【附20套高考模拟试题】2020届安徽省合肥一中高考数学模拟试卷含答案
2020学年安徽省合肥市高考一模数学理

2020年安徽省合肥市高考一模数学理一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合M={x|log 2x <1},集合N={x|x 2-1≤0},则M ∩N=( ) A.{x|1≤x <2} B.{x|-1≤x <2} C.{x|-1<x ≤1} D.{x|0<x ≤1}解析:集合M={x|log 2x <1}={x|0<x <2},集合N={x|x 2-1≤0}={x|-1≤x ≤1}, 则M ∩N={x|0<x ≤1}. 答案:D.2.已知复数z=21ii+-(i 为虚数单位),那么z 的共轭复数为( ) A.3322i + B.1322i - C.1322i + D.3322i - 解析:利用复数的运算法则、共轭复数的定义即可得出. 答案:B.3.要想得到函数y=sin2x+1的图象,只需将函数y=cos2x 的图象( )A.向左平移4π个单位,再向上平移1个单位 B.向右平移4π个单位,再向上平移1个单位C.向左平移2π个单位,再向下平移1个单位D.向右平移2π个单位,再向上平移1个单位解析:利用诱导公式化简成同名函数,在平移变换(左加右减,上加下减)即可. 答案:B.4.执行如图的程序框图,则输出的n 为( )A.9B.11C.13D.15解析:算法的功能是求满足11111352017Sn=⋅⋅⋯<的最大的正整数n+2的值,验证S=1·3·…·13>2017,从而确定输出的n值. 答案:C.5.已知双曲线24y-x2=1的两条渐近线分别与抛物线y2=2px(p>0)的准线交于A,B两点,O为坐标原点,若△OAB的面积为1,则p的值为( ) A.1D.4解析:求出双曲线24y-x2=1的两条渐近线方程与抛物线y2=2px(p>0)的准线方程,进而求出A,B两点的坐标,再由△AOB的面积为1列出方程,由此方程求出p的值.答案:B.6.△ABC的内角A,B,C的对边分别为a,b,c,若,bcosA+acosB=2,则△ABC的外接圆的面积为( )A.4πB.8πC.9πD.36π 解析:由余弦定理化简已知等式可求c 的值,利用同角三角函数基本关系式可求sinC 的值,进而利用正弦定理可求三角形的外接圆的半径R 的值,利用圆的面积公式即可计算得解. 答案:C.7.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A 、B 为两个同高的几何体,p :A 、B 的体积不相等,q :A 、B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由p ⇒q ,反之不成立. ∴p 是q 的充分不必要条件. 答案:A.8.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 的方程为x 2-y=0)的点的个数的估计值为( )A.5000B.6667C.7500D.7854解析:由题意,阴影部分的面积S=()12310013|213xdx x x ⎛⎰⎫⎪⎝⎭-=-=,正方形的面积为1,利用正方形中随机投掷10000个点,即可得出结论.答案:B.9.一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为( )A.72+6πB.72+4πC.48+6πD.48+4π解析:由已知中的三视图,可得该几何体是一个以正视图为为底面的柱体,由柱体表面积公式,可得答案. 答案:A.10.已知(ax+b)6的展开式中x 4项的系数与x 5项的系数分别为135与-18,则(ax+b)6展开式所有项系数之和为( ) A.-1 B.1 C.32 D.64解析:由题意先求得a 、b 的值,再令x=1求出展开式中所有项的系数和. 答案:D.11.已知函数f(x)=(x 2-2x)sin(x-1)+x+1在[-1,3]上的最大值为M ,最小值为m ,则M+m=( ) A.4 B.2 C.1 D.0解析:把已知函数解析式变形,可得f(x)=[(x-1)2-1]sin(x-1)+x-1+2,令g(x)=(x-1)2sin(x-1)-sin(x-1)+(x-1),结合g(2-x)+g(x)=0,可得g(x)关于(1,0)中心对称,则f(x)在[-1,3]上关于(1,2)中心对称,从而求得M+m 的值. 答案:A.12.已知函数f(x)=221012102x x x x x ⎧+⎪⎨-+≥⎪⎩,<,,方程f 2(x)-af(x)+b=0(b ≠0)有六个不同的实数解,则3a+b 的取值范围是( )A.[6,11]B.[3,11]C.(6,11)D.(3,11)解析:作函数f(x)=221012102x x x x x ⎧+⎪⎨-+≥⎪⎩,<,的图象,从而利用数形结合知t 2-at+b=0有2个不同的正实数解,且其中一个为1,从而可得-1-a >0且-1-a ≠1;从而解得. 答案:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.命题:“∃x ∈R ,x 2-ax+1<0”的否定为_____.解析:直接利用特称命题的否定是全称命题写出结果即可.答案:∀x ∈R ,x 2-ax+1≥0.14.已知a =(1,3),b =(-2,k),且(a +2b )∥(3a -b ),则实数k=_____.解析:利用向量坐标运算性质、向量共线定理即可得出. 答案:-6.15.已知sin2α-2=2cos2α,则sin 2α+sin2α=_____.解析:利用同角三角函数的基本关系,求得cos α=0 或tan α=2,从而求得要求式子的值. 答案:1或85.16.已知直线y=b 与函数f(x)=2x+3和g(x)=ax+lnx 分别交于A ,B 两点,若|AB|的最小值为2,则a+b=_____.解析:设A(x 1,b),B(x 2,b),则2x 1+3=ax 2+lnx 2=b ,表示出x 1,求出|AB|,利用导数,结合最小值也为极小值,可得极值点,求出最小值,解方程可得a=1,进而得到b ,求出a+b. 答案:2.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知等差数列{a n }的前n 项和为S n ,且满足S 4=24,S 7=63. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若b n =2n a+(-1)n·a n ,求数列{b n }的前n 项和T n .解析:(Ⅰ)利用等差数列的求和公式及其通项公式即可得出.(Ⅱ)通过分类讨论,利用等差数列与等比数列的求和公式即可得出. 答案:(Ⅰ)因为{a n }为等差数列,所以4117143424327627632S a d a d S a d ⎧⎪⎧⎪⇒⇒⎨⨯=+==⨯=⎪⎩+=⎨⎩⎪=a n =2n+1.(Ⅱ)∵b n =2n a+(-1)n ·a n =22n+1+(-1)n ·(2n+1)=2×4n +(-1)n·(2n+1)∴T n =2(41+42+…+4n )+[-3+5-7+9-…+(-1)n(2n+1)]=()8413n -+G n ,当n=2k(k ∈N *)时,G n =2×2n =n ,∴T n =()8413n -+n当n=2k-1(k ∈N *)时,G n =2×12n --(2n+1)=-n-2, ∴T n =()8413n --n-2,∴T n =()()**841238412213()()n n n n k k N n n k k N ⎧-⎪+=∈⎪⎨-⎪--=-∈⎪⎩,,.18.某公司在迎新年晚会上举行抽奖活动,有甲,乙两个抽奖方案供员工选择. 方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为45,第一次抽奖,若未中奖,则抽奖结束,若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,则获得1000元;若未中奖,则所获得奖金为0元.方案乙:员工连续三次抽奖,每次中奖率均为25,每次中奖均可获得奖金400元. (Ⅰ)求某员工选择方案甲进行抽奖所获奖金X(元)的分布列;(Ⅱ)试比较某员工选择方案乙与选择方案甲进行抽奖,哪个方案更划算? 