高二数学月考试题

合集下载

山西省部分学校2024-2025学年高二上学期10月月考数学试题(含答案)

山西省部分学校2024-2025学年高二上学期10月月考数学试题(含答案)

2024~2025学年高二10月质量检测卷数学(A 卷)考生注意:1.本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。

3.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。

4.本卷命题范围:人教A 版选择性必修第一册第一章~第二章。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知直线经过,两点,则的倾斜角为()A.B.C.D.2.已知圆的方程是,则圆心的坐标是( )A. B. C. D.3.在长方体中,为棱的中点.若,,,则()A. B. C. D.4.两平行直线,之间的距离为( )B.3D.5.曲线轴围成区域的面积为( )l (A (B l 6π3π23π56πC 2242110x y x y ++--=C ()2,1-()2,1-()4,2-()4,2-1111ABCD A B C D -M 1CC AB a = AD b =1AA c = AM =111222a b c -+ 111222a b c ++12a b c-+12a b c++ 1:20l x y --=2:240l x y -+=y =xA. B. C. D.6.已知平面的一个法向量,是平面内一点,是平面外一点,则点到平面的距离是( )A. B.D.37.在平面直角坐标系中,圆的方程为,若直线上存在点,使以点为圆心,1为半径的圆与圆有公共点,则实数的取值范围是( )A. B.C. D.8.在正三棱柱中,,,为棱上的动点,为线段上的动点,且,则线段长度的最小值为( )A.2二、选择题:本题共3小题,每小题6分,共18分。

2023-2024学年山西省高二下册第一次月考数学试题(含解析)

2023-2024学年山西省高二下册第一次月考数学试题(含解析)

