; ζ——阀的阻力系数。
可见当A 一定,(P 1-P 2)不变时,则流量仅随阻力系数变化。
阻力系数主要与流通面积(即阀的开度)有关,也与流体的性质和流动状态有关。
调节阀阻力系数的变化是通过阀芯行程的改变来实现的,即改变阀门开度,也就改变了阻力系数,从而达到调节流量的目的。
阀开得越大,ζ将越小,则通过的流量将越大。
2.调节阀的流量特性调节阀的流量特性是指流过调节阀的流体相对流量与调节阀相对开度之间的关系,即⎪⎭⎫⎝⎛=L l f Q Q max 式中:Q/Q max ——相对流量,即调节阀在某一开度的流量与最大流量之比; l/L ——相对开度,即调节阀某一开度的行程与全开时行程之比。
一般说来,改变调节阀的阀芯与阀座之间的节流面积,便可控制流量。
但实际上由于各种因素的影响,在节流面积变化的同时,还会引起阀前后压差的变化,从而使流量也发生变化。
为了便于分析,先假定阀前后压差固定,然后再引申到实际情况。
因此,流量特性有理想流量特性和工作流量特性之分。
调节阀流量特性介绍

调节阀流量特性介绍1. 流量特性调节阀的流量特性是指被调介质流过调节阀的相对流量与调节阀的相对开度之间的关系。
其数学表达式为式中:Qmax-- 调节阀全开时流量L---- 调节阀某一开度的行程Lmax-- 调节阀全开时行程调节阀的流量特性包括理想流量特性和工作流量特性。
理想流量特性是指在调节阀进出口压差固定不变情况下的流量特性,有直线、等百分比、抛物线及快开4种特性(表1)流量特性性质特点直线调节阀的相对流量与相对开度呈直线关系,即单位相对行程变化引起的相对流量变化是一个常数①小开度时,流量变化大,而大开度时流量变化小②小负荷时,调节性能过于灵敏而产生振荡,大负荷时调节迟缓而不及时③适应能力较差等百分比单位相对行程的变化引起的相对流量变化与此点的相对流量成正比①单位行程变化引起流量变化的百分率是相等的②在全行程范围内工作都较平稳,尤其在大开度时,放大倍数也大。
工作更为灵敏有效③ 应用广泛,适应性强抛物线特性介于直线特性和等百分比特性之间,使用上常以等百分比特性代之①特性介于直线特性与等百分比特性之间②调节性能较理想但阀瓣加工较困难快开在阀行程较小时,流量就有比较大的增加,很快达最大①在小开度时流量已很大,随着行程的增大,流量很快达到最大②一般用于双位调节和程序控制在实际系统中,阀门两侧的压力降并不是恒定的,使其发生变化的原因主要有两个方面。
一方面,由于泵的特性,当系统流量减小时由泵产生的系统压力增加。
另一方面,当流量减小时,盘管上的阻力也减小,导致较大的泵压加于阀门。
因此调节阀进出口的压差通常是变化的,在这种情况下,调节阀相对流量与相对开度之间的关系。
称为工作流量特性[1]。
具体可分为串联管道时的工作流量特性和并联管道时的工作流量特性。
(1)串联管道时的工作流量特性调节阀与管道串联时,因调节阀开度的变化会引起流量的变化,由流体力学理论可知,管道的阻力损失与流量成平方关系。
调节阀一旦动作,流量则改变,系统阻力也相应改变,因此调节阀压降也相应变化。
调节阀的选型依据

调节阀的选型依据
调节阀是工业现场不可或缺的流量调节设备之一,那么如何选择
一款适合自己需要的调节阀呢?下面就为大家介绍调节阀的选型依据:首先,根据流体介质的特性选型。
流体包括气体、液体和蒸汽,
在选型前需要了解流体的温度、粘度、密度、压力变化等参数,以便
进行匹配选择。
其次,根据流量变化情况选型。
通常,流量调节阀的调节范围是10:1或20:1,而超调范围在±5%~±10%之间,因此在选型前,需要
清楚了解实际工况下的流量范围,以便选择合适的调节阀。