解析:(Ⅰ)利用相互独立事件的概率计算公式即可得出. (Ⅱ)利用数学期望计算公式、二项分布列的性质即可得出. 答案:(Ⅰ)P(X=0)=14117552525+⨯⨯=,P(X=500)=412525⨯=,P(X=1000)=414852525⨯⨯=, 所以某员工选择方案甲进行抽奖所获奖金X(元)的分布列为(Ⅱ)由(Ⅰ)可知,选择方案甲进行抽奖所获得奖金X 的均值E(X)=500×25+1000×825=520, 若选择方案乙进行抽奖中奖次数ξ~B(3,25),则E(ξ)=3×25=65, 抽奖所获奖金X 的均值E(X)=E(400ξ)=400E(ξ)=480,故选择方案甲较划算.19.如图所示,在四棱台ABCD-A 1B 1C 1D 1中,AA 1⊥底面ABCD ,四边形ABCD 为菱形,∠BAD=120°,AB=AA 1=2A 1B 1=2.(Ⅰ)若M 为CD 中点,求证:AM ⊥平面AA 1B 1B ; (Ⅱ)求直线DD 1与平面A 1BD 所成角的正弦值.解析:(Ⅰ)推导出AM ⊥CD ,AM ⊥AB ,AM ⊥AA 1,由此能证明AM ⊥平面AA 1B1B .(Ⅱ)分别以AB ,AM ,AA 1为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系A-xyz ,利用向量法能求出直线DD 1与平面A 1BD 所成角θ的正弦值. 答案:(Ⅰ)∵四边形为菱形,∠BAD=120°,连结AC , ∴△ACD 为等边三角形,又∵M 为CD 中点,∴AM ⊥CD , 由CD ∥AB 得,∴AM ⊥AB ,∵AA 1⊥底面ABCD ,AM ⊂底面ABCD ,∴AM ⊥AA 1, 又∵AB ∩AA 1=A ,∴AM ⊥平面AA 1B 1B解:(Ⅱ)∵四边形ABCD 为菱形,∠BAD=120°,AB=AA 1=2A 1B 1=2, ∴DM=1,AM=3,∠AMD=∠BAM=90°, 又∵AA 1⊥底面ABCD ,分别以AB ,AM ,AA 1为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系A-xyz ,则A 1(0,0,2)、B(2,0,0)、D(-10)、D 1(-12,2,2),∴1DD =(12,2),BD =(-30),1A B =(2,0,-2), 设平面A 1BD 的一个法向量n =(x ,y ,z),则有1·030220·0n BD x y x z n A B ⎧⎧=-+=⎪⎪⇒⇒==⎨⎨-==⎪⎪⎩⎩,令x=1,则n =(11),∴直线DD 1与平面A 1BD 所成角θ的正弦值:sin θ=|cos <n ,1DD >|=11||15n DD n DD ⋅=⋅.20.已知点F 为椭圆E :2222x y a b+=1(a >b >0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线42x y+=1与椭圆E 有且仅有一个交点M. (Ⅰ)求椭圆E 的方程; (Ⅱ)设直线42x y+=1与y 轴交于P ,过点P 的直线与椭圆E 交于两不同点A ,B ,若λ|PM|2=|PA|·|PB|,求实数λ的取值范围.解析:(Ⅰ)由题意可得a ,b 与c 的关系,化椭圆方程为222243x y c c+=1,联立直线方程与椭圆方程,由判别式为0求得c ,则椭圆方程可求;(Ⅱ)由(Ⅰ)求得M 坐标,得到|PM|2,当直线l 与x 轴垂直时,直接由λ|PM|2=|PA|·|PB|求得λ值;当直线l 与x 轴不垂直时,设直线l 的方程为y=kx+2,联立直线方程与椭圆方程,利用判别式大于0求得k 的取值范围,再由根与系数的关系,结合λ|PM|2=|PA|·|PB|,把λ用含有k 的表达式表示,则实数λ的取值范围可求.答案:(Ⅰ)由题意,得a=2c ,,则椭圆E 为:222243x y c c+=1,联立22243142y c x x y ++⎧=⎪⎨=⎪⎪⎪⎩,得x 2-2x+4-3c 2=0,∵直线42x y+=1与椭圆E 有且仅有一个交点M ,∴△=4-4(4-3c 2)=0,得c 2=1,∴椭圆E 的方程为2243x y +=1; (Ⅱ)由(Ⅰ)得M(1,32), ∵直线42x y +=1与y 轴交于P(0,2),∴|PM|2=54, 当直线l与x 轴垂直时,|PA|·, 由λ|PM|2=|PA|·|PB|,得λ=45,当直线l 与x 轴不垂直时,设直线l 的方程为y=kx+2,A(x 1,y 1),B(x 2,y 2), 联立22234120y kx x y =+⎧⎨+-=⎩,得(3+4k 2)x 2+16kx+4=0,依题意得,x 1x 2=2434k+,且△=48(4k 2-1)>0, ∴|PA||PB|=(1+k 2)x 1x 2=(1+k 2)·2434k +=1+2134k +=54λ,∴λ=45(1+2134k +), ∵k 2>14,∴45<λ<1,综上所述,λ的取值范围是[45,1).21.已知函数f(x)=e x-12ax 2(x >0,e 为自然对数的底数),f ′(x)是f(x)的导函数. (Ⅰ)当a=2时,求证f(x)>1;(Ⅱ)是否存在正整数a ,使得f ′(x)≥x 2lnx 对一切x >0恒成立?若存在,求出a 的最大值;若不存在,说明理由.解析:(Ⅰ)求出函数的导数,根据函数的单调性证明即可;(Ⅱ)求出函数的导数,得到a ≤e ,问题转化为证明当a=2时,不等式恒成立,设g(x)=22x e x x--lnx ,根据函数的单调性证明即可.答案:(Ⅰ)证明:当a=2时,f(x)=e x -x 2,则f ′(x)=e x-2x ,令f 1(x)=f ′(x)=e x -2x ,则f ′1(x)=e x-2,令f ′1(x)=0,得x=ln2,故f ′(x)在x=ln2时取得最小值, ∵f ′(ln2)=2-2ln2>0,∴f(x)在(0,+∞)上为增函数, ∴f(x)>f(0)=1;(Ⅱ)f ′(x)=e x-ax ,由f ′(x)≥x 2lnx ,得e x -ax ≥x 2lnx 对一切x >0恒成立,当x=1时,可得a ≤e ,所以若存在,则正整数a 的值只能取1,2. 下面证明当a=2时,不等式恒成立,设g(x)=22x e x x --lnx ,则g ′(x)=()()()3232221xx x e x x e x x x x---+-=,由(Ⅰ)e x >x 2+1≥2x >x ,∴e x-x >0(x >0),∴当0<x <2时,g ′(x)<0;当x >2时,g ′(x)>0, 即g(x)在(0,2)上是减函数,在(2,+∞)上是增函数, ∴g(x)≥g(2)=14(e 2-4-4ln2)>14(2.72-4-4ln2)>14(3-ln16)>0, ∴当a=2时,不等式恒成立,所以a 的最大值是2.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.已知直线l的参数方程为112x t y ⎧=+⎪⎨⎪=⎩(t 为参数)以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 的方程为sin θcos 2θ=0.(Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)写出直线l 与曲线C 交点的一个极坐标.解析:(Ⅰ)利用极坐标与直角坐标互化方法,求曲线C 的直角坐标方程;(Ⅱ)将112x t y ⎧=+⎪⎨⎪=⎩,代入2=0(1+12t)2=0,求出交点坐标,即可直线l 与曲线C 交点的一个极坐标.答案:(Ⅰ)∵sin θρcos 2θ=0,∴ρsin θρ2cos 2θ=0,即2=0;(Ⅱ)将112x t y ⎧=+⎪⎨⎪=⎩,代入=012t)2=0,即t=0,从而,交点坐标为(1, 所以,交点的一个极坐标为(2,3π).[选修4-5:不等式选讲]23.已知函数f(x)=|x-m|-|x+3m|(m >0). (Ⅰ)当m=1时,求不等式f(x)≥1的解集;(Ⅱ)对于任意实数x ,t ,不等式f(x)<|2+t|+|t-1|恒成立,求m 的取值范围. 解析:(Ⅰ)将m=1的值带入,得到关于x 的不等式组,求出不等式的解集即可; (Ⅱ)问题等价于对任意的实数xf(x)<[|2+t|+|t-1|]min 恒成立,根据绝对值的性质求出f(x)的最大值以及[|2+t|+|t-1|]min ,求出m 的范围即可.答案:(Ⅰ)f(x)=|x-m|-|x+3m|=422343m x mx m m x m m x m-≥---≤-⎧⎪⎪⎨⎪⎪⎩<<,当m=1时,由22131xx--≥⎧⎨-⎩<<或x≤-3,得到x≤-32,∴不等式f(x)≥1的解集为{x|x≤-32 };(Ⅱ)不等式f(x)<|2+t|+|t-1|对任意的实数t,x恒成立,等价于对任意的实数xf(x)<[|2+t|+|t-1|]min恒成立,即[f(x)]max<[|2+t|+|t-1|]min,∵f(x)=|x-m|-|x+3m|≤|(x-m)-(x+3m)|=4m,|2+t|+|t-1|≥|(2+t)-(t-1)|=3,∴4m<3又m>0,所以0<m<34.。