2023-2024学年山西省高二下册第一次月考数学试题一、单选题1.已知1()2P BA =∣,3()8P AB =,则()P A 等于()A .316B .1316C .34D .14【正确答案】C根据条件概率公式计算.【详解】由()()()P AB P BA P A =∣,可得()3()()4P AB P A P B A ==∣.故选:C.2.已知012233C 2C 2C 2C 2C 81n n n n n n n ++++⋅⋅⋅+=,则123C C C C nn n n n +++⋅⋅⋅+等于()A .15B .16C .7D .8【正确答案】A【分析】根据二项式定理展开式的逆运算即可求得n 的值,再由由二项式系数和即得.【详解】逆用二项式定理得()01223322221281nn n nn n n n C C C C C ++++⋅⋅⋅+=+=,即433n =,所以n =4,所以12342115n n n n n C C C C +++⋅⋅⋅+=-=.故选:A.3.(x +y )(2x -y )5的展开式中x 3y 3的系数为A .-80B .-40C .40D .80【正确答案】C【详解】()()()()555222x y x y x x y y x y +-=-+-,由()52x y -展开式的通项公式()()515C 2rrrr T x y -+=-可得:当3r =时,()52x x y -展开式中33x y 的系数为()3325C 2140⨯⨯-=-;当2r =时,()52y x y -展开式中33x y 的系数为()2235C 2180⨯⨯-=,则33x y 的系数为804040-=.故选C.【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.4.若22nx ⎫⎪⎭展开式中只有第六项的二项式系数最大,则展开式中常数项是()A .180B .120C .90D .45【正确答案】A【分析】已知条件中只有第六项的二项式系数最大,n 应为偶数,可确定n 值,进而利用展开式即可求得常数项.【详解】如果n 为奇数,那么是中间两项的二项式系数最大;如果n 为偶数,那么是中间一项的二项式系数最大;只有第六项的二项式系数最大10n ∴=,1022x ⎫∴⎪⎭展开式的通项为:10521102r r r r T C x -+=⨯⨯令10502r-=,解得:2r =∴展开式中常数项是.22102180C ⨯=故选:A.5.有8位学生春游,其中小学生2名、初中生3名、高中生3名.现将他们排成一列,要求2名小学生相邻、3名初中生相邻,3名高中生中任意两名都不相邻,则不同的排法种数有()A .288种B .144种C .72种D .36种【正确答案】B【分析】利用捆绑法和插空法可求得结果.【详解】第一步,先将2名小学生看成一个人,3名初中生看成一个人,然后排成一排有22A 种不同排法;第二步,将3名高中生插在这两个整体形成的3个空档中,有33A 种不同排法;第三步,排2名小学生有22A 种不同排法,排3名初中生有33A 种不同排法.根据分步计数原理,共有23232323144A A A A =种不同排法.故选:B方法点睛:本题主要考查排列的应用,属于中档题.常见排列数的求法为:(1)相邻问题采取“捆绑法”;(2)不相邻问题采取“插空法”;(3)有限制元素采取“优先法”;(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数.6.已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为().A .122B .112C .102D .92【正确答案】D【详解】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式10(1)x +中奇数项的二项式系数和为.二项式系数,二项式系数和.7.现有甲、乙、丙、丁、戊五位同学,分别带着A 、B 、C 、D 、E 五个不同的礼物参加“抽盲盒”学游戏,先将五个礼物分别放入五个相同的盒子里,每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的概率为()A .45B .12C .47D .38【正确答案】D【分析】利用排列组合知识求出每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的情况个数,以及五人抽取五个礼物的总情况,两者相除即可.【详解】先从五人中抽取一人,恰好拿到自己的礼物,有15C 种情况,接下来的四人分为两种情况,一种是两两一对,两个人都拿到对方的礼物,有224222C C A 种情况,另一种是四个人都拿到另外一个人的礼物,不是两两一对,都拿到对方的情况,由3211C C 种情况,综上:共有22111425322245C C C C C A ⎛⎫⋅+= ⎪⎝⎭种情况,而五人抽五个礼物总数为55120A =种情况,故恰有一位同学拿到自己礼物的概率为4531208=.故选:D8.设5nx⎛⎝的展开式的各项系数和为M ,二项式系数和为N ,若240M N -=,则展开式中有理项共有()A . 1项B .2项C .3项D . 4项【正确答案】C【分析】根据二项式系数和公式,结合赋值法、二项式的通项公式进行求解即可.【详解】二项式系数和为2n N =,在5nx⎛ ⎝中,令1x =,得4nM =,由()()24042240021521602164n n n n nM N n -=⇒--=⇒+-=⇒=⇒=,二项式45x⎛ ⎝的通项公式为()()34442144C 5C 51rr r r r r r r T x x ---+⎛=⋅⋅=⋅⋅-⋅ ⎝,令0,2,4r =,则344,1,22r-=-,所以展开式中有理项共有3项,故选:C9.设双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,以2F 为圆心的圆恰好与双曲线C 的两渐近线相切,且该圆恰好经过线段2OF 的中点,则双曲线C 的离心率是()AB C .3D 【正确答案】A【分析】先由焦点到渐近线的距离求出半径,再利用该圆过线段2OF 的中点得到2c b =,即可求出离心率,【详解】由题意知:渐近线方程为by x a=±,由焦点2(,0)F c ,222c a b =+,以2F 为圆心的圆恰好与双曲线C 的两渐近线相切,则圆的半径r等于圆心到切线的距离,即r b ==,又该圆过线段2OF 的中点,故2cr b ==,所以离心率为ca=故答案为.310.数学对于一个国家的发展至关重要,发达国家常常把保持数学领先地位作为他们的战略需求.现某大学为提高数学系学生的数学素养,特开设了“古今数学思想”,“世界数学通史”,“几何原本”,“什么是数学”四门选修课程,要求数学系每位同学每学年至多选3门,大一到大三三学年必须将四门选修课程选完,则每位同学的不同选修方式有()A .60种B .78种C .84种D .144种【正确答案】B【分析】先分类,再每一类中用分步乘法原理即可.【详解】由题意可知三年修完四门课程,则每位同学每年所修课程数为1,1,2或0,1,3或0,2,2若是1,1,2,则先将4门学科分成三组共11243222C C C A 种不同方式.再分配到三个学年共有33A 种不同分配方式,由乘法原理可得共有112343232236C C C A A ⋅=种,若是0,1,3,则先将4门学科分成三组共1343C C 种不同方式,再分配到三个学年共有33A 种不同分配方式,由乘法原理可得共有13343324C C A ⋅=种,若是0,2,2,则先将门学科分成三组共224222C CA 种不同方式,再分配到三个学年共有33A 种不同分配方式,由乘法原理可得共有2234232218C C A A ⋅=种所以每位同学的不同选修方式有36241878++=种,故选:B.二、多选题11.若()102100121021,R x a a x a x a x x -=++++∈ ,则()A .2180a =B .10012103a a a a +++= C .100210132a a a -+++=D .31012231012222a a a a ++++=- 【正确答案】ABD【分析】根据二项式展开式的系数特点,结合通项公式,采用赋值法,一一求解各个选项,即得答案.【详解】由题意1021001210(21)x a a x a x a x -=++++ ,所以8282310C (2)(1)180T x x =-=,所以2180a =,故A 正确.令=1x -,则1021001210(21)x a a x a x a x -=++++ ,即为1021001210(21)||||||||x a a x a x a x +=++++ ,令1x =,得1001210||||||||3a a a a ++++= ,故B 正确;对于1021001210(21)x a a x a x a x -=++++ ,令1x =,得012101a a a a ++++= ,令=1x -,得:10012103a a a a -+-+= ,两式相加再除以2可得100210132a a a ++++= ,故C 错误.对于1021001210(21)x a a x a x a x -=++++ ,令0x =,得01a =,令12x =,得310120231002222a a a aa +++++= ,故31012231012222a a a a ++++=- ,故D 正确,故选:ABD12.为庆祝建党100周年,讴歌中华民族实现伟大复兴的奋斗历程,增进全体党员干部职工对党史知识的了解,某单位组织开展党史知识竞赛活动,以支部为单位参加比赛,某支部在5道党史题中(有3道选择题和2道填空题),不放回地依次随机抽取2道题作答,设事件A为“第1次抽到选择题”,事件B 为“第2次抽到选择题”,则下列结论中正确的是()A .