第三,考虑阀门的执行机构。
阀门的执行机构根据不同的使用环
境可以分为手动、气动、电动等多种,需要根据现场实际情况进行选择。
如果环境复杂,需要远程控制,那么选择气动或电动阀门会更为
便捷。
第四,考虑安装环境。
调节阀的安装环境通常需要考虑阀门的防
爆等级、密封性、承压能力、安装方式等因素。
例如,在液化气体工
况下,需选用防爆等级较高的调节阀,比如说防爆设计的角行程式控
制阀。
第五,考虑配套件的选择。
配套的附件包括阀门定位器、阀门位
置传感器、防爆限位器、加热器等,也需要根据实际情况选择。
综上所述,对于调节阀的选型,需要综合考虑流体介质的特性、流量变化情况、阀门执行机构、安装环境、配套附件等多重因素,以达到最佳匹配。
调节阀选型、动作特性选择

1阀门选型1.1调节阀选型、动作特性选择1.1.1阀门选用原则生产过程中,被控介质的特性千差万别,有高压的,高粘度的,强腐蚀的;流体的流动状态也各不相同,有流量小的,有流量大的,有分流的,有合流的。
因此,必须根据流体的性质、工艺条件和过程控制要求,并参照各种阀门结构的特点进行综合考虑,同时兼顾经济性来最终确定合适的结构型式。
(1)调节阀选用的原则①调节前后压差较小,要求泄漏量小,一般可选用单座阀。
②调节低压差、大流量气体可选用蝶阀。
③调节强腐蚀性介质,可选用隔膜阀、衬氟单座阀。
④既要求调节,又要求切断时,可选用偏心旋转阀。
其他有此功能的还有球阀、蝶阀、隔膜阀。
⑤噪音较大时,可选用套筒阀。
⑥控制高粘度、带纤维、细颗粒的介质可选用偏心旋转阀或V型球阀。
⑦特别适用于浆状物料的调节阀有球阀、隔膜阀、蝶阀等。
(2)常用调节阀介绍以下介绍常用于工业生产的几种调节阀,除此之外,还有某些特殊用途的调节阀,比如高压阀、三通阀等。
总而言之,用于调节的阀门要求它的调节范围大,调节灵活省力.开得彻底,关得严密。
有时还必须耐热、耐腐蚀、耐高压,此外对其流量特性也有要求。
单座阀:优点是全关时比较严密,可以做到不泄漏。
但是当阀门前后压力差很大时,介质的不平衡力作用在阀芯上,会妨碍阀门的开闭,口径越大或压力差越大影响尤其严重。
因此,它只适用在口径小于25mrn的管路中,或压力差不大的情况下。
双座阀:要想关闭时完全不泄漏,必须两个阀芯同时和间座接触,但这只能在加工精度有保证的情况下才能做到,所以双座阀的制造工艺要求高。
此外,即使常温下确实不漏,但在高温下难免因间杆和同座膨胀不等仍然会引起泄漏。
虽然设计时要考虑到材抖的膨服系数,终难使热膨胀程度配合得十分完美。
而且双座间的流路比较复杂,不适合高粘度或含纤维的流体。
角形阀:有两种,流体的流路有底进侧出的和侧进底出的。
前者流动稳定性好,调节性能好,常被采用。
隔膜调节阀:用于腐蚀性介质的阀门常采用隔膜调节阀,这种阀用柔性耐腐蚀隔膜与阀座配合以调节流最,介质与外界隔离,能有效地防止介质外泄。
调节阀流量特性及选择分析

调节阀流量特性及选择分析摘要:调节阀在稳定生产、优化控制等方面发挥着重要作用,是保证调节系统安全和平稳运行的关键。
本文主要通过对调节阀的流量特性进行分析,讨论调节阀的选型问题。
关键词:调节阀;流量特性;阀门特性;选型1 引言根据《火力发电厂热工控制设计技术规定 DL/T 5175-2003》7.1.3 条规定:对选用的控制阀的配置情况应按下列要求进行校核。
阀门开度:开度为85%‐90%时应满足运行的最大需要。
阀门差压:对泄漏量有严格要求时,宜取流量为零时的最大差压;对泄漏量无特殊要求时,宜取最小流量下的最大差压,其值应不大于该阀门的最大允许差压。
阀门特性:控制阀门的工作流量特性应满足工艺系统的控制要求;阀门配套的附件应能满足控制系统的接口要求。