2020年安徽省合肥市高考数学一模试卷(理科)(有解析)

2020年安徽省合肥市高考数学一模试卷(理科)一、单项选择题(本大题共12小题,共60.0分)1.已知集合A={x|x2−3x−10≤0},B={x|3−x≤0},则A∪B=()A. {x|−2≤x≤3}B. {x|x≥−2}C. {x|3≤x≤5}D. {x|x≥−5}2.已知复数z=2+i2018(i为虚数单位),则复数z的共轭复数在复平面内对应的点位于()1+iA. 第一象限B. 第二象限C. 第三象限D. 第四象限3.北京故宫博物院成立于1925年10月10日,是在明、清朝两代皇宫及其宫廷收藏的基础上建立起来的中国综合性博物馆,每年吸引着大批游客参观游览.下图是从2012年到2017年每年参观人数的折线图.根据图中信息,下列结论中正确的是()A. 2013年以来,每年参观总人次逐年递增B. 2014年比2013年增加的参观人次不超过50万C. 2012年到2017年这六年间,2017年参观总人次最多D. 2012年到2017年这六年间,平均每年参观总人次超过160万4.若a=log23,b=log32,c=log46,则下列结论正确的是()A. b<a<cB. a<b<cC. b<c<aD. c<b<a5.在等差数列{a n}中,若a3+a11=6,则其前13项的和S13的值是()A. 32B. 39C. 46D. 786.执行如图的程序框图,如果输入的x为3,那么输出的结果是()A. 8B. 6C. 1D. −17.函数f(x)=|2x−2|2x+2的图象大致为()A. B.C. D.8.函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,下列结论:①最小正周期为π;②将f(x)的图象向左平移个单位,所得到的函数是偶函数;③f(0)=1;;.其中正确的是()A. ①②③B. ②③④C. ①④⑤D. ②③⑤9.若双曲线y2a2−x2b2=1(a>0,b>0)的渐近线和圆x2+y2−4x+3=0相切,则该双曲线的离心率为()A. 2√33B. 43C. √2D. 210.某工厂生产某种产品的月产量y和月份x满足关系y=a⋅0.5x+b.现已知该厂1月份、2月份生产该产品分别为1万件、1.5万件.则此厂3月份该产品的产量为()A. 1.75万件B. 1.7万件C. 2万件D. 1.8万件11.如图,正方体ABCD−A1B1C1D1的棱长为2,E,F分别为AD,AA1的中点,则以下说法错误的是()A. 平面EFC截正方体所的截面周长为2√5+3√2B. 存在BB1上一点P使得C1P⊥平面EFCC. 三棱锥B−EFC和D−FB1C体积相等D. 存在BB1上一点P使得AP//平面EFC12.若函数f(x)={ln (x+1)−x,x≥0,2x2+2x,x<0,则函数f(x)的零点个数为()A. 0B. 1C. 2D. 3二、填空题(本大题共3小题,共15.0分)13.已知向量a⃗=(2,1),b⃗ =(−1,k),若a⃗//b⃗ ,则k等于______ .14.已知直线y=x−1与抛物线y2=4x交于A,B两点,则弦AB的长为__________.15.有个座位连成一排,现有4人就坐,则恰有个空座位相邻的不同坐法有_________种.(用数字作答)三、多空题(本大题共1小题,共5.0分)16.已知命题1:设x i,a i=(i=1,2)均为正实数,若x1+x2=1,则a1x1+a2x2≤(√a1+√a2)2;命题2:x i,a i(i=1,2,3)均为正实数,若x1+x2+x3=1,则a1x1+a2x2+a3x3≤(√a1+√a2+√a3)2;由上述两个命题可知,设x i,a i(i=1,2,3,…,n)均为正实数,若(1),则(2).四、解答题(本大题共7小题,共82.0分)17.在△ABC中,角A,B,C的对边分别为a,b,c,且b2+c2=a2+√3bc,acosB=bcosA(1)求角A,B,C的大小;(2)若BC边上的中线AM的长为√7,求△ABC的面积.18.已知袋中装有大小相同的2个白球、2个红球和1个黄球,一项游戏规定:每个白球、红球和黄球的分值分别是0分、1分和2分,每一局从袋中一次性取出3个球,将3个球对应的分值相加后记为该局得分,计算完得分后将球放回袋中,当出现第n局得n分(n∈N∗)的情况就算游戏过关,同时游戏结束,若四局过后仍未过关,游戏也结束.(1)求在一局游戏中得3分的概率;(2)求游戏结束时局数X的分布列和数学期望E(X).19.如图,在直棱柱ABCD−A1B1C1D1中,AD//BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(1)求AB的长,并证明:AD1⊥B1D;(2)求平面AA1B1与平面ACD1所成角的余弦值.20.已知F1、F2分别是椭圆C:x2+y2=1的左、右焦点.4(1)若P 是第一象限内该椭圆上的一点,PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ =−54,求点P 的坐标;(2)若直线l 与圆O :x 2+y 2=14相切,交椭圆C 于A 、B 两点,是否存在这样的直线l ,使得OA ⊥OB ?21. 设函数f(x)=lnx −ax 2+ax ,a 为正实数.(1)当a =2时,求曲线y =f(x)在点(1,f(1))处的切线方程;(2)求证:f(1a )≤0;(3)若函数f(x)有且只有1个零点,求a 的值.22. [选修4—4:坐标系与参数方程]在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的参数方程为{x =2t y =12+√3t (t 为参数),曲线C 1:{x =2sinφy =2(1+cosφ)(φ为参数). (1)求直线l 及曲线C 1的极坐标方程;(2)若曲线C2:θ=π3(ρ∈R)与直线l和曲线C1分别交于异于原点的A,B两点,求|AB|的值.23.若a>0,b>0,且12a+b +1b+1=1,求a+2b的最小值.【答案与解析】1.答案:B解析:本题考查一元二次不等式的解法以及并集的运算.可解出集合A,B,然后进行并集的运算即可.解:A={x|−2≤x≤5},B={x|x≥3};∴A∪B={x|x≥−2}.故选:B.2.答案:A解析:解:∵z=2+i 20181+i =2+(i4)504⋅i21+i=11+i=1−i(1+i)(1−i)=12−12i,∴z=12+12i.∴复数z的共轭复数在复平面内对应的点的坐标为:(12,12),位于第一象限.故选:A.直接利用复数代数形式的乘除运算化简,求出复数z的共轭复数在复平面内对应的点的坐标得答案.本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.3.答案:C解析:解:由从2012年到2017年每年参观人数的折线图,得:在A中,2013年以来,2015年参观总人次比2014年参观人次少,故A错误;在B中,2014年比2013年增加的参观人次超过50万,故B错误;在C中,2012年到2017年这六年间,2017年参观总人次最多,故C正确;在D 中,2012年到2017年这六年间,平均每年参观总人次不超过160万,故D 错误.故选:C .由从2012年到2017年每年参观人数的折线图,得2012年到2017年这六年间,2017年参观总人次最多.本题考查命题真假的判断,考查折线图的应用,考查运算求解能力,考查数形结合思想,是基础题. 4.答案:C解析:a >1,0<b <1,c >1,又a c =log 23log 46=log 2312log 26=2log 63=log 69>1,∴b <c <a .5.