()35P A =B .()310P AB =C .()12P B A =D .()12P B A =【正确答案】ABC【分析】根据古典概型概率的求法及条件概率,互斥事件概率求法,可以分别求得各选项.【详解】()131535C C P A ==,故A 正确;()11321154310C C P AB C C ==,故B 正确;()()()0351231P AB P P A B A ===,故C 正确;()121525C C P A ==,()11231154103C C C C P AB ==,()()()3310245P AB P B A P A ===,故D 错误.故选:ABC三、填空题13.已知事件A 和B 是互斥事件,()16P C =,()118P B C ⋂=,()()89P A B C ⋃=,则()P A C =______.【正确答案】59【分析】根据条件概率的定义以及运算性质,可得答案.【详解】解:由题意知,()()()()89P A B C P A C P B C ⋃=+=,()()()1118136P B C P B C P C ⋂===,则()()()()815939P A C P A B C P B C =⋃-=-=.故59.14.5555除以8,所得余数为_______.【正确答案】7【分析】由55561=-,运用二项式定理,结合整除的性质,即可求解.【详解】依题意,()()()()()()5512545555055154253541550555555555555561C 561C 561C 561C 561C 561=-=-+-+-++-+- 因为56能被8整除,所以5555除以8,所得的余数为.187-+=故7.15.已知()()()420122111x a a x a x -=+-+-()()343411a x a x +-+-,则3a =____.【正确答案】32对多项式进行变形得()44444112122122x x x ⎛⎫⎛⎫-=-=+- ⎪ ⎪⎝⎭⎝⎭,再研究441212x ⎛⎫+- ⎪⎝⎭展开式中的()31x -项,即可得答案.【详解】对多项式进行变形得()44444112122122x x x ⎛⎫⎛⎫-=-=+- ⎪ ⎪⎝⎭⎝⎭,∴44142((,0,1,,411)2r r rr T C r x -+-=⋅= ,当3r =时,4343342(3212a C -=⋅=.故答案为.32本题考查二项式定理求展开式指定项的系数,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.16.有10个相同的小球,现全部分给甲、乙、丙3人,若甲至少得1球,乙至少得2球,丙至少得3球,则他们所得的球数的不同情况有__________种.【正确答案】15【分析】依题意,首先分给甲1个球,乙2个球,丙3个球,还剩下4个球,再来分配这4个球,按照分类加法计数原理计算可得;【详解】解:有10个相同的小球,现全部分给甲、乙、丙3人,若甲至少得1球,乙至少得2球,丙至少得3球,故首先分给甲1个球,乙2个球,丙3个球,还剩下4个球,①4个球分给一人,有3种分法;②4个球分给两个人,又有两种情况,一人3个一人1个有236A =种分法;两人都是2个有3种分法;③4个球分给3个人,只有1、1、2这种情况,有3种分法,按照分类加法计数原理可得一共有363315+++=种;故15本题考查分类加法计数原理的应用,属于基础题.四、解答题17.已知{}n a 为等差数列,前n 项和为()*N n S n ∈,{}n b 是首项为2的等比数列,公比大于0,且2312b b +=,3412b a a =-,11411S b =.(1)求{}n a 和{}n b 的通项公式;(2)求数列{}n n a b 的前n 项和()*N n ∈.【正确答案】(1)32n a n =-,2nn b =(2)前n 项和110(35)2n n T n +=+-⋅【分析】(1)根据等比数列的通项公式可计算得到公比q 的值,再根据等差数列的通项公式和求和公式可列出方程组,解出首项1a 和公差d 的值,即可求得{}n a 和{}n b 的通项公式;(2)先根据第(1)题的结论得到数列{}n n a b ×的通项公式,然后运用错位相减法求出前n 项和n T .【详解】(1)由题意,设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,则0q >.故22212q q +=,解得2q =,12b = ,则2231228b b q ==⨯=,33412216b b q ==⨯=,由题意,得11132811101111162a d a a d +-=⎧⎪⎨⨯+=⨯⎪⎩,解得113a d =⎧⎨=⎩.13(1)32n a n n ∴=+-=-;1222n n n b -=⨯=.(2)由(1)知,(32)2n n n a b n ⋅=-⋅.设其前n 项和为n T ,211221242(32)2n n n n T a b a b a b n ∴=++⋯+=⨯+⨯+⋯+-⋅,①23121242(35)2(32)2n n n T n n +=⨯+⨯+⋯+-⋅+-⋅,②①-②,得23112323232(32)2n n n T n +-=⨯+⨯+⨯+⋯+⋅--⋅21212(122)(32)2n n n -+=+⨯++⋯+--⋅1112212(32)212n n n -+-=+⨯--⋅-()153210n n +=-⋅-.()110352n n T n +∴=+-⋅.18.在平面直角坐标系xOy 中,抛物线方程为()220x py p =>,其顶点到焦点的距离为2.(1)求抛物线的方程;(2)若点()0,4P -,设直线():0l y kx t t =+≠与抛物线交于A 、B 两点,且直线PA 、PB 的斜率之和为0,证明:直线l 必过定点,并求出该定点.【正确答案】(1)28x y =;(2)详见解析;【分析】(1)根据题意求出抛物线的焦点坐标,可求得p 的值,进而可求得抛物线的方程;(2)设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线的方程联立,列出韦达定理,根据直线PA 、PB 的斜率之和为0求得实数t 的值,即可求得直线l 所过定点的坐标.【详解】(1)0p > ,且抛物线22x py =的顶点到焦点的距离为2,则该抛物线的焦点坐标为()0,2,22p∴=,解得4p =,因此,该抛物线的方程为28x y =;(2)设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线的方程联立28y kx tx y=+⎧⎨=⎩,消去y 并整理得2880x kx t --=,由韦达定理得128x x k +=,128x x t =-.直线PA 的斜率为2111111144488x y x k x x x ++===,同理直线PB 的斜率为22248x k x =+,由题意得()1212121212124448324108888x x x x x x k k k k k x x x x t t +++⎛⎫+=++=+=+=-= ⎪-⎝⎭,上式对任意的非零实数k 都成立,则410t -=,解得4t =,所以,直线l 的方程为4y kx =+,该直线过定点()0,4.设而不求,联立方程,利用韦达定理解题是本类题目常用思路.本题中表示出()12121212121244441088x x x x x x k k k x x x x t +++⎛⎫+=++=+=-= ⎪⎝⎭是解题关键,也是计算难点.19.已知函数()2()24ln f x x ax x =-,a R ∈.(1)当0a =时,求函数()f x 的单调区间;(2)令2()()g x f x x =+,若[1,)x ∀∈+∞,函数()g x 有两个零点,求实数a 的取值范围.【正确答案】(1)函数()f x 的单调递减区间为120,e -⎛⎫ ⎪⎝⎭,单调递增区间为12e ,-⎛⎫+∞ ⎪⎝⎭(2))+∞【分析】(1)当0a =时,()22ln f x x x =,求出()f x ¢,可得函数()f x 的单调区间;(2)依题意得,()()2224ln g x x ax x x =-+,然后求导,得()()()()44ln 2424ln 1g x x a x x a x x a x =-+-+=-+',然后,分情况讨论即可求出实数a 的取值范围【详解】(1)函数()f x 的定义域为()0,+¥当0a =时,()22ln f x x x =()()4ln 222ln 1f x x x x x x =+=+'令()'0f x >得2ln 10x +>,解得12x e ->,令()'0f x <得2ln 10x +<,解得120x e -<<,所以函数()f x 的单调递减区间为120,e -⎛⎫ ⎪⎝⎭,单调递增区间为12e ,-⎛⎫+∞ ⎪⎝⎭(2)()()2224ln g x x ax x x =-+,()()()()44ln 2424ln 1g x x a x x a x x a x =-+-+=-+'由[)1,x ∈+∞得ln 10x +>①当1a ≤时,()'0g x ≥,函数()g x 在[)1,+∞上单调递增,所以()()1g x g ≥,即()1g x ≥,函数()g x 在[)1,+∞上没有零点.②当1a >时,()1,x a ∈时,()'0g x <,(),∈+∞x a 时,()'0g x >所以函数()g x 在()1,a 上单调递减,在(),+∞a 上单调递增因为()110g =>,()2240g a a =>所以函数()g x 在[)1,+∞有两个零点只需()()()2min 12ln 0g x g a a a ==-<解得a >综上所述,实数a 的取值范围为)+∞本题考查利用导数求单调性和单调区间的问题,解题的关键在于分情况讨论时注意数形结合,属于难题。