正确的选择和使用调节阀,不仅直接关系到整个自动控制系统的控制质量,而且还将对生产秩序的稳定产生重要的影响。
自动控制系统不能正常投入运行有2/3 以上是由于调节阀的选型不当造成的,因此,如何正确选择合适的调节阀,应引起仪控技术人员的重视。
2 调节阀流量特性分析2.1工作原理根据流体力学可知,调节阀是一个局部阻力可以变化的节流元件。
对不可压缩流体,调节阀的流量式中 p1——调节阀前压力;p2——调节阀后压力;A ——节流截面积;ξ——调节阀阻力系数;ρ——流体密度。
由式(1)可知,当A一定,Δp= p1-p2也恒定时,通过阀的流量Q随阻力系数ξ变化,即阻力系数ξ愈大,流量愈小。
而阻力系数ξ则与阀的结构和开度有关。
所以调节器输出信号控制阀门的开或关,可改变阀的阻力系数,从而改变被调介质的流量。
2.2调节阀的流动特性2.2.1调节阀理想流量特性调节阀理想流量特性是指给定压差下,阀门开度和通过阀门的流量之间的关系,对在自动控制中应用的调节阀而言,有三种基本的流量特性:快开、线形、等百分比。
开流量特性的阀门,较小的阀门开度可以达到很大的流量改变。
例如50%的开度可以达到阀门最大流量的65%至90%。
阀门分类、特性及其选择原则

阀门分类、特性及其选择原则在流体管道系统中,阀门是控制元件,其主要作用是隔离设备和管道系统、调节流量、防止回流、调节和排泄压力。
阀门可用于控制空气、水、蒸汽、各种腐蚀性介质、泥浆、油品、液态金属和放射性介质等各种类型流体的流动。
由于管道系统选择最适合的阀门显得非常重要,所以,了解阀门的特性及选择阀门的步骤和依据也变得至关重要起来。
阀门分类一、阀门总的可分两大类:第一类自动阀门:依靠介质(液体、气体)本身的能力而自行动作的阀门。
如止回阀、安全阀、调节阀、疏水阀、减压阀等。
第二类驱动阀门:借助手动、电动、液动、气动来操纵动作的阀门。
如闸阀,截止阀、节流阀、蝶阀、球阀、旋塞阀等。
二、按结构特征,根据关闭件相对于阀座移动的方向可分:1.截门形:关闭件沿着阀座中心移动;2.闸门形:关闭件沿着垂直阀座中心移动;3.旋塞和球形:关闭件是柱塞或球,围绕本身的中心线旋转;4.旋启形:关闭件围绕阀座外的轴旋转;5.碟形:关闭件的圆盘,围绕阀座内的轴旋转;6.滑阀形:关闭件在垂直于通道的方向滑动。
三、按用途,根据阀门的不同用途可分:1.开断用:用来接通或切断管路介质,如截止阀、闸阀、球阀、蝶阀等。
2.止回用:用来防止介质倒流,如止回阀。
3.调节用:用来调节介质的压力和流量,如调节阀、减压阀。
4.分配用:用来改变介质流向、分配介质,如三通旋塞、分配阀、滑阀等。
5.安全阀:在介质压力超过规定值时,用来排放多余的介质,保证管路系统及设备安全,如安全阀、事故阀。
6.其他特殊用途:如疏水阀、放空阀、排污阀等。
四、按驱动方式,根据不同的驱动方式可分:1.手动:借助手轮、手柄、杠杆或链轮等,有人力驱动,传动较大力矩时装有蜗轮、齿轮等减速装置。
2.电动:借助电机或其他电气装置来驱动。
3.液动:借助(水、油)来驱动。
4.气动:借助压缩空气来驱动。
五、按压力,根据阀门的公称压力可分:1.真空阀:绝对压力lt;0.1Mpa即760mm汞柱高的阀门,通常用mm汞柱或mm水柱表示压力。
调节阀的型式选择

调节阀的型式选择1、根据工艺变量(温度、压力、压降和流速等)、流体特性(粘度、腐蚀性、毒性、含悬浮物或纤维等)以及调节系统的要求(可调比、泄漏量和噪音等)、调节阀管道连结形式来综合选择调节阀型式。
2、一般情况下优先选用体积小,通过能力大,技术先进的直通单、双座调节阀和普通套筒阀。