答案:B解析:解:∵等差数列{a n }中,a 3+a 11=6,∴其前13项的和:S 13=132(a 1+a 13)=132×6=39.故选:B .由等差数列前n 项和公式及通项公式得S 13=132(a 3+a 11),由此能求出结果.本题考查等差数列的前13项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.6.答案:D解析:本题考查了循环结构的程序框图,属于基础题.模拟程序运行即可求解.解:由程序框图知:程序第一次运行x =3−2=1;第二次运行x =1−2=−1,满足x <0,∴执行y =(−1)3=−1.∴输出−1.故选:D .7.答案:B解析:解:当x=0时,f(0)=2−11+2=13,当x=1时,f(1)=0,故排除A,由于f(x)≥0恒成立,故排除C,当x→+∞时,f(x)→1,故排除D,故选:B.利用函数值的变化趋势判断即可.本题考查函数的图象的判断,函数值的变化趋势,考查计算能力.8.答案:C解析:解:由图可得:函数函数y=Asin(ωx+ϕ)的最小值−|A|=−2,令A>0,则A=2,又∵T4=7π12−π3,ω>0∴T=π,ω=2,∴y=2sin(2x+ϕ)将(7π12,−2)代入y=2sin(2x+ϕ)得sin(7π6+ϕ)=−1即7π6+ϕ=3π2+2kπ,k∈Z即ϕ=π3+2kπ,k∈Z∴f(x)=2sin(2x+π3 ).∴f(0)=2sinπ3=√3,f(x+π6)=2sin[2(x+π6)+π3]=2sin(2x+2π3).f(π4)=2sin(π2+π3)=1.对称轴为直线x=kπ2+π12,一个对称中心是(5π6,0),故②③不正确;根据f(x)=2sin(2x+π3)的图象可知,④f(12π11)<f(14π13)正确;由于f(x)=2sin(2x+π3)的图象关于点(5π6,0)中心对称,故⑤f(x)=−f(5π3−x)正确.综上所述,其中正确的是①④⑤.故选C.9.答案:D解析:本题给出双曲线的渐近线与已知圆相切,求双曲线的离心率,着重考查了直线与圆的位置关系和双曲线的简单性质等知识,属于基础题.根据圆方程,得到圆心坐标C(2,0),圆x2+y2−4x+3=0与渐近线相切,说明C到渐近线的距离等于半径1,再根据双曲线的渐近线方程和点到直线的距离公式,算出c=2a,即可得出该双曲线的离心率.解:圆x2+y2−4x+3=0可化为(x−2)2+y2=1∴圆心坐标C(2,0)∵双曲线y2a2−x2b2=1(a>0,b>0)的渐近线为ax±by=0,圆x2+y2−4x+3=0与渐近线相切,∴C到渐近线的距离为|2a|√a2+b2=1,即c=2a因此该双曲线的离心率为e=ca=2故选:D10.答案:A解析:本题主要考查了函数模型的应用,属于基础题.将x=1,2分别带入y=a⋅0.5x+b,联立解出a,b的值,再将x=3代入方程即可求出三月份的产量.解析:解:由题意可得{1=0.5a+b1.5=0.25a+b,解得a=−2,b=2,所以y=−2×0.5x+2,将x=3代入y=−2×0.5x+2得,y=1.75,故选A.11.答案:B解析:本题考查了线面的位置关系的判断,考查了体积的运算,属于中档题.由面面垂直的判定定理结合正方体ABCD−A1B1C1D1的结构可得答案.解:若存在BB1上一点P使得平面EFC,由C1P⊂面BB1C1C,故可得平面EFC⊥面BB1C1C,然而面BB1C1C⊥面ABCD,面BB1C1C⊥面AA1B1B,面BB1C1C⊥面A1B1C1D1,面BB1C1C⊥面DCC1D1,故平面EFC不可能和面BB1C1C垂直,故可知不存在BB1上一点P使得平面EFC,故选B12.答案:C解析:本题主要考查函数的零点与方程根的关系,利用导数求出函数单调性进而求出函数零点,属于基础题.解:根据函数可做出如下图像:−1,当x≥0时,f(x)=ln(x+1)−x,f′(x)=1x+1令f′(x)=0,得x=0,且f′(x)在x≥0恒小于零,∴f(x)在(0,+∞)单调递减,可知f(x)在x=0处取得最大值,最大值为f(0)=0,x=0是一个零点;当x<0时,f(x)=2x2+2x,是简单的一元二次方程,令f(x)=0,解得x=−1或x=0(舍去),综上可知f(x)的零点有x=−1和x=0两个零点,故选C.13.答案:−12解析:解:∵向量a⃗=(2,1),b⃗ =(−1,k),a⃗//b⃗ ,∴2k+1=0,.解得k=−12故答案为:−12根据向量平行列方程解出k.本题考查了向量平行与坐标的关系,属于基础题.14.答案:8解析:本题考查直线与抛物线的位置关系,抛物线的简单性质的应用,考查计算能力.解:将直线l:x−y−1=0过(1,0)即抛物线方程y2=4x的焦点坐标,联立直线与抛物线方程,消元y,可得x2−6x+1=0∴x1+x2=6,∴弦AB的长为x1+x2+p=6+2=8.故答案为8.15.答案:480解析:根据题意,分2步进行分析:①,将4人全排列,安排在4个座位上,排好后,有5个空档可用,②,将3个空座位分成1、2的两组,将其安排在5个空档之中,由分步计数原理计算可得答案.本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.解:根据题意,分2步进行分析:①,将4人全排列,安排在4个座位上,有A44=24种情况,排好后,有5个空档可用,②,将3个空座位分成1、2的两组,将其安排在5个空档之中,有A52=20种情况,则恰有2个空座位相邻的不同坐法有24×20=480种;故答案为480.16.答案:x1+x2+x3+⋯+x n=1a1 x1+a2x2+⋯…+a nx n≤(√a1+√a2+⋯…+√a n)2解析:本题考查归纳推理的应用,属于基础题目.解:由命题①②可归纳为若x1+x2+x3+⋯+x n=1,则a1x1+a2x2+⋯…+a nx n≤(√a1+√a2+⋯…+√a n)2.故答案为x1+x2+x3+⋯+x n=1;a1x1+a2x2+⋯…+a nx n≤(√a1+√a2+⋯…+√a n)2.17.答案:解:(1)在△ABC中,∵b2+c2=a2+√3bc,∴b2+c2−a2=√3bc,∴cosA=b2+c2−a22bc =√32,又A∈(0,π),∴A=π6.∵acosB=bcosA,∴sinAcosB −sinBcosA =0, 即sin(A −B)=0, ∴A −B =0, ∴B =A =π6. ∴C =π−A −B =2π3.(2)∵A =B , ∴BC =AC ,设CM =x ,则AC =2x , 又AM =√7, 在△ACM 中,由余弦定理得:AM 2=CM 2+AC 2−2CM ⋅AC ⋅cos 2π3,∴7=x 2+4x 2−4x 2⋅(−12),解得x =1. ∴AC =BC =2x =2,∴S △ABC =12AC ⋅BC ⋅sin 2π3=12×2×2×√32=√3.解析:本题考查了正弦定理,余弦定理,三角形的面积公式,属于中档题.(1)根据余弦定理求出A ,利用正弦定理将边化角得出A ,B 的关系求出B ,利用内角和求出C ; (2)设CM =x ,在△ACM 中,利用余弦定理列方程解出CM ,得出AC ,BC ,代入面积公式计算面积.18.答案:解:(1)设“在一局游戏中得3分”为事件A ,则P(A)=C 21C 21C 11C 53=25.(2)X 的所有可能取值为1,2,3,4,在一局游戏中得2分的概率为C 21C 22+C 22C 11C 53=310,P(X =1)=C 22C 21C 53=15,P(X =2)=45×310=625,P(X =3)=45×(1−310)×25=28125, P(X =4)=45×(1−310)×35=42125, ∴X 的分布列为X 12 3 4P156252812542125∴E(X)=1×15+2×625+3×28125+4×42125=337125.解析:本题主要考查了离散型随机变量的分布列与数学期望,属于中档题. (1)根据相互独立事件的概率公式求出对应的概率值;(2)由题意知随机变量X 的可能取值,计算在一局游戏中得2分的概率值, 求出对应的概率值,写出分布列,计算数学期望.19.