高二10月月考(数学)试题含答案

高二10月月考(数学)试题含答案

高二10月月考(数学)(考试总分:100 分)一、 单选题 (本题共计7小题,总分35分)1.(5分)设n S 为等差数列{}n a 的前n 项和,若4512a a +=,则8S 的值为( ) A .14B .28C .36D .482.(5分)已知抛物线22(0)y px p =>上一点(1,)(0)M m m > 到其焦点的距离为5,则实数m 的值是( ) A .-4B .2C .4D .83.(5分)已知过点(2,2)P 的直线与圆22(1)5x y +-=相切,且与直线10ax y -+=垂直,则a =( ) A .12-B .12C .2-D .24.(5分)已知空间向量(2,1,2)a =-,(1,2,1)b =-,则向量b 在向量a 上的投影向量是( ) A .424(,,)333-B .(2,1,2)-C .242(,,)333-D .(1,2,1)-5.(5分)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( ) A .192 里B .96 里C .48 里D .24 里6.(5分)设1F ,2F 是椭圆22:193x y C m m+=++的焦点,若椭圆C 上存在一点P 满足1290F PF ∠=︒,则m 的取值范围是( )A .](,3-∞B .](3,3-C .)3,+∞⎡⎣D .]3,3⎡-⎣7.(5分)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,左、右顶点为1A 、2A ,又点()10,B b -、()20,B b ,若焦点到渐近线的距离等于2,112211222F B F B A B A B S S =四边形四边形,则双曲线的方程为( )A .223144x y -=B .2241134x y -= C .223142x y -= D .224132x y -=二、 多选题 (本题共计2小题,总分10分)8.(5分)已知111ABC A B C -是各条棱长均等于1的正三棱柱,D 是侧棱1CC 的中点,下列结论正确的是( )A .AC 与平面1AB D B .平面1AB D 与平面111A BC 所成的角是60 C .1A B AD ⊥ D .平面1A BD ⊥平面1AB D9.(5分)已知0a b >>,椭圆22122:1x y C a b +=的离心率为1e ,双曲线22222:1x y C a b-=的离心率为2e 则( ) A .椭圆1C 的长轴长为2a B .双曲线2C 的虚轴长为2aC .椭圆1C 与双曲线2C 的焦距相等D .22122e e += 三、 填空题 (本题共计3小题,总分15分)10.(5分)设,P Q 分别为直线0x y -= 和圆22(6)2x y +-= 上的点,则||PQ 的最小值为_______.11.(5分)在等差数列{}n a 中,已知公差12d =,且1359960a a a a ++++=,则123100a a a a ++++=__________.12.(5分)己知椭圆)(2222:10x y C a b a b+=>>的一个焦点与抛物线24y x =的焦点重合,过点)(1,1M -且斜率为12的直线交椭圆C 于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的方程为______.四、 解答题 (本题共计3小题,总分40分)13.(13分)已知公差不为零的等差数列{a n }满足a 1=3,且a 1,a 4,a 13成等比数列. (1)求数列{a n }的通项公式;(2)若S n 表示数列{a n }的前n 项和,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和T n .14.(13分)如图,已知三棱锥M ABC -中,MA MB MC AC ====2AB BC ==,O 为AC 的中点,点N 在边BC 上,且23BN BC =.(1)证明:BO ⊥平面AMC ; (2)求二面角N AM C --的正弦值.15.(14分)己知F 是椭圆)(2222:10x y C a b a b+=>>的一个焦点,点M 在椭圆上,MF x ⊥轴,MF 4.(1)求椭圆的标准方程;(2)设P 为直线:l x =Q 为椭圆C 上一点,且以PQ 为直径的圆过坐标原点O ,求2216OP OQ -的取值范围.答案一、 单选题 (本题共计7小题,总分35分) 1.(5分)D 【分析】利用等差数列的前n 项和公式以及等差数列的性质即可求出. 【详解】因为n S 为等差数列{}n a 的前n 项和, 所以()()18818842a a S a a +==+ ()45448a a =+=故选:D 【点睛】本题考查了等差数列的前n 项和公式的计算以及等差数列性质的应用,属于较易题. 2.(5分)C 【分析】首先利用抛物线的定义,将抛物线上点到焦点的距离转化为到准线的距离解出p ,再将点M 的坐标代入抛物线方程即可解得. 【详解】抛物线的准线方程为:2px =-,因为M 到焦点距离为5,所以M 到准线的距离152p+=,即p =8,则抛物线方程为216y x =.将(1,m )代入得:216m =,因为0,m >所以4m =.故选:C. 3.(5分)B 【分析】首先由点P 的坐标满足圆的方程来确定点P 在圆上,然后求出过点P 的圆的切线方程,最后由两直线的垂直关系转化为斜率关系求解. 【详解】由题知,圆22(1)5x y +-=的圆心(0,1)C ,半径r = 因为222(21)5+-=,所以点(2,2)P 在圆C 上, 所以过点P 的圆C 的切线l 与直线PC 垂直, 设切线l 的斜率k ,则有1PC k k ⋅=-,即21120k -⋅=--,解得2k =-. 因为直线10ax y -+=与切线l 垂直, 所以1k a ⋅=-,解得12a =. 故选:B. 4.(5分)A 【分析】由向量b 在向量a 上的投影向量为||cos ,||ab a b a <>,计算即可求出答案. 【详解】解:向量(2,1,2)a =-,(1,2,1)b =-则2||223a =+,22||11b =+()()2112126a b =⨯+-⨯-+⨯=,所以向量b 在向量a 上的投影向量为()2,1,26424cos ,6,,333336a a b a b a bb a aa b -⋅⎛⎫=⋅=⨯=- ⎪⨯⎝⎭. 故选:A . 5.(5分)B 【分析】由题可得此人每天走的步数等比数列,根据求和公式求出首项可得. 【详解】由题意可知此人每天走的步数构成12为公比的等比数列{}n a ,由题意和等比数列的求和公式可得61112378112a ⎡⎤⎢⎥⎢⎥⎣⎛⎫- ⎪⎝⎭=-⎦,解得1192a =,第此人第二天走1192962⨯=里.故选:B . 6.(5分)B 【分析】判断椭圆的焦点所在轴,P 点为椭圆短轴的端点时,12F PF ∠取得最大角,进而得出结论. 【详解】解:因为椭圆方程为22:193x y C m m+=++,930,3m m m +>+>>-,排除A,D 选项, 所以椭圆焦点在x 轴,29a m =+,23b m =+,所以c 当P 点为椭圆短轴的端点时,12F PF ∠取得最大角,设12F PF θ=∠,则ππ,sin 4222θθ≤<=,解得33m -<, m 的取值范围是(3-,3].故选:B . 7.(5分)A 【分析】求出渐近线方程,利用点到直线的距离公式求出2b =,再根据题意可得222c b a b ⋅=⨯⋅,求出2c a =,再由222a c b =-即可求解. 【详解】双曲线22221(0,0)x y a b a b-=>>,可得()1,0F c -,()2,0F c ,()1,0A a -,()2,0A a , 其渐近线为by x a=±,不妨取by x a =,即0bx ay -=,则()2,0F c 2b ==,又112211222F B F B A B A B S S =四边形四边形,则222c b a b ⋅=⨯⋅,即2c a =,因为222a c b =-,则2244a a =-,解得243a =,所以双曲线的方程为223144x y -=. 故选:A二、 多选题 (本题共计2小题,总分10分)8.(5分)ACD 【分析】根据正三棱柱的性质,结合空间线面的关系,逐项分析判断即可得解. 【详解】对A ,设点C 到平面1AB D 的距离为h ,易知1B 到平面ACD 由11C ABD B ACD V V --=,可得1113332AB DACD Sh S ⋅=⋅,由1AB =,AD =1B D =所以112AB DS==14ACDS =,解得h =AC 与平面1AB D 所成的角的正弦值为41hAC ==A 正确; 如图,延长1,B D BC 交于点P ,连接AP ,由112CD BB =知C 为BP 中点,由ABC 为等边三角形, 所以90BAP ∠=,所以1BAB ∠为二面角的平面角, 易知145BAB ∠=,故B 错误;对C ,由AB AP ⊥,根据正三棱柱的性质可得AP ⊥平面11ABB A , 所以1AP A B ⊥,又11A B AB ⊥,所以1A B ⊥平面1AB P ,所以1A B AD ⊥,故C 正确; 对D ,由C 答案的分析可知,1A B ⊥平面1AB P ,1A B ⊥平面1AB D ,而1A B ⊂平面1A BD ,所以平面1A BD ⊥平面1AB D ,故D 正确. 故选:ACD 9.(5分)AD 【分析】利用椭圆、双曲线的几何性质逐一判断即可. 【详解】 对于A ,椭圆22122:1x y C a b +=,且0a b >>,所以1C 的长轴长为2a ,故A 正确; 对于B ,双曲线22222:1x y C a b-=,2C 的虚轴长为2b ,故B 不正确;对于C ,椭圆1C 的焦距为2C 的焦距为C 不正确;对于D ,22221221a b b e a a-==-,22222221a b b e a a +==+,所以22122e e +=,故D 正确; 故选:AD三、 填空题 (本题共计3小题,总分15分)10.(5分)【分析】易知||PQ 的最小值为圆心到直线的距离减去半径. 【详解】圆心()0,6到直线0x y -=的距离为d ==所以||PQ 的最小值为d r -==故答案为: 11.(5分)145 【分析】根据题意得到12310013599246100a a a a a a a a a a a a ++++=+++++++++,再由等差数列性质得到24610013599a a a a a d a d a d a d ++++=++++++++,代入数据计算即可得到答案.等差数列{}n a 中,已知公差12d =,12310013599246100a a a a a a a a a a a a ++++=+++++++++24610013599a a a a a d a d a d a d ++++=++++++++605085d =+=1231001260501452a a a a ++++=⨯+⨯=. 故答案为:145.2212x y += 12.(5分)【分析】设出点A ,B 的坐标,利用中点坐标公式,斜率公式以及点差法联立即可求解. 【详解】设1(A x ,1)y ,2(B x ,2)y ,由已知可得:122x x +=-,122y y +=,且121212y y x x -=-,把点A ,B 的坐标代入椭圆方程可得:22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式作差可得:1212121222()()()()0x x x x y y y y a b -+-++=,则2121221212()()1()()2y y y y b a x x x x -+=-=-+,又抛物线的焦点F 的坐标为(1,0),所以1c =, 所以221a b -=,则22a =,21b =,所以椭圆的方程为:2212x y +=,故答案为:2212x y +=.四、 解答题 (本题共计3小题,总分40分) 13.(13分)(1)a n =2n +1(2)T n =32342(1)(2)n n n +-++ 【分析】(1)根据题意得24113a a a =⋅,设公差为d ,代入可求得d 值,代入等差数列通项公式,(2)由(1)得a n =2n +1,即可求得n S ,进而可得11111()(2)22n S n n n n ==-++,根据裂项相消求和法,计算即可得答案. (1)由题意得:24113a a a =⋅,设公差为()d d ≠0,所以(3+3d )2=3(3+12d ),解得d =0(舍)或2, 所以a n =3+2(n ﹣1)=2n +1. (2)由于(1)得a n =2n +1,则(24)2n n n S +==n 2+2n , 所以11111()(2)22n S n n n n ==-++.所以T n =1111111111(1)232435112n n n n -+-+-++-+--++ =1111(1)2212n n +--++=32342(1)(2)n n n +-++.14.(13分)(1)证明见解析;(2 【分析】(1)先在等腰三角形ABC 中证OB AC ⊥,然后在MOB △中根据勾股定理证OB OM ⊥,从而结论得证;(2)用向量法求两个面的法向量,根据向量的夹角公式来求二面角的余弦值. 【详解】(1)连接OM ,在ABC 中,因为2AB BC ==,AC =O 为AC 的中点,所以OB AC ⊥,且OB在MAC △中,因为MA MC AC ===O 为AC 的中点,所以OM AC ⊥,且OM =在MOB △中,因为OB OM =MB = 所以222BO OM MB +=,所以OB OM ⊥,又AC OM O =,,AC OM ⊂平面AMC ,所以OB ⊥平面AMC .(2)因为OB ,OC ,OM 两两垂直,以O 为坐标原点,建立如图所示的空间直角坐标系,因为MA MB MC AC ====2AB BC ==,所以(0,A,B,C,M ,(0,AM =,(BC =-,由23BN BC =,得(33N,则2(33AN =, 设平面MAN 的法向量为(,,)m x y z =,则20320ANm x y AM m y ⎧⋅==⎪⎨⎪⋅==⎩ ,令y =(51)m =--, 因为BO ⊥平面AMC ,所以(2,0,0)OB =为平面AMC 的一个法向量, 设二面角N AM C --为θ,则cos cos ,m OB θ-=〈〉==因为[]0,θπ∈,所以二面角的正弦值sin θ===15.(14分)(1)22184x y +=;(2)[50-,)+∞. 【分析】(1)由已知建立等式关系,联立方程求出a ,b ,再得到椭圆的方程;(2)根据椭圆的参数方程设点Q 的坐标,再设点P 的坐标,利用已知可得OP ,OQ 垂直,则向量OP 与向量OQ 的数量积为0,得出等式关系,然后表示出所求的关系式,利用基本不等式,得到其范围.【详解】(1)由已知可得224b b a=⎧⎪⎨=⎪⎩a =2b =, 所以椭圆的标准方程为22184x y +=; (2)根据椭圆的参数方程可设点,2sin )Q θθ,[0θ∈,2)π,另设点P的坐标为)m ,因为以PQ 为直径的圆过坐标原点O ,所以OP OQ ⊥,即12cos 2sin 0OP OQ m θθ⋅=+=,所以6cos sin m θθ=-, 所以22222||16||1816(8cos 4sin )OP OQ m θθ-=+-+223664146sin sin θθ=+-, 令2sin [0t θ=∈,1], 则223636||16||641462641469614650OP OQ t t t-=+-⨯=-=-,当且仅当3664t t =,即3t 4=时取等号, 此时22||16||OP OQ -的取值范围为[50-,)+∞.【点睛】解决圆锥曲线中的范围问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中范围问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.。