也可以选用低S值节能阀和精小型调节阀。
3、根据不同场合,可选用下列型式调节阀。
1)直通单座阀一般适用于工艺要求泄漏量小、流量小、阀前后压差较小的场合。
但口径小于20mm的阀也广泛用于较大差压的场合;不适用于高粘度或含悬浮颗粒流体的场合。
2)直通双座阀一般适用于对泄漏量要求不严、流量大和阀前后压差较大的场合;但不适用于高粘度或含悬浮颗粒流体的场合。
3)套筒阀一般适用于流体洁净,不含固体颗粒的场合。
阀前后压差大和液体可能出现闪蒸或空化的场合。
4)球型阀适用于高粘度、含纤维、颗粒状和污秽流体的场合。
调节系统要求可调范围很宽(R可达200:1;300:1)的场合。
阀座密封垫采用软质材料时,适用于要求严密封的场合。
“0”型球阀一般适用两位式切断的场合。
“V”型球阀一般适用于连续调节系统,其流量特性近似于等百分比。
5)角型阀一般适用于下列场合:高粘度或悬浮物的流体(必要时,可接冲洗液管);气-液混相或易闪蒸的流体;管道要求直角配管的场合。
6)高压角型阀除适用5)中各种场合外,还适用于高静压、大压差的场合。
但一定要合理选择阀内件的材质和结构形式以延长使用寿命。
7)阀体分离型调节阀一般适用于高粘度、含颗粒、结晶以及纤维流体的场合;用于强酸、强碱或强腐蚀流体的场合时,阀体应选用耐腐蚀衬里,阀盖、阀芯和阀座应采用耐腐蚀压垫或相应的耐腐蚀材料。
其流量特性比隔膜阀好。
8)偏心旋转阀适用于流通能力较大,可调比宽(R可达50:1或100:1)和大压差,严密封的场合。
9)蝶型阀适用于大口径、大流量和低压差的场合;一般适用于浓浊液及含悬浮颗粒的流体场合;用于要求严密封的场合,应采用橡胶或聚四氟乙烯软密封结构;对腐蚀性流体,需要使用相应的耐蚀衬里。
调节阀特点

调节阀特点调整阀(controlvalve)用于调整介质的流量、压力和液位。
依据调整部位信号,自动掌握阀门的开度,从而达到介质流量、压力和液位的调整。
调整阀分电动调整阀、气动调整阀和液动调整阀等。
调整阀由电动执行机构或气动执行机构和调整阀两部分组成。
调整并通常分为直通单座式和直通双座式两种,后者具有流通力量大、不平衡办小和操作稳定的特点,所以通常特殊适用于大流量、高压降和泄漏少的场合。
流通力量Cv是选择调整阀的主要参数之一,调整阀的流通力量的定义为:当调整阀全开时,阀两端压差为0.1MPa,流体密度为1g/cm3时,每小时流径调整阀的流量数,称为流通力量,也称流量系数,以Cv表示,单位为t/h,液体的Cv值按下式计算。
依据流通力量Cv值大小查表,就可以确定调整阀的公称通径DN。
调整阀的流量特性,是在阀两端压差保持恒定的条件下,介质流经调整阀的相对流量与它的开度之间关系。
调整阀的流量特性有线性特性,等百分比特性及抛物线特性三种。
三种注量特性的意义如下:(1)等百分比特性(对数)等百分比特性的相对行程和相对流量不成直线关系,在行程的每一点上单位行程变化所引起的流量的变化与此点的流量成正比,流量变化的百分比是相等的。
所以它的优点是流量小时,流量变化小,流量大时,则流量变化大,也就是在不同开度上,具有相同的调整精度。
(2)线性特性(线性)线性特性的相对行程和相对流量成直线关系。
单位行程的变化所引起的流量变化是不变的。
流量大时,流量相对值变化小,流量小时,则流量相对值变化大。
(3)抛物线特性流量按行程的二方成比例变化,大体具有线性和等百分比特性的中间特性。
从上述三种特性的分析可以看出,就其调整性能上讲,以等百分比特性为最优,其调整稳定,调整性能好。
而抛物线特性又比线性特性的调整性能好,可依据使用场合的要求不同,选择其中任何一种流量特性。