答案:解:(1)由题意得AB ,AD ,AA 1两两垂直,如图,以A 为坐标原点,AB ,AD ,AA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,设AB =t ,则A(0,0,0),B(t,0,0),B 1(t,0,3),C(t,1,0),C 1(t,1,3),D(0,3,0),D 1(0,3,3),∴AC ⃗⃗⃗⃗⃗ =(t,1,0),BD ⃗⃗⃗⃗⃗⃗ =(−t,3,0), ∵AC ⊥BD ,∴AC ⃗⃗⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =−t 2+3+0=0, 解得t =√3或t =−√3(舍去),∴AD 1⃗⃗⃗⃗⃗⃗⃗ =(0,3,3),B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(−√3,3,−3), ∵AD 1⃗⃗⃗⃗⃗⃗⃗ ⋅B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0,∴AD 1⃗⃗⃗⃗⃗⃗⃗ ⊥B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ,∴AD 1⊥B 1D . (2)由(1)得AD 1⃗⃗⃗⃗⃗⃗⃗ =(0,3,3),AC ⃗⃗⃗⃗⃗ =(√3,1,0), 设n⃗ =(x,y ,z)是平面ACD 1的一个法向量, 则{n ⃗ ⋅AC ⃗⃗⃗⃗⃗ =√3x +y =0n ⃗ ⋅AD 1⃗⃗⃗⃗⃗⃗⃗ =3y +3z =0,令x =1,得n ⃗ =(1,−√3,√3), 平面AA 1B 1的法向量m⃗⃗⃗ =(0,1,0), 平面AA 1B 1与平面ACD 1所成角为θ, 则cosθ=|m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ |⋅|n ⃗⃗ ||=√31×√7=√217. ∴平面AA 1B 1与平面ACD 1所成角的余弦值为√217.解析:(1)以A 为坐标原点,AB ,AD ,AA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,利用向量能求出AB 的长,并证明AD 1⊥B 1D .(2)求出平面ACD 1的一个法向量和平面AA 1B 1的法向量,利用向量法能求出平面AA 1B 1与平面ACD 1所成角的余弦值.本题考查线线垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20.答案:解:(1)由椭圆方程为x 24+y 2=1,可知:a =2,b =1,c =√3,∴F 1(−√3,0),F 2(√3,0),设P(x,y),(x,y >0),则PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ =(−√3−x,−y)⋅(√3−x,−y)=x 2+y 2−3=−54,又x 24+y 2=1,联立解得:{x =1y =√32,∴P(1,√32). (2)设A(x 1,y 1),B(x 2,y 2).①若l 的斜率不存在时,l :x =±12,代入椭圆方程得:y 2=1516,容易得出OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=14−1516=−1116≠0,此时OA ⊥OB 不成立.②若l 的斜率存在时,设l :y =kx +m , 则由已知可得√k 2+1=12,即k 2+1=4m 2.由{y =kx +m x 2+4y 2=4,可得:(4k 2+1)x 2+8kmx +4(m 2−1)=0, 则x 1+x 2=−8km 4k 2+1,x 1⋅x 2=4(m 2−1)4k 2+1.要OA ⊥OB ,则OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ =0, 即x 1⋅x 2+(kx 1+m)(kx 2+m)=km(x 1+x 2)+(k 2+1)x 1⋅x 2+m 2=0, 即5m 2−4k 2−4=0,又k 2+1=4m 2.∴k 2+1=0,此方程无实解,此时OA ⊥OB 不成立. 综上,不存在这样的直线l ,使得OA ⊥OB .解析:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、一元二次方程的根与系数的关系、向量数量积运算性质、向量垂直与数量积的关系,考查了分类讨论方法、推理能力与计算能力,属于难题.(1)设P(x,y),(x,y >0),则PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ =x 2+y 2−3=−54,又x 24+y 2=1,联立解出即可得出.(2)设A(x 1,y 1),B(x 2,y 2).①若l 的斜率不存在时,l :x =±12,代入椭圆方程得:y 2=1516,容易得出OA⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ ≠0,此时OA ⊥OB 不成立. ②若l 的斜率存在时,设l :y =kx +m ,则由已知可得√k 2+1=12.直线方程与椭圆方程联立可得:(4k 2+1)x 2+8kmx +4(m 2−1)=0,要OA ⊥OB ,则OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =0,即x 1⋅x 2+(kx 1+m)(kx 2+m)=km(x 1+x 2)+(k 2+1)x 1⋅x 2+m 2=0,把根与系数的关系代入可得5m 2−4k 2−4=0,又k 2+1=4m 2.解出即可判断出结论.21.答案:(1)解:当a =2时,f(x)=lnx −2x 2+2x ,f′(x)=1x −4x +2,∴f′(1)=−1, ∵f(1)=0,∴曲线y =f(x)在点(1,f(1))处的切线方程是y =−x +1; (2)证明:f(1a )=−lna −1a +1(a >0), 令g(x)=−lnx −1x +1(x >0),则g′(x)=1−x x 2,∴0<x <1时,g′(x)>0,函数单调递增;x >1时,g′(x)<0,函数单调递减,∴x=1时,函数取得极大值,即最大值,∴g(x)≤g(1)=0,∴f(1a)≤0;(3)解:由题意可知,函数f(x)有且只有1个零点为1,则f′(1)=0,即1−2a+a=0∴a=1.解析:(1)求导数,确定切线的斜率,切点坐标,可得切线方程;(2)构造函数,确定函数的单调性与最值,即可证明结论;(3)由题意可知,函数f(x)有且只有1个零点为(1,0),则f′(1)=0,即可得出结论.本题考查了导数的几何意义、利用导数研究函数的单调性极值与最值等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.22.答案:解:(1)直线l的一般方程为√3x−2y+24=0,直线l的极坐标方程为,曲线C1的标准方程为x2+(y−2)2=4,所以曲线C1的极坐标方程为ρ=4sinθ.(2)将θ=π3分别代入和ρ=4sinθ得ρA=16√3,ρB=2√3,所以|AB|=|ρA−ρB|=|16√3−2√3|=14√3.解析:本题考查简单曲线的极坐标方程,考查参数方程化普通方程,是中档题.(1)分别化直线与圆的参数方程为普通方程,进一步化为极坐标方程;(2)把曲线θ=π3分别代入直线l和曲线C1的极坐标方程,求出A,B的极径,得|AB|=|ρA−ρB|= |16√3−2√3|=14√3.23.答案:解:设a+2b=t,则a=t−2b,因为a>0,b>0,12a+b +1b+1=1,所以12(t−2b)+b +1b+1=1,即12t−3b +1b+1=1,所以12t−3b =1−1b+1=bb+1.从而2t−3b=b+1b =1+1b,即2t=3b+1b +1⩾2√3b×1b+1=2√3+1,当且仅当b=√33时取等号,所以t⩾2√3+12.故a+2b的最小值为2√3+12.解析:本题主要考查了利用基本不等式求最值,为中档题.设a+2b=t,则a=t−2b,代入12a+b +1b+1=1,得到2t=3b+1b+1,利用基本不等式进行求解即可.。
【附加15套高考模拟试卷】安徽省合肥一中2020届高三冲刺高考最后1卷数学(理)试卷含答案

安徽省合肥一中2020届高三冲刺高考最后1卷数学(理)试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.天气预报说,今后三天每天下雨的概率相同,现用随机模拟的方法预测三天中有两天下雨的概率,用骰子点数来产生随机数。