2022-2023学年高二下学期第二次月考数学试题(解析版)

2022-2023学年高二下学期第二次月考数学试题(解析版)

2024届高二年级下学期第二次月考数学试卷一、单选题(共40分)1. 已知复数满足,( )z ()()31i 1i z --=+z=A.B.C.D.【答案】D 【解析】【分析】先求出复数的代数形式,再求模即可. z 【详解】由得()()31i 1i z --=+,()()()()1i 1i 1i333i 1i 1i 1i z +++=+=+=+--+.z ∴==故选:D.2. 某地政府调查育龄妇女生育意愿与家庭年收入高低的关系时,随机调查了当地3000名育龄妇女,用独立性检验的方法处理数据,并计算得,则根据这一数据以及临界值表,判断育龄妇女生育意27.326χ=愿与家庭年收入高低有关系的可信度( )参考数据如下:,()()()22210.8280.001,7.8790.005, 6.6350.01P P P χχχ≥≈≥≈≥≈.()()223.8410.05, 2.7060.1P P χχ≥≈≥≈A. 低于 B. 低于 C. 高于 D. 高于1%0.5%99%99.5%【答案】C 【解析】【分析】根据临界值表求得正确答案.【详解】由于,()27.326 6.635,7.879χ=∈而,()()227.8790.005, 6.6350.01P P χχ≥≈≥≈所以可信度高于. 99%故选:C3. 已知向量满足,且,则在上的投影向量为( ),a b 10a b ⋅= ()3,4b =- a b A. B.C.D. ()6,8-()6,8-68,55⎛⎫- ⎪⎝⎭68,55⎛⎫-⎪⎝⎭【答案】C 【解析】【分析】向量在向量上的投影向量的定义计算即可.a b【详解】解:因为向量,且,那么,()3,4b =- 10a b ⋅=5b == 所以向量在向量上的投影向量为, a b ()3468cos ,555b a b a a b b b-⋅⎛⎫⋅=⋅=- ⎪⎝⎭ ,,故选:C.4. 已知等比数列的前n 项和为,若,则( ){}n a n S 153n n S t -=⨯+t =A. B. 5C.D.5-53-53【答案】C 【解析】【分析】根据条件得到,,,从而求出,,,再由数列是等比数列得到,1S 2S 3S 1a 2a 3a {}n a 3212a a a a =即可得到.t 【详解】由题意得:,,, 115S a t ==+21215S a a t =+=+312345S a a a t =++=+即,,, 15a t =+210a =330a =因为数列是等比数列,所以, {}n a 3212a a a a =即,解得:,1030510t =+53t =-故选:C .5. 如图,八面体的每一个面都是正三角形,并且四个顶点在同一平面内,下列结论:①,,,A B C D AE平面;②平面平面;③;④平面平面,正确命题的个数//CDF ABE //CDF AB AD ⊥ACE ⊥BDF 为( )A. 1B. 2C. 3D. 4【答案】D 【解析】【分析】根据题意,以正八面体的中心为原点,分别为轴,建立如图所示空间直O ,,OB OC OE ,,x y z 角坐标系,由空间向量的坐标运算以及法向量,对选项逐一判断,即可得到结果.【详解】以正八面体的中心为原点,分别为轴,建立如图所示空间直角坐标系, O ,,OB OC OE ,,x y z 设正八面体的边长为,则2()(()()(0,,,,,0,0,A E C D F 所以,,(()(,,0,AE CD CF ===设面的法向量为,则,解得,取,即CDF (),,n x y z =CD n CF n ⎧⋅==⎪⎨⋅==⎪⎩x z x y =⎧⎨=-⎩1x =()1,1,1n =-又,所以,面,即面,①正确;0AE n ⋅== AE n ⊥AE ⊄CDF AE //CDF 因为,所以,AE CF =- AE //CF 又,面,面,则面,//AB CD AB ⊄CDF CD ⊂CDF //AB CDF 由,平面,所以平面平面,②正确; AB AE A = ,AE AB ⊂ABE AEB //CDF 因为,则,所以,③正确;))(),,BAB AD ==0AB AD ⋅=u u u r u u u rAB AD ⊥易知平面的一个法向量为,平面的一个法向量为,ACE ()11,0,0n =u r BDF ()20,1,0n =u u r因为,所以平面平面,④正确;120n n ⋅=ACE ⊥BDF 故选:D6. 如图,在正三角形的12个点中任取三个点构成三角形,能构成三角形的数量为( )A. 220B. 200C. 190D. 170【答案】C 【解析】【分析】利用间接法,用总数减去不能构成三角形的情况即可.【详解】任取三个点有种,其中三点共线的有种,故能构成三角形个, 312C 353C 33125C 3C 190-=故选:C .7. 已知,分别是双曲线的左、右焦点,过的直线分别交双曲线左、1F 2F ()2222:10,0x y a b a bΓ-=>>1F 右两支于A ,B 两点,点C 在x 轴上,,平分,则双曲线的离心率为( )23CB F A =2BF 1F BC ∠ΓA.B.C.D.【答案】A 【解析】【分析】根据可知,再根据角平分线定理得到的关系,再根据双曲线定23CB F A =2//CB F A 1,BF BC 义分别把图中所有线段用表示出来,根据边的关系利用余弦定理即可解出离心率.,,a b c 【详解】因为,所以∽,23CB F A =12F AF 1F BC △设,则,设,则,. 122FF c =24F C c =1AF t =13BF t =2AB t =因为平分,由角平分线定理可知,, 2BF 1F BC ∠11222142BF F F c BC F C c ===所以,所以, 126BC BF t ==2123AF BC t ==由双曲线定义知,即,,① 212AF AF a -=22t t a -=2t a =又由得,122B F B F a -=2322BF t a t =-=所以,即是等边三角形, 222BF AB AF t ===2ABF △所以.2260F BC ABF ∠=∠=︒在中,由余弦定理知,12F BF 22212121212cos 2BF BF F F F BF BF BF +-∠=⋅⋅即,化简得, 22214942223t t ct t+-=⋅⋅2274t c =把①代入上式得. ce a==故选:A .8. 高斯是德国著名的数学家,近代数学奠基者之一;享有“数学王子“的称号.用他名字定义的函数称为高斯函数,其中表示不超过x 的最大整数,已知数列满足,,()[]f x x =[]x {}n a 12a =26a =,若,为数列的前n 项和,则( )2156n n n a a a +++=[]51log n n b a +=n S 11000n n b b +⎧⎫⎨⎬⋅⎩⎭[]2023S =A. 999 B. 749 C. 499 D. 249【答案】A 【解析】【分析】根据递推关系可得为等比数列,进而可得,由累加法可求解{}1n n a a +-1145n n n a a -+=⨯-,进而根据对数的运算性质可得,根据裂项求和即可求解.151n n a +=+[]51log n n b a n +==【详解】由得,因此数列为公比为5,2156n n n a a a +++=()2115n n n n a a a a +++-=-{}1n n a a +-首项为的等比数列,故,进而根据累加法214a a -=1145n n n a a -+=⨯-得,()()()()1111112024555251n n n n n n n n a a a a a a a a ++---=+++=++-+-++=+- 由于,又,()515log log 51nn a +=+()()()5555log 5log 51log 55log 511nnnnn n <+<⨯⇒<+<+因此,则,故[]51log n n b a n +==()11000100011100011n n n c b b n n n n +⎛⎫===- ⎪⋅⋅++⎝⎭,12110001n n S c c c n ⎛⎫=+++=- ⎪⎝⎭所以, []20231100010001100099920232023S ⎡⎤⎛⎫⎡⎤=-=-= ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦故选:A【点睛】方法点睛:常见的数列求和的方法有公式法即等差等比数列求和公式,分组求和类似于,其中和分别为特殊数列,裂项相消法类似于,错位相减法类似于n n n c a b =+{}n a {}n b ()11n a n n =+,其中为等差数列,为等比数列等. n n n c a b =⋅{}n a {}n b 二、多选题(共20分)9. 已知方程表示椭圆,下列说法正确的是( )221124x y m m +=--A. m 的取值范围为 B. 若该椭圆的焦点在y 轴上,则 ()4,12()8,12m∈C. 若,则该椭圆的焦距为4 D. 若,则该椭圆经过点6m =10m =(【答案】BC 【解析】【分析】根据椭圆的标准方程和几何性质依次判断选项即可.【详解】A :因为方程表示椭圆,221124x y m m +=--所以,解得,且,故A 错误;12040124m m m m ->⎧⎪->⎨⎪-≠-⎩412m <<8m ≠B :因为椭圆的焦点在y 轴上,221124x y m m +=--所以,解得,故B 正确;4120m m ->->812m <<C :若,则椭圆方程为,6m =22162x y +=所以,从而,故C 正确;222624c a b =-=-=24c =D :若,则椭圆方程为,10m =22126x y +=点的坐标不满足方程,即该椭圆不经过点,故D错误. ((故选:BC.10. 设等差数列的前项和为,,公差为,,,则下列结论正确的是{}n a n n S 10a >d 890a a +>90a <( ) A.0d <B. 当时,取得最大值 8n =n S C.45180a a a ++<D. 