调整阀(controlvalve)用于调整介质的流量、压力和液位。
依据调整部位信号,自动掌握阀门的开度,从而达到介质流量、压力和液位的调整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调节阀的特性及选择调节阀是一种在空调控制系统中常见的调节设备,分为两通调节阀和三通调节阀两种。
调节阀可以和电动执行机构组成电动调节阀,或者和气动执行机构组成气动调节阀。
电动或气动调节阀安装在工艺管道上直接与被调介质相接触,具有调节、切断和分配流体的作用,因此它的性能好坏将直接影响自动控制系统的控制质量。
本文仅限于讨论在空调控制系统中常用的两通调节阀的特性和选择,暂不涉及三通调节阀。
1.调节阀工作原理从流体力学的观点看,调节阀是一个局部阻力可以变化的节流元件。
对不可压缩的流体,由伯努利方程可推导出调节阀的流量方程式为()()21221242P P D P P AQ -=-=ρζπρζ式中:Q——流体流经阀的流量,m 3/s ;P1、P2——进口端和出口端的压力,MPa ;A——阀所连接管道的截面面积,m 2; D——阀的公称通径,mm ;ρ——流体的密度,kg/m 3; ζ——阀的阻力系数。
可见当A 一定,(P 1-P 2)不变时,则流量仅随阻力系数变化。
阻力系数主要与流通面积(即阀的开度)有关,也与流体的性质和流动状态有关。
调节阀阻力系数的变化是通过阀芯行程的改变来实现的,即改变阀门开度,也就改变了阻力系数,从而达到调节流量的目的。
阀开得越大,ζ将越小,则通过的流量将越大。
2.调节阀的流量特性调节阀的流量特性是指流过调节阀的流体相对流量与调节阀相对开度之间的关系,即⎪⎭⎫⎝⎛=L l f Q Q max 式中:Q/Q max ——相对流量,即调节阀在某一开度的流量与最大流量之比; l/L ——相对开度,即调节阀某一开度的行程与全开时行程之比。
一般说来,改变调节阀的阀芯与阀座之间的节流面积,便可控制流量。
但实际上由于各种因素的影响,在节流面积变化的同时,还会引起阀前后压差的变化,从而使流量也发生变化。
为了便于分析,先假定阀前后压差固定,然后再引申到实际情况。
因此,流量特性有理想流量特性和工作流量特性之分。
2.1 调节阀的理想流量特性调节阀在阀前后压差不变的情况下的流量特性为调节阀的理想流量特性。
调节阀的理想流量特性仅由阀芯的形状所决定,典型的理想流量特性有直线流量特性、等百分比(或称对数)流量特性、抛物线流量特性和快开流量特性,如图5-6所示。
(1)直线流量特性直线流量特性是指调节阀的相对流量与相对开度成直线关系,即单位行程变化所引起的流量变化是常数。
由此可见,直线流量特性调节阀在行程变化相同的条件下所引起的相对流量变化也相同,但相对流量变化的相对值不同。
即流量小时,相对流量变化的相对值大;而流量大时,相对流量变化的相对值小。
也就是说,阀在小开度时控制作用太强,不易控制,易使系统产生振荡;而在大开度时,控制作用太弱,不够灵敏,控制难于及时。
(2)等百分比(对数)流量特性等百分比流量特性是指单位相对行程变化所引起的相对流量变化与此点的相对流量成正比关系,即该点单位相对行程变化的百分数与相对流量变化的百分数相等,故称为等百分比流量特性。
等百分比流量特性的相对开度与相对流量成对数关系,故又称之为对数流量特性。
这种调节阀的放大系数是随行程的增大而递增,即在开度小时,相对流量变化小,工作缓和平稳,易于控制;而开度大时,相对流量变化大,工作灵敏度高,这样有利于控制系统的工作稳定。
(3)抛物线流量特性抛物线流量特性的调节阀的相对流量与相对开度的二次方成比例关系。