依据每天下雨的概率,可规定投一次骰子出现1点和2点代表下雨;投三次骰子代表三天;产生的三个随机数作为一组。
得到的10组随机数如下:613,265,114,236,561,435,443,251,154,353。
则在此次随机模拟试验中,每天下雨的概率和三天中有两天下雨的概率的近似值分别为( )A .13,28B .11,28C .11,35 D .12,392.下列四个命题:存在与两条异面直线都平行的平面;(2)过空间一点,一定能作一个平面与两条异面直线都平行;(3)过平面外一点可作无数条直线与该平面平行;(4)过直线外一点可作无数个平面与该直线平行.其中正确的命题的个数是 A .1B .2C .3D .43.将函数的图象向右平移个单位后得到函数的图象,若对于任意都有,则( ) A .B .C .D .4.如果复数(2)()ai i a R +∈的实部与虚部互为相反数,则a =( ) A .2B .1C .-2D .-15.设i 为虚数单位,m R ∈,“复数()1m m i -+是纯虚数”是“1m =”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6.已知21nx x ⎛⎫ ⎪⎝⎭+的二项展开式的各项系数和为32,则二项展开式中x 的系数为( ) A .5B .10C .20D .407.已知向量44sin,cos 22x x a ⎛⎫= ⎪⎝⎭r ,向量()1,1b =r ,函数()f x a b =r r g ,则下列说法正确的是( ) A .()f x 是奇函数B .()f x 的一条对称轴为直线4x π=C .()f x 的最小正周期为2πD .()f x 在,42ππ⎛⎫⎪⎝⎭上为减函数8.记椭圆221441x ny n +=+围成的区域(含边界)为n Ω(12n =L ,,),当点()x y ,分别在1Ω,2Ω,…上时,x y +的最大值分别是1M ,2M ,…,则lim n n M →+∞=( ) A .0B .14 C .2 D .229.已知某程序框图如图所示,则执行该程序后输出的a 的值是( )A .1-B .12 C .1D .210.已知集合{}|12A x a x a =-≤≤+,{}|35B x x =<<,则能使A B ⊇成立的实数a 的取值范围是( ) A .{}|34a a <≤B .{}|34a a <<C .{}|34a a ≤≤D .∅11.已知双曲线()222210,0x y a b a b-=>>的两个顶点分别为,A B ,点P 为双曲线上除,A B 外任意一点,且点P 与点,A B 连线的斜率分别为1k 、2k ,若123k k =,则双曲线的渐近线方程为 ( ) A .y x =± B .2y x =C .3y x =D .2y x =±12.在区间[]0π,上随机取一个数x ,则事件2“sin cos 2x x +≥发生的概率为( ) A .12 B .13 C .23 D .712二、填空题:本题共4小题,每小题5分,共20分。
2024年安徽省合肥市高考数学模拟试卷+答案解析

2024年安徽省合肥市高考数学模拟试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,则()A.B.C.D.2.已知复数z 满足,则()A.5B. C.13D.3.已知在某竞赛中,天涯队、谛听队、洪荒队单独完成某项任务的概率分别为,,,且这3个队是否完成该任务相互独立,则恰有2个队完成该任务的概率为()A.B.C.D.4.已知抛物线C :的焦点为F ,A 为x 轴上一点,若,且抛物线C 经过线段AF的中点,则()A.8B.C.4D.5.已知向量,,,若,,则在上的投影向量为()A.B.C.D.6.在长方体中,,过作平面,使得平面,若平面,则直线l 与所成角的余弦值为()A.B. C.D.7.已知函数,若,则直线与的图象的交点个数为()A.3 B.4C.5D.68.已知椭圆的左顶点为A ,左焦点为F ,P 为该椭圆上一点且在第一象限,若射线AF 上存在一点Q ,使得,线段PQ 的垂直平分线与射线AF 交于点H ,则()A.1B.2C.aD.2a二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.某校高一年级的某次月考中,甲、乙两个班前10名学生的物理成绩单位:分,满分100分如表所示,则甲班67727683858788888990乙班70777777818384899394A.甲班前10名学生物理成绩的众数是88B.乙班前10名学生物理成绩的极差是24C.甲班前10名学生物理成绩的平均数比乙班前10名学生物理成绩的平均数低D.乙班前10名学生物理成绩的第三四分位数是8410.已知函数其中,的部分图象如图所示,则()A.B.C.D.11.下列不等式中正确的是()A. B.C. D.三、填空题:本题共3小题,每小题5分,共15分。
12.写出一个同时具有下列性质①②③的函数______.①定义在R上的函数不是常值函数;②;③对任意的,均存在,使得成立.13.已知锐角三角形ABC的内角A,B,C的对边分别为a,b,c,若,则的取值范围是______.14.已知半径为的球O的球心到正四面体ABCD的四个面的距离都相等,若正四面体ABCD的棱与球O 的球面有公共点,则正四面体ABCD的棱长的取值范围为______.四、解答题:本题共5小题,共77分。
【附20套高考模拟试题】2020届安徽省省级示范高中高考数学模拟试卷含答案

8;
……
则 x y 505 的不同整数解 (x, y) 的个数为__________.
16.若一个正四面体的棱长为 1,四个顶点在同一个球面上,则此球的表面积为_________. 三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。
17.(12 分)已知椭圆 的直线 交椭圆 于 两点,
9. 已知 f (x) 是定义在 R 上的偶函数,且在 (, 0] 上是增函数,设
a
f (ln ), b
f
( log5 2),
c
f
(e
1 2
),
则
a,
b,
c
的大小关系是
A. b c a B. a b c C. c b a D. a c b
10.在三棱锥
中,
和
是有公共斜边的等腰直角三角形,若三棱锥
的外接球的半
径为 2,球心为 ,且三棱锥
的体积为 ,则直线 与平面 所成角的正弦值是( )
A. B. C. D.
11.已知椭圆 C : x2 y2 1 上的三点 A ,B ,C ,斜率为负数的直线 BC 与 y 轴交于 M ,若原点 O 是 4
ABC 的重心,且 BMA与 CMO 的面积之比为 3 ,则直线 BC 的斜率为( ) 2
13.已知四棱锥 P ABCD ,底面 ABCD为正方形, PA 面 ABCD ,且满足 PA 所成角的大小为__________.
14.已知点 A(x, lg x1) ,B(x2, lg x2 ) 是函数 f x lg x 的图象上任意不同两点,依据图象可知,线段 AB
同的单位长度.已知曲线 C : sin2 2a cos (a 0) ,过点 P(2, 4) 的直线 l 的参数方程为
2020年安徽合肥市高三理科数学上册一模理数试题卷及答案

又∵sin B 0 ,∴cos B 2. 2源自∵B是三角形的内角,
∴B
3 4
.
………………………………5 分
(2) 在ABM 中, BM 1, AM
5,
B
3 4
,
AB
c
,
由余弦定理得 AM 2 c2 BM 2 2c BM cos B ,∴c2 2c 4 0
P
C32
2 5
2
1 5
C32
1 5
2
2 5
18 125
.
……………………………5 分
(2) X 可能取值为 0,1,2,3.
则PX
0
C30
3 3 5
27 125
,PX
1
C31
2 3 2 5 5
6 5
.
……………………………12 分
或解:
数学试题(理科) 第 1 页(共 4 页)
∵随机变量 X 服从 X ∼
B
3 ,52
,
∴ EX
np
3
2 5
6 5
.
……………………………12 分
19.(本小题满分 12 分)
(1)连结 AC1 .
∵ AA1 AC ,四边形 AA1C1C 为菱形,∴ A1C AC1 .