使得成立的最大自然数是15 0n S >n 【答案】ABC 【解析】【分析】根据已知可判断,,然后可判断AB ;利用通项公式将转化为可判80a >90a <4518a a a ++9a 断C ;利用下标和性质表示出可判断D.1617,S S 【详解】解:因为等差数列中,,, {}n a 890a a +>90a <所以,,,A 正确; 80a >90a <980d a a =-<当时,取得最大值,B 正确;8n =n S ,C 正确; ()45181193243830a a a a d a d a ++=+=+=<,,()()1611689880S a a a a =+=+>11717917()1702a a S a +==<故成立的最大自然数,D 错误. 0n S >16n =故选:ABC .11. 已知的展开式中第3项与第7项的二项式系数相等,则( ) ()1nx +A.8n =B. 的展开式中项的系数为56 ()1nx +2x C. 奇数项的二项式系数和为128 D. 的展开式中项的系数为56()21nx y +-2xy 【答案】AC 【解析】【分析】利用二项式定理求得的展开通项公式,从而得到关于的方程,解出的值判断AB ,()1nx +n n 利用所有奇数项的二项式系数和为判断C ,根据二项式定理判断D.12n -【详解】因为的展开式通项为,()1nx +1C C k k k kr n n T x x +==所以的展开式的第项的二项式系数为,()1nx +1k +C kn 所以,解得,A 正确; 26C C n n =8n =的系数为,B 错误;2x 28C 28=奇数项的二项式系数和为,C 正确; 1722128n -==根据二项式定理,表示8个相乘,()821x y +-()21x y+-所以中有1个选择,1个选择,6个选择,()21x y+-x 2y-1所以的展开式中项的系数为,D 错误;()21nx y +-2xy ()71187C C 156-=-故选:AC12. 已知小李每天在上班路上都要经过甲、乙两个路口,且他在甲、乙两个路口遇到红灯的概率分别为13,p .记小李在星期一到星期五这5天每天上班路上在甲路口遇到红灯个数之和为,在甲、乙这两个路X 口遇到红灯个数之和为,则( ) Y A. ()54243P X ==B. ()109D X =C. 当时,小李星期一到星期五上班路上恰有3天至少遇到一次红灯的概率为25p =216625D. 当时, 25p =()443E Y =【答案】BC 【解析】【分析】对于AB ,确定,即可求出和,对于C ,表示一天至少遇到红灯15,3X B ⎛⎫ ⎪⎝⎭()4P X =()D X 的概率为,可求出星期一到星期五上班路上恰有3天至少遇到一次红灯的概率的表达式,再将1233p +代入即可求得结果,对于D ,记为周一到周五这五天在乙路口遇到红灯的个数,则25p =ξ()5,B p ξ~,,即可求出.Y X ξ=+()E Y 【详解】对于AB ,小李在星期一到星期五这5天每天上班路上在甲路口遇到红灯个数之和为,且他X 在甲路口遇到红灯的概率为, 13则,15,3X B ⎛⎫ ⎪⎝⎭所以,, ()44511104C 133243P X ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭()111051339D X ⎛⎫=⨯⨯-= ⎪⎝⎭所以A 错误,B 正确,对于C ,由题意可知一天至少遇到一次红灯的概率为, ()112111333p p ⎛⎫---=+ ⎪⎝⎭则小李星期一到星期五上班路上恰有3天至少遇到一次红灯的概率为, 32351212C 13333p p ⎛⎫⎛⎫+--⎪ ⎪⎝⎭⎝⎭当时,, 25p =323233551212122122216C 1C 13333335335625p p ⎛⎫⎛⎫⎛⎫⎛⎫+--=+⨯--⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以C 正确,对于D ,记为周一到周五这五天在乙路口遇到红灯的个数,则,, ξ()5,B p ξ~Y X ξ=+所以, ()()()()1553E Y E X E X E p ξξ=+=+=⨯+当时,,所以D 错误, 25p =()121155353E Y =⨯+⨯=故选:BC三、填空题(共20分)13. 圆心在直线上,且与直线相切于点的圆的方程为______. 2x =-20x +-=(-【答案】 ()2224x y ++=【解析】【分析】设圆心为,记点为,由已知直线与直线垂直,由此可()2,C t -(-A AC 20x -=求,再求可得圆的半径,由此可得圆的方程. t AC【详解】记圆心为点,点为点,C (-A 因为圆心在直线上,故可设圆心的坐标为, C 2x =-C ()2,t -因为圆与直线相切于点, C 20x -=(A -所以直线与直线垂直, CA 20x +-=直线的斜率为 CA 20x +-=, 1⎛=- ⎝所以,0=t 所以圆心为, ()2,0C -圆的半径为,2CA r ===所以圆的方程为. ()2224x y ++=故答案为:.()2224x y ++=14. 已知随机变量,且,若,则的最小()21N ξσ ,()()0P P a ξξ≤=≥()00x y a x y +=>>,12x y+值为_________.【答案】 32+【解析】【分析】先根据正态曲线的对称性可求,结合基本不等式可求答案. 2a =【详解】,可得正态分布曲线的对称轴为,()21,N ξσ1x =又,,即. ()()0P P a ξξ≤=≥12a∴=2a =则()(121121213332222y x x y x y x y x y ⎛⎫⎛⎫+=++=++≥+=+⎪ ⎪⎝⎭⎝⎭当且仅当,即时,等号成立.y=2,4x y ==-故答案为:. 32+15. 已知数列是等差数列,并且,,若将,,,去掉一项后,剩{}n a 1476a a a ++=60a =2a 3a 4a 5a 下三项依次为等比数列的前三项,则为__________. {}n b 4b 【答案】## 120.5【解析】【分析】先求得,进而求得,,,,根据等比数列的知识求得. n a 2a 3a 4a 5a 4b 【详解】设等差数列的公差为,{}n a d 依题意,则,147660a a a a ++=⎧⎨=⎩1139650a d a d +=⎧⎨+=⎩解得,所以,151a d =⎧⎨=-⎩6n a n =-+所以, 23454,3,2,1a a a a ====通过观察可知,去掉后,3a 成等比数列,2454,2,1a a a ===所以等比数列的首项为,公比为,{}n b 412所以.3411422b ⎛⎫=⨯= ⎪⎝⎭故答案为:1216. 设奇函数在上为单调递减函数,且,则不等式的解集()f x (0,)+∞()20f =3()2()05f x f x x--≤为___________【答案】 [)(]2,00,2-U 【解析】【分析】分析函数的奇偶性、单调性和取值范围,即可得到不等式的解集. 【详解】由题意,,x ∈R 在中,为奇函数且在上单调递减,()y f x =()f x ()0,∞+()20f =∴,,函数在和上单调递减,()()f x f x =--()()220f f -==(),0∞-()0,∞+∴当和时,;当和时,. (),2-∞-()0,2()0f x >()2,0-()2,+∞()0f x >∵,3()2()05f x f x x--≤∴,即,3()2()3()2()()055f x f x f x f x f x x x x ----==-≤()0f x x≥当时,解得:;当时,解得:, 0x <20x -≤<0x >02x <≤∴不等式解集为:,3()2()05f x fx x--≤[)(]2,00,2-U 故答案为:.[)(]2,00,2-U 四、解答题(共70分)17. 已知向量,,且函数.()cos ,1m x =)2,cos n x x =()f x m n =⋅(1)求函数的单调增区间;()f x (2)若中,分别为角对的边,,求的取值范围. ABC ,,a b c ,,A B C ()2cos cos -=a c B b C π26A f ⎛⎫+ ⎪⎝⎭【答案】(1)πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦(2) 30,2⎛⎫ ⎪⎝⎭【解析】【分析】(1)由题知,再根据三角函数性质求解即可; ()1sin 262πf x x ⎛⎫=++ ⎪⎝⎭(2)由正弦定理边角互化,结合恒等变换得,进而得,,再根据三角函数1cos 2B =π3B =2π0,3A ⎛⎫∈ ⎪⎝⎭的性质求解即可. 【小问1详解】因为向量,,且函数()cos ,1m x =)2,cos n x x =()f x m n =⋅所以 ()211π1cos cos cos2sin 22262f x m n x x x x x x ⎛⎫=⋅=+=++=++ ⎪⎝⎭ 令,解得, πππ2π22π262k x k -+≤+≤+ππππ,Z 36k x k k -+≤≤+∈所以,函数的单调增区间为.()f x πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦【小问2详解】因为,()2cos cos -=a c B b C由正弦定理可得:, 2sin cos sin cos sin cos A B C B B C -=即,2sin cos sin cos sin cos A B C B B C =+因为, ()sin cos sin cos sin sin C B B C B C A +=+=所以,2sin cos sin A B A =因为,所以, ()0,π,sin 0A A ∈≠1cos 2B =因为,所以,所以, ()0,πB ∈π3B =2π0,3A ⎛⎫∈ ⎪⎝⎭所以, πππ11sin cos 263622A f A A ⎛⎫⎛⎫+=+++=+ ⎪ ⎪⎝⎭⎝⎭所以;π13cos 0,2622A f A ⎛⎫⎛⎫+=+∈⎪ ⎪⎝⎭⎝⎭所以,的取值范围为.π26A f ⎛⎫+⎪⎝⎭30,2⎛⎫⎪⎝⎭18. 已知正项数列中,.{}n a 2113,223(2)n n n a S S a n -=+=-≥(1)求的通项公式; {}n a (2)若,求的前n 项和. 2nn na b ={}n b n T 【答案】(1) 21n a n =+(2) 2552n nn T +=-【解析】【分析】(1)根据计算即可得解;11,1,2n n n S n a S S n -=⎧=⎨-≥⎩(2)利用错位相减法求解即可.