(4)快开流量特性调节阀在开度较小时就有较大流量,随开度的增大,流量很快就达到最大,故称为快开流量特性。
快开流量特性的阀芯是平板形的,适用于迅速启闭的切断阀或双位控制系统。
2.2 工作流量特性在实际使用时,调节阀总是与具有阻力的表冷器、换热器、管道等相连接,即使能保持供、回水压差不变,也不能始终保持调节阀前后的压差恒定。
因此,虽然在同一相对开度下,通过调节阀的实际流量将与理想特性时所对应的流量不同。
所谓调节阀的工作流量特性就是指调节阀在前后压差随负荷变化的工作条件下,它的相对流量与相对开度之间的关系。
(1)串联管道时调节阀的工作流量特性直通调节阀与管道和设备串联的系统及其压差变化情况如图5-7所示。
调节阀安装在串联管道系统中,串联管道系统的阻力与通过管道的介质流量成平方关系。
当系统总压差为一定时,调节阀一旦动作,随着流量的增大,串联设备和管道的阻力亦增大,这就使调节阀上压差减小,结果引起流量特性的改变,理想流量特性就变为工作流量特性。
假设在无其他串联设备阻力的条件下,阀全开时的流量为Q max ,在有串联设备阻力的条件下,阀全开的流量为Q 100,两者关系可用下式表示:v P Q Q max 100=式中P v 为阀全开时,阀上的压差与系统总压差之比值,称为阀权度,也称为阀门能力或压差比,即PP P v ∆∆=1式中:ΔP 1——调节阀全开时阀上的压力降;ΔP ——包括调节阀在内的全部管路系统总的压力降。
显然,随着串联阻力的增大,P v 值减小,则Q 100会减小,这时阀的实际流量特性偏离理想流量特性也就愈严重。
以Q 100作参比值,不同P v 值下的工作流量特性如图5-8所示。
由图5-8可以看出,当P v =1时,理想流量特性与工作流量特性一致;随着P v 的值降低,Q 100逐渐减小,所以实际可调比R(R=Q max /Q min )是调节阀所能控制的最大与最小畸变,也会逐渐减小;随着P v 值的减小,特性曲线发生畸变,直线特性阀趋于快开特性,而等百分比特性阀趋于直线特性阀,这就使得调节阀在小开度时控制不稳定,大开度时控制迟缓,会严重影响控制系统的调节质量。
因此,在实际使用时,对P v 值要加以限制,一般希望不低于0.3~0.5。
(2)并联管道时调节阀的工作流量特性调节阀一般都装有旁路,以便于手动操作和维护,当负荷提高或调节阀选小了时,可以打开一些旁路阀,此时调节阀的理想特性就改变为工作特性。
若以X 代表管道并联时调节阀全开流量1Q 与总管最大流量max Q 之比,即m axm ax1Q Q X =,可以得到压差为一定而X 值不同时的工作流量特性,如图5-9所示。
当X=1,即旁路阀关闭时,调节阀的工作特性同理想特性一致;随着X 的减小,系统的可调比将大大下降。
同时,在实际应用中总有串联管道阻力的影响,调节阀上压差还会随流量的增加而降低,使可调比更为下降。
一般认为X 值不应低于0.5,最好不低于0.8。
3.调节阀的可调比调节阀的可调比就是调节阀所能控制的最大流量与最小流量之比。
可调比也称可调范围,若以R 来表示,则m inm axQ Q R =要注意最小流量Q min 和泄漏量的含义不同。
最小流量是指可调流量的下限值,它一般为最大流量Q max 的2%-4%,而泄漏量是阀全关时泄漏的量,它仅为最大流量的0.1%-0.01%。
3.1 理想可调比当调节阀上压差一定时,可调比称为理想可调比,即minmaxmin max C C Q Q R ==也就是说,理想可调比等于最大流量系数与最小流量系数之比,它反映了调节阀调节能力的大小,是由结构设计所决定的。