设平面 ABB1 的法向量为n x
,y
,z
,则n AB,n
2020年合肥市一模数学(理科)试题及答案

合肥市2020年高三第一次教学质量检测数学试题(理科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分.13.-2 14.3π或23π 15.72 ,164n π-(第一空2分,第二空3分)三、解答题:大题共6小题,满分70分.17.(本小题满分12分)解:(1)在ABC ∆中,sin sin sin a b c A B C==,且cos cos cos 0a C c A B +=, ∴sin cos sin cos cos 0A C C A B B +=,∴()sin 10B B ⋅=,又∵sin 0B ≠,∴cos 2B =. ∵B 是三角形的内角, ∴34B π=. ………………………………5分 (2) 在ABM ∆中,31,,4BM AM B AB c π====, 由余弦定理得()2222cos AM c BM c BM B =+-⋅⋅,∴240c -=∵0c >,∴c =∵在ABC ∆中,2a =,34B π=, ∴ABC ∆的面积1sin 12S ac B ==. ………………………………12分 18.(本小题满分12分)(1)依题意,学校选择“科技体验游”的概率为25,选择“自然风光游”的概率为15, ∴这3所学校选择研学游类型为“科技体验游”和“自然风光游”,这两种类型都有学校选的概率为:2222332112185555125P C C ⎛⎫⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ……………………………5分 (2)X 可能取值为0,1,2,3.则()30332705125P X C ⎛⎫=== ⎪⎝⎭,()2132354155125P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, ()2232336255125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()3332835125P X C ⎛⎫=== ⎪⎝⎭, ∴X ∴01231251251251255EX =⨯+⨯+⨯+⨯=. ……………………………12分 或解:题号1 2 3 4 5 6 7 8 9 10 11 12 答案 A B C D D B A B A C C B∵随机变量X 服从23 5X B ⎛⎫ ⎪⎝⎭∼,, ∴26355EX np ==⨯=. ……………………………12分 19.(本小题满分12分)(1)连结1AC .∵1AA AC =,四边形11AA C C 为菱形,∴11A C AC ⊥.∵平面11AA C C ⊥平面ABC ,平面11AA C C 平面ABC AC =, BC ⊂平面ABC ,,BC AC ⊥∴BC ⊥平面11AA C C .又∵11//BC B C ,∴11B C ⊥平面11AA C C ,∴111B C A C ⊥.∵1111AC B C C = ,∴1A C ⊥平面11AB C ,而1AB ⊂平面11AB C ,∴1A C ⊥1AB . …………………………5分(2)取11A C 中点M ,连结CM .∵1AA AC =,四边形11AA C C 为菱形,160A AC ∠= ,∴11CM A C ⊥,CM AC ⊥. 又∵CM BC ⊥,∴以C 为原点,CA CB CM ,,为正方向建立如图所示的空间直角坐标系. 设1CB =,22AC CB ==,1AA AC =,160A AC ∠= ,∴C (0,0,0),1A),A (2,0,0),B (0,1,0),1B). 由(1)知,平面11C AB的一个法向量为(110CA = ,.设平面1ABB 的法向量为()n x y z = ,,,则1 n AB n AB ⊥⊥ ,,∴100n AB n AB ⎧⋅=⎪⎨⋅=⎪⎩ . ∵()210AB =- ,,,(131AB =-,∴2030x y x y -+=⎧⎪⎨-+=⎪⎩. 令1x =,得2y z ==,12n ⎛= ⎝ ,.∴111cos ,4CA n CA n CA n ⋅<>===⋅ , ∴二面角11C AB B --的余弦值为分 20.(本小题满分12分)(1)设椭圆的半焦距为c .2知,b c a ==,. 设圆C '的半径为r,则r ab =,2=,解得b =,∴a =,∴椭圆C 的方程为22163x y +=.……………………………5分 (2)∵M N ,关于原点对称,PM PN =,∴OP MN ⊥.设()11M x y ,,()22P x y ,.当直线PM 的斜率存在时,设直线PM 的方程为y kx m =+.由直线和椭圆方程联立得()2226x kx m ++=,即()222124260k x kmx m +++-=,得12221224212621km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩. 设()11OM x y = ,,()22OP x y = ,, ∴()()12121212OM OP x x y y x x kx m kx m ⋅=+=+++()()()22222121222264112121m km k x x km x x m k km m k k --=++++=+⋅+⋅+++()222322021m k k --==+ ∴22220m k --=,2222m k =+∴圆C '的圆心O 到直线PMr ==,∴直线PM 与圆C '相切. 当直线PM 的斜率不存在时,设00(,),M x y 则00(,)N x y -,由条件可知00(,)P x y -, 且2200x y =,又2200163x y +=, ∴202x =, ∴'PM C 与相切 . 同理可得,直线PN 与圆C '也相切.∴直线PM 、PN 与圆C '相切. …………………………12分 21.(本小题满分12分)(1)由()210x x f x e-==,得1x =±,∴函数的零点01x =±. ()221xx x f x e --'=,()12f e '-=,()10f -=. 曲线()y f x =在1x =-处的切线方程为()21y e x =+.()21f e'=-,()10f =, ∴曲线()y f x =在1x =处的切线方程为()21y x e=--.………………………5分 (2)()221x x x f x e --'=.当(() 11x ∈-∞+∞ ,时,()0f x '>;当(()110x f x '∈<时,. ∴()f x的单调递增区间为(() 11-∞+∞,,,单调递减区间为(11. 又当1x <-或1x >时,()0f x <,当11x -<<时,()0f x >.下面证明:当()11x ∈-,时,()()21e x f x +>. 2(1)() (11)e x f x x +>-<< 212(1)0x x e x e-⇔++> 110 (11).2x x e x +-⇔+>-<< 易知,11()2x x g x e +-=+在[1,1]x ∈-上单调递增,而(1)0,g -= ∴()0(1,1)g x x >∀∈-对恒成立,即当()11x ∈-,时,()()21e x f x +>. 由()21y e x y m⎧=+⎪⎨=⎪⎩得12m x e =-.记112m x e '=-. 不妨设12x x <,则12111x x -<<<<, ∴121221212m x x x x x x x e ⎛⎫''-<-=-=-- ⎪⎝⎭.要证121212x x m e ⎛⎫-<-+ ⎪⎝⎭,∴只要证2112122m x m e e ⎛⎫⎛⎫--≤-+ ⎪ ⎪⎝⎭⎝⎭,即证21x m ≤-. 又∵2221x x m e -=,只要证222211x x x e -≤-,即()()()222110x x e x -⋅-+≤.∵()211x ∈,即证()2210x e x -+≥. 令()()()11x x x e x x e ϕϕ'=-+=-,.当()10x ∈时,()0x ϕ'<,()x ϕ为单调递减函数;当()01x ∈,时,()0x ϕ'>,()x ϕ为单调递增函数. ∴()()00x ϕϕ≥=,∴()2210x e x -+≥, ∴121212x x m e ⎛⎫-<-+ ⎪⎝⎭. …………………………12分22.(本小题满分10分)(1)曲线C 的方程4cos 6sin ρθθ=+,∴24cos 6sin ρρθρθ=+,∴2246x y x y +=+, 即曲线C 的直角坐标方程为:()()222313x y -+-=. …………………………5分(2)把直线32:12x l y t ⎧=-⎪⎪⎨⎪=+⎪⎩代入曲线C得22121322⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,整理得,280t --=.∵(2320∆=+>,设12t t ,为方程的两个实数根,则12t t +=,128t t =-,∴12t t ,为异号,又∵点A (3,1)在直线l 上, ∴1212AM AN t t t t +=+=-===.…………………………10分23.(本小题满分10分) 解:(1)∵()2f x x m x =--+,∴()220f x x m x -=---≥的解集为(] 4-∞,, ∴2x m x --≥,解得28m +=,即6m =. …………………………5分(2) ∵6m =,∴212a b c ++=,又∵a > 0,b > 0,c > 3,∴()()()()()()12231132a b c a b c ++-++-= ()()()333122311211232232323a b c a b c ++++-⎡⎤++⎛⎫⎛⎫≤===⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦, 当且仅当1223a b c +=+=-,结合212a b c ++=解得3a =,1b =,7c =时,等号成立. ∴()()()113a b c ++-的最大值为32. …………………………10分。
2020年安徽省高考理科数学仿真模拟试题(附答案)

2020年安徽省高考理科数学仿真模拟试题(附答案)(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 集合A= {*∈-N x x x ,0<72},则B={A y N yy ∈*∈,6|}的子集个数是( ) A.4 个 B.8 个 C.16 个 D.32 个2. 某食品的广告词为:“幸福的人们都拥有”,初听起来,这似乎只是普通的赞美说词,然而它的实际效果却大着呢,原来这句话的等价命题是( )A.不拥有的人们不一定幸福B.不拥有的人们可能幸福C.拥有的人们不一定幸福D.不拥有的人们不幸福3. 已知各项为正数的等比数列{}n a 满足11a =,2416a a =,则6a =( ) A. 64B. 32C. 16D. 44. 欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式可知,4i i e eππ表示的复数在复平面中位于( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 记n S 为等差数列{}n a 的前n 项和,公差2d =,1a ,3a ,4a 成等比数列,则8S =( ) A. -20B. -18C. -10D. -86. 如图所示,程序框图(算法流程图)的输出结果是( )A.16B.2524C.34D.11127.直线 m,n 和平面βα, 则下列命题中,正确的是( )A .m ∥n, m αβα⇒⊆⊆n ,∥βB .m αβα⇒⊆⊥⊥n n m ,,∥β C.m ∥n,n ,β⊥m βαα⊥⇒⊆ D.m ∥n,m βαβα⊥⇒⊥⊥n , 8.已知函数()sin()(,0)4f x x x πωω=+∈>R 的最小正周期为π,为了得到函数()cos()4g x x πω=+的图象,只要将()y f x =的图象( )A .向左平移8π个单位长度B .向右平移8π个单位长度C .向左平移4π个单位长度D .向右平移4π个单位长度9. 下图是某几何体的三视图,其中网格纸上小正方形的边长为1,则该几何体的体积为( )A. 12B. 15C.D.10. 在平面区域,内任取一点,则存在,使得点的坐标满足的概率为( )A.B.C.D.11. 已知正方体1111ABCD A B C D -的棱长为1,在对角线1A D 上取点M ,在1CD 上取点N ,使得线段MN 平行于对角面11A ACC ,则||MN 的最小值为( ) A. 1D.312. 已知函数()ln 2f x a x x =-+(a 为大于1的整数),若()y f x =与(())y f f x =的值域相同,则a 的最小值是( )(参考数据:ln20.6931≈,ln3 1.0986≈,ln5 1.6094≈) A. 5 B. 6C. 7D. 8二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在 A 地各个国企中随机抽取了 1000 名员工进行调查,并将满意程度以分数的形式统计成如下的频率分布 直方图,其中 a 4b .