【小问1详解】当时,,2n =2212212222324212,0S S a a a a a +=-=+=+>解得,25a =由当时,, 2n ≥21223n n n S S a -+=-得当时,,3n ≥2121223n n n S S a ---+=-两式相减得,即,()22112n n n n a a a a --+=-()()()1112n n n n n n a a a a a a ---++-=又,所以,0n a >()123n n a a n --=≥又适合上式,212a a -=所以数列是以为首项,为公差的等差数列, {}n a 32所以; 21n a n =+【小问2详解】, 2122n n n n a n b +==则, 1223521222n n n n T b b b +=+++=+++ , 231135212122222n n n n n T +-+=++++ 两式相减得 2311322221222222n n n n T ++=++++- 211111121122222n n n -++⎛⎫=+++++- ⎪⎝⎭111121212212n n n +-+=+--, 152522n n ++=-所以. 2552n nn T +=-19. 如图,在四棱锥中,侧面底面,,底面是平行四边形,S ABCD -SCD ⊥ABCD SC SD =ABCD ,,,分别为线段的中点. π3BAD ∠=2AB =1AD =,MN ,CD AB(1)证明:平面;BD ⊥SMN (2)若直线与平面所成角的大小为,求二面角的余弦值. SA ABCD π6C SBD --【答案】(1)证明见解析(2)【解析】【分析】(1)利用勾股定理、面面垂直和线面垂直的性质可证得,,由线面垂直BD MN ⊥SM BD ⊥的判定可证得结论;(2)根据线面角的定义可知,设,取中点,根据垂直关系可以为π6SAM ∠=MN BD O = SN F O 坐标原点建立空间直角坐标系,利用二面角的向量求法可求得结果. 【小问1详解】,,,, 2AB = 1AD =π3BAD ∠=2222cos 3BD AB AD AB AD BAD ∴=+-⋅∠=即,,,BD =222AD BD AB ∴+=AD BD ∴⊥分别为中点,四边形为平行四边形,,;,M N ,CD AB ABCD //MN AD ∴BD MN ∴⊥,为中点,,SC SD = M CD SM CD ∴⊥平面平面,平面平面,平面,SCD ⊥ABCD SCD ABCD CD =SM ⊂SCD 平面,又平面,;SM ∴⊥ABCD BD ⊂ABCD SM BD ∴⊥,平面,平面.SM MN M = ,SM MN ⊂SMN BD ∴⊥SMN 【小问2详解】 连接,AM 由(1)知:平面,则与平面所成角为,即, SM ⊥ABCD SA ABCD SAM ∠π6SAM ∠=在中,,, ADM △1AD DM ==2ππ3ADC BAD ∠=-∠=,解得:2222cos 3AM AD DM AD DM ADC ∴=+-⋅∠=AM =,; 2πcos 6AMSA ∴==πtan 16SM AM ==设,取中点,连接,MN BD O = SN F OF 分别为中点,,又平面,,O F ,MN SN //OF SM ∴SM ⊥ABCD 平面,又,OF ∴⊥ABCD MN BD ⊥则以为坐标原点,正方向为轴,可建立如图所示空间直角坐标系,O ,,OM OB OF,,x y z则,,,,C ⎛⎫- ⎪⎝⎭1,0,12S ⎛⎫- ⎪⎝⎭B ⎛⎫ ⎪ ⎪⎝⎭0,D ⎛⎫ ⎪ ⎪⎝⎭,,,112SB ⎛⎫∴=- ⎪ ⎪⎝⎭()1,0,0CB =()DB = 设平面的法向量,SBC (),,n x y z =则,令,解得:,,;1020SB n x y z CB n x ⎧⋅=+-=⎪⎨⎪⋅==⎩2y =0x=z=(0,n ∴= 设平面的法向量,SBD (),,m a b c =则,令,解得:,,;1020SB m a c DB m ⎧⋅=+-=⎪⎨⎪⋅==⎩2a =0b =1c =()2,0,1m ∴= ,cos m n m n m n⋅∴<⋅>===⋅ 二面角为钝二面角,二面角的余弦值为C SBD --∴C SB D --20. 2023年1月26日,世界乒乓球职业大联盟(WTT )支线赛多哈站结束,中国队包揽了五个单项冠军,乒乓球单打规则是首先由发球员发球2次,再由接发球员发球2次,两者交替,胜者得1分.在一局比赛中,先得11分的一方为胜方(胜方至少比对方多2分),10平后,先多得2分的一方为胜方,甲、乙两位同学进行乒乓球单打比赛,甲在一次发球中,得1分的概率为,乙在一次发球中,得1分35的概率为,如果在一局比赛中,由乙队员先发球.12(1)甲、乙的比分暂时为8:8,求最终甲以11:9赢得比赛的概率; (2)求发球3次后,甲的累计得分的分布列及数学期望. 【答案】(1)625(2)分布列见详解, 85【解析】【分析】(1)根据题意可得甲以11:9赢得比赛,则甲再得到3分,乙得到1分,且甲得到最后一分,再根据独立事件的乘法公式求概率即可;(2)根据题意可得X 的可能取值为0,1,2,3,求出相应的概率列出分布列,再求其数学期望即可. 【小问1详解】甲以11:9赢得比赛,共计20次发球,在后4次发球中,需甲在最后一次获胜,最终甲以11:9赢得比赛的概率为:. 22212131236C 2525525P ⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【小问2详解】设甲累计得分为随机变量X ,X 的可能取值为0,1,2,3.,()212102510P X ⎛⎫==⨯= ⎪⎝⎭, ()2212121371C 252520P X ⎛⎫⎛⎫==⨯⨯+⨯=⎪ ⎪⎝⎭⎝⎭,()2212131222C 25255P X ⎛⎫⎛⎫==⨯⨯+⨯= ⎪ ⎪⎝⎭⎝⎭,()213332520P X ⎛⎫==⨯=⎪⎝⎭∴随机变量X 的分布列为: X 0123P110 720 25 320∴. ()17238012310205205E X =⨯+⨯+⨯+⨯=21. 已知某种商品的价格(单位:元)和需求量(单位:件)之间存在线性关系,下表是试营业期间记录的数据(对应的需求量因污损缺失): 24x =价格x16 17 18 192024需求量y 5549424036经计算得,,,由前组数据计算出的关于的线性回归5211630i ix==∑52110086ii y ==∑513949i i i x y ==∑5y x 方程为. 4710y x a=-+(1)估计对应的需求量y (结果保留整数);24x =(2)若对应的需求量恰为(1)中的估计值,求组数据的相关系数(结果保留三位小数).24x =6r 附:相关系数. r ==328.8769≈【答案】(1)16(2) 0.575-【解析】【分析】(1)计算前五组数据价格、需求量,,代入回归直线方程求出值,再代入18x =2225y =a 即可;24x =(2)求出六组数据价格、需求量的平均值,,以及与相关系数有关的数值,代入计算即可. x 'y '【小问1详解】记前五组数据价格、需求量的平均值分别为,,x y 由题设知,. 511185i i x x ===∑51122255i i y y ===∑因为回归直线经过样本中心,所以,解得. (),x y 2224718510a =-⨯+129a =即, 4712910x y -+=所以时对应的需求量(件). 24x =47241291610y =-⨯+≈【小问2详解】设六组数据价格、需求量的平均值分别为,,则,,x 'y '611196i i x x ===∑61111963i i y y ===∑,,.6212206ii x==∑62110342i i y ==∑514333i i i xy ==∑所以相关系数. 0.575r ==≈-22. 已知点,经过轴右侧一动点作轴的垂线,垂足为,且.记动点的(1,0)F y A y M ||||1AF AM -=A 轨迹为曲线.C (1)求曲线的方程;C (2)设经过点的直线与曲线相交于,两点,经过点,且为常数)的直(1,0)B -C P Q (1,)((0,2)D t t ∈t 线与曲线的另一个交点为,求证:直线恒过定点. PD C N QN 【答案】(1)()240y x x =>(2)证明见解析 【解析】【分析】(1)设,根据距离公式得到方程,整理即可;()(),0A x y x >(2)设、、,表示出直线的方程,由点在直线上,代()11,P x y ()22,Q x y ()33,N x y PQ ()1,0B -PQ 入可得,同理可得,再表示出直线,代入可得124y y =()13231y y ty y y ++=QN ,即可得到直线过定点坐标.()()()131441y y ty y x +-=-QN 【小问1详解】解:设,则, ()(),0A x y x >()0,M y 因为,||||1AF AM -=又,整理得.0x >1x =+()240y x x =>【小问2详解】证明:设、、,()11,P x y ()22,Q x y ()33,N x y 所以, 121222121212444PQ y y y y k y y x x y y --===-+-所以直线的方程为,PQ ()11124y y x x y y -=-+因为点在直线上,()1,0B -PQ 所以,即,解得①, ()111241y x y y -=--+21112414y y y y ⎛⎫-=-- ⎪+⎝⎭124y y =同理可得直线的方程为,PN ()11134y y x x y y -=-+又在直线上,所以,易得, ()1,D t PN ()111341t y x y y -=-+1y t ≠解得②,()13231y y ty y y ++=所以直线的方程为,即③,QN ()22234y y x x y y -=-+()23234y y y x y y +=+将②式代入③式化简得,又, ()1311234y y ty y x y y y +=+124y y =即, ()131344y y ty y x y +=+即, ()()()131441y y ty y x +-=-所以直线恒过定点.QN 41,t ⎛⎫ ⎪⎝⎭。