一般总是希望可调比大一些为好,但由于阀芯结构设计及加工方面的限制,流量系数C min 不能太小,因此,理想可调比一般均小于50,我国规定在设计中理想可调比统一取30。
3.2 实际可调比调节阀在实际工作时不是与管路系统串联就是与旁路阀并联,随管路系统的阻力变化或旁路阀开启程度的不同,调节阀的可调比也会产生相应的变化,这时的可调比就称为实际可调比。
(1)串联管道时的可调比如图5-7所示的串联管道,由于流量的增加,管道的阻力损失也增加。
若系统的总压差ΔP 不变,则分配到调节阀上的压差相应减小,这就使调节阀所能通过的最大流量减小, 所以,串联管道时调节阀实际可调比会降低。
若用R ′表示调节阀的实际可调比,则PP RP P RP C P C Q Q R ∆∆≈∆∆=∆∆=='min1max 1min 1max1minmin1max minmaxρρ式中 max 1P ∆——调节阀全关时阀前后的压差,约等于系统的总压差P ∆;min 1P ∆——调节阀全开时阀前后的压差。
由串联管道时调节阀的工作流量特性可知,PP ∆∆m in1=v P ,即阀权度。
则v P R R ='由上式可知,当v P 值越小,即串联管道的阻力损失越大时,实际可调比就越小。
(2)并联管道时的可调比在图3-13所示并联管道中,由于旁路流量的存在,相当于提高了调节阀的最小流量min Q 。
当打开与调节阀并联的旁路时,实际可调比为:2min 1maxQ Q Q R +='由m ax m ax 1Q Q X =, m in1m ax 1Q QR = 可得: max min 1Q RXQ =, max max 1max 2)1(Q X Q Q Q -=-= 因此XR R RQ Q Q R )1(2min 1max -+=+='从上式可知:当X 值越小,即旁路流量越大时,实际可调比就越小,由此可见旁路阀的开度对实际可调比的影响极大。
由于150~30>>=R ,因此2max max 1max max 11Q Q Q Q Q X R =-=-≈' 上式表明在并联管道中调节阀的实际可调比与调节阀本身的可调比近乎无关,由于调节阀的最小流量一般比旁路流量小得多,故其实际可调比实际上只是总管最大流量与旁路流量的比值。
综上所述,串联或并联管道都将使实际可调比下降,所以在选择调节阀和组成系统时不应使v P 值太小,并且要尽量避免打开并联管路的旁路阀,以保证调节阀有足够的可调比。
3.3 调节阀流通能力调节阀流通能力是衡量阀门流量控制的能力。
其定义为:当调节阀全开、阀两端压差为105Pa 、流体密度为ρ=1g /cm 3时,每小时流经调节阀的流量数,以m 3/h 计。
从调节阀的流量方程式可知:()P A P P A Q ∆=-=ρζρζ2221式中 Q ——流体流量,m 3/h ;A ——调节阀接管截面积,cm 2;P 1——阀前压力,105Pa =10N/cm 2;P 2——阀后压力,105Pa =10N/cm 2;ΔP ——阀两端压差,105Pa =10N/cm 2;ρ——流体的密度,1g/cm 3=10N -5·S 2/cm 4。
把采用的单位量纲代人上式后可得到:ρζρζρζPAP AP A Q ∆=∆⨯=∆=-09.51010225令ζAC 09.5=,则有: ρPCQ ∆=,C 称为调节阀的流通能力,又称为调节阀的流量系数。
由于P 1、P 2和ΔP 的单位是105Pa ,使用起来不方便,若改为Pa 作单位,而C 仍用上式计算,则有:ρPC Q ∆=316,即 ρPQ C ∆=316上式是ΔP 以Pa 为单位,ρ以g/cm 3作单位时计算C 值的基本公式。