估计被调查的员工的满意程度的中位数;(计算结果保留两位小数)若按
2,则该展开式中常数项为
A.-40 B.-20 C.20 D.40
11.关于圆周率 ,数学发展史上出现过许多有创意的求法,最著名的属普丰实验和查理实验,受其启发,
我们可以设计一个算法框图来估计 的值(如图),若电脑输出的 j 的值为 29,那么可以估计 的值约为
()
79 A. 25
47 B. 15
0,
1 2
D.
1 4
,
1 3
8.以下说法错误的是( )
A.命题“若 x2 3x 2 0 ,则 x 1 ”的逆否命题为“若 x 1,则 x2 3x 2 0 ”
B.“ x 2 ”是“ x2 3x 2 0 ”的充分不必要条件
C.若命题 P :存在 x0 R ,使得 x02 x0 1 0 ,则 p :对任意 x R ,都有 x2 x 1 0
157 C. 50
D.
P(Y
0)
C30
1 3 5
1 125
12.过双曲线 x2 a2
y2 b2
1a
0,b
0 的右焦点且垂直于 x 轴的直线与双曲线交于
A,B 两点,OAB
的面积为 13bc ,则双曲线的离心率为( ) 3
13
13
22
22
A. 2
B. 3
C. 2
D. 3
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
则称这次试验成功.若成功一次得 2 分,失败一次得 1分,则 100 次这样的重复试验的总得分 X 的方差为
__________. 三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。
17.(12 分)如图,在三棱柱 ABC 中, CC1 平面 ABC A1B1C1 , AC BC, AC BC CC1 2 ,点 D, E, F 分别为棱 A1C1, B1C1, BB1 的中点.
照分层抽样从[50,60) ,[60,70) 中随机抽取 8 人,再从这 8 人中随机抽取 4 人,记分数在[60,70) 的人数 为 X ,求 X 的分布列与数学期望;以频率估计概率,若该研究人员从全国国企员工中随机抽取 n 人作调 查,记成绩在[60,70) ,[90,100] 的人数为 X ,若 D( X ) 2.2 ,求 n 的最大值. 20.(12 分)如图,在四棱锥 S ABCD 中, BCD 为等边三角形,AD AB SD SB, BAD 120
f
x
x2 ln x,
x x
2, x ,
,
若方程
f
x
0 有两个不同的解,则
的取值范围__________.
16.一台仪器每启动一次都随机地出现一个 5 位的二进制数 A a1 a2 a3 a4 a5 ,其中 A 的各位数字中,
1
2
a1 1,ak( k 2,3, 4,5 )出现 0 的概率为 3 ,出现 1 的概率为 3 .若启动一次出现的数字为 A 10101,
斯和乌龟的距离恰好为102 米时,乌龟爬行的总距离为( )
104 1
105 1
105 9
104 9
A. 90 B. 900 C. 90 D. 900
5.执行如图所示的程序框图,则输出 x 的值为( )
A. 2
1 C. 2 D. 3
B. 1 3
6.已知 f x 是定义域为 R 的奇函数,当 x 0 时, f x x ln x .若函数 g x f x a有 2 个不
A. B. C. D.
2.若函数
f
x
1
x
x3 ,则
f
lg2
f
lg
1 2
f
lg5
f
lg
1 5
(
)
A. 2 B. 4 C. 6 D. 8
3.设 a, b 是非零向量,则“存在实数 ,使得 a λb ”是“ a b a b ”的
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
13.函数
f
(x)
ax2
bx 1,且 0
f (1) 1 ,2
f
(1) 0,则 z
2a b a 3b 的取值范围是__________.
14.在 ABC 中,三边长分别为 a 3,b 2 2,c 5 ,其最大角的余弦值为_________, ABC 的面积为
_______.
15.已知函数
同的零点,则实数 a 的取值范围是( )
A. 1,1
B. 1,1
C. ,1 1, D. ,1 1,
(1 2a)x ,
7.已知函数
f
x
loga x
1, 3
x x
1 1,当 x1
x2
时,
f
x1 f x2
x1 x2
0 ,则
a
的取值范围是 (
)
A.
0,
1 3
B.
1 3Βιβλιοθήκη ,1 2C.
4.公元前 5 世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在阿基里斯前面 1000 米
处开始,和阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的 10 倍.当比赛开始后,若阿基里斯跑了 1000
米,此时乌龟便领先他 100 米;当阿基里斯跑完下一个 100 米时,乌龟仍然前于他 10 米.当阿基里斯跑完 下一个 10 米时,乌龟仍然前于他 1 米……,所以,阿基里斯永远追不上乌龟.根据这样的规律,若阿基里
D.若 p 且 q 为假命题,则 p, q 均为假命题
9.已知 f (x) 是定义在 R 上的奇函数,且 f (x 1) 为偶函数,若 f (1) 2 ,则
f (1) f (2) f (3) f (2019) ( ) A.4 B.2 C.0 D.-2
10.
x
a x
2x
1 x
5
的展开式中各项系数的和为
求证:AB / / 平面 DEF ;求证:平面 ACB1 平面 DEF ;求三棱锥 E ACB1
的体积.
18.(12 分)如图,在四棱锥 P ABCD 中,底面 ABCD是菱形,ABC 120 ,PA PC ,PB PD , AC BD O .
求证: PO 平面 ABCD;若 PB BD 2 ,求点 O 到平面 PBC 的距离.
2020 届安徽省合肥一中高考数学模拟试卷
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目 要求的。
1.在三棱锥
中,
和
是有公共斜边的等腰直角三角形,若三棱锥
的外接球的半
径为 2,球心为 ,且三棱锥
的体积为 ,则直线 与平面 所成角的正弦值是( )