湖南省名校联考联合体2024-2025学年高二上学期10月月考数学试题含答案

湖南省名校联考联合体2024-2025学年高二上学期10月月考数学试题含答案

高二数学试卷(答案在最后)注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:人教A 版必修第一,二册占60%,选择性必修第一册第一章至第二章第4节占40%.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5U =,{}2,4A =,{}1,4,5B =,则()UB A ⋂=ð()A.{}3B.{}4C.{}1,4 D.{}1,5【答案】D 【解析】【分析】利用补集与交集的定义可求解.【详解】因为全集{}1,2,3,4,5U =,{}2,4A =,所以{}U 1,3,5A =ð,又因为{}1,4,5B =,(){}{}{}U 51,3,51,4,51,A B == ð.故选:D.2.已知复数1i z a =+(0a >),且3z =,则a =()A.1B.2C.D.【答案】D 【解析】【分析】利用复数的模的定义即可求解.【详解】因为1i z a =+,3z =3=,解得a =±,因为0a >,所以a =故选:D,3.已知1sin 3α=,π0,2α⎛⎫∈ ⎪⎝⎭,则πcos 22α⎛⎫-= ⎪⎝⎭()A.9B.19-C.79-D.9-【答案】A 【解析】【分析】根据同角三角函数关系得出余弦值,再结合诱导公式化简后应用二倍角正弦公式计算即可.【详解】因为221sin ,sin cos 13ααα=+=,又因为π0,2α⎛⎫∈ ⎪⎝⎭,所以cos 3α===,所以π12242cos 2sin22sin cos 22339αααα⎛⎫-===⨯⨯ ⎪⎝⎭.故选:A.4.已知定义在R 上的函数()f x 满足()()0f x f x -+=,且当0x ≤时,()22x af x =+,则()1f =()A.2B.4C.2- D.4-【答案】A 【解析】【分析】利用题意结合奇函数的定义判断()f x 是奇函数,再利用奇函数的性质求解即可.【详解】因为定义在R 上的函数()f x 满足()()0f x f x -+=,所以()f x 是奇函数,且()00f =,故0202a+=,解得2a =-,故当0x ≤时,()222x f x =-+,由奇函数性质得()()11f f =--,而()121222f --=-+=-,故()()112f f =--=,故A 正确.故选:A5.在正方体1111ABCD A B C D -中,二面角1B AC B --的正切值为()A.2B.3C.3D.【答案】D 【解析】【分析】取AC 的中点M ,连接1,MB MB ,可得1B MB ∠是二面角1B AC B --的平面角,求解即可.【详解】取AC 的中点M ,连接1,MB MB ,由正方体1111ABCD A B C D -,可得11,AB B C AB BC ==,所以1,B M AC BM AC ⊥⊥,所以1B MB ∠是二面角1B AC B --的平面角,设正方体1111ABCD A B C D -的棱长为2,可得AC =,所以BM =在1Rt B B M 中,11tan B B B MB BM =∠==,所以二面角1B AC B --.故答案为:D.6.已知线段AB 的端点B 的坐标是()3,4,端点A 在圆()()22124x y -+-=上运动,则线段AB 的中点P的轨迹方程为()A.()()22232x y -+-= B.()()22231x y -+-=C.()()22341x y -+-= D.()()22552x y -+-=【答案】B 【解析】【分析】设出动点P 和动点A 的坐标,找到动点P 和动点A 坐标的关系,再利用相关点法求解轨迹方程即可.【详解】设(,)P x y ,11(,)A x y ,由中点坐标公式得1134,22x y x y ++==,所以1123,24x x y y =-=-,故(23,2)A x y --4,因为A 在圆()()22124x y -+-=上运动,所以()()222312424x y --+--=,化简得()()22231x y -+-=,故B 正确.故选:B7.我国古代数学名著《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的棱柱称为堑堵.已知在堑堵111ABC A B C -中,π2ABC ∠=,1AB BC AA ==,,,D E F 分别是所在棱的中点,则下列3个直观图中满足BF DE ⊥的有()A.0个B.1个C.2个D.3个【答案】B 【解析】【分析】建立空间直角坐标系,利用空间位置关系的向量证明逐个判断即可.【详解】在从左往右第一个图中,因为π2ABC ∠=,所以AB BC ⊥,因为侧棱垂直于底面,所以1AA ⊥面ABC ,如图,以B 为原点建立空间直角坐标系,设12AB BC AA ===,因为,,D E F 分别是所在棱的中点,所以(0,0,0),(0,1,0),(1,0,2),(1,1,0)B E D F所以(1,1,0)BF = ,(1,1,2)DE =-- ,故110BF DE ⋅=-+=,即BF DE ⊥得证,在从左往右第二个图中,我们建立同样的空间直角坐标系,此时(0,0,0),(1,1,0),(1,0,2),(0,1,1)B E D F ,所以(0,1,1)BF = ,(0,1,2)DE =-,故121BF DE ⋅=-=-,所以,BF DE 不垂直,在从左往右第三个图中,我们建立同样的空间直角坐标系,此时(0,0,0),(1,1,0),(1,0,0),(1,1,2)B E D F ,故(1,1,2)BF = ,(0,1,0)DE = ,即1BF DE ⋅=,所以,BF DE 不垂直,则下列3个直观图中满足BF DE ⊥的有1个,故B 正确.故选:B8.已知过点()1,1P 的直线l 与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,O 为坐标原点,则22OA OB+的最小值为()A.12B.8C.6D.4【答案】B 【解析】【分析】根据题意可知直线l 的斜率存在设为(0)k k <,分别解出,A B 两点的坐标,表示出22OA OB +的表达式由基本不等式即可求得最小值.【详解】由题意知直线l 的斜率存在.设直线的斜率为(0)k k <,直线l 的方程为1(x 1)y k -=-,则1(1,0),(0,1)A B k k--,所以222222121(1)(1)112OA OB k k kk k k+=-+-=-++-+22212(2)28k k k k =+--++≥++=,当且仅当22212,k k k k-=-=,即1k =-时,取等号.所以22OA OB +的最小值为8.故选:B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得分分,有选错的得0分.9.已知函数()πsin 24f x x ⎛⎫=+ ⎪⎝⎭,则()A.()f x 的最小正周期为πB.()f x 的图象关于直线π85x =对称C.()f x 的图象关于点π,18⎛⎫- ⎪⎝⎭中心对称D.()f x 的值域为[]1,1-【答案】ABD 【解析】【分析】求得最小正周期判断A ;求得对称轴判断B ;求得对称中心判断C ;求得值域判断D.【详解】因为()πsin 24f x x ⎛⎫=+ ⎪⎝⎭,所以的最小正周期为2ππ2T ==,故A 正确;由ππ2π,Z 42x k k +=+∈,可得ππ,Z 28k x k =+∈,所以()f x 图象的对称轴为ππ,Z 28k x k =+∈,当1k =时,图象的关于π85x =对称,故B 正确;由Z 2ππ,4k x k =∈+,可得ππ,Z 28k x k =-∈,所以()f x 图象的对称中心为ππ(,0),Z 28k k -∈,当0k =时,图象的关于点()π8,0-对称,故C 不正确;由()πsin 2[1,1]4f x x ⎛⎫=+∈- ⎪⎝⎭,故()f x 的值域为[]1,1-,故D 正确.故选:ABD.10.若数据1x ,2x ,3x 和数据4x ,5x ,6x 的平均数、方差、极差均相等,则()A.数据1x ,2x ,3x ,4x ,5x ,6x 与数据1x ,2x ,3x 的平均数相等B.数据1x ,2x ,3x ,4x ,5x ,6x 与数据1x ,2x ,3x 的方差相等C.数据1x ,2x ,3x ,4x ,5x ,6x 与数据1x ,2x ,3x 的极差相等D.数据1x ,2x ,3x ,4x ,5x ,6x 与数据1x ,2x ,3x 的中位数相等【答案】ABC 【解析】【分析】运用平均数,方差,极差,中位数的计算方法和公式计算,通过已知两组数据的平均数、方差、极差均相等这个条件,来分析这两组数据组合后的相关统计量与原数据的关系.【详解】设数据123,,x x x 的平均数为x ,数据456,,x x x 的平均数也为x .那么数据123456,,,,,x x x x x x 的平均数为123456()()3366x x x x x x x xx ++++++==,所以数据123456,,,,,x x x x x x 与数据123,,x x x 的平均数相等,A 选项正确.设数据123,,x x x 的方差为2s ,数据456,,x x x 的方差也为2s .对于数据123456,,,,,x x x x x x ,其方差计算为2222221234561[()((()()()]6x x x x x x x x x x x x -+-+-+-+-+-2222221234561[3(()(())3(((())]6x x x x x x x x x x x x =⨯-+-+-+⨯-+-+-2221(33)6s s s =+=,所以数据123456,,,,,x x x x x x 与数据123,,x x x 的方差相等,B 选项正确.设数据123,,x x x 的极差为R ,数据456,,x x x 的极差也为R .对于数据123456,,,,,x x x x x x ,其极差是这六个数中的最大值减去最小值,由于前面两组数据的极差相等,所以组合后数据的极差依然是R ,所以数据123456,,,,,x x x x x x 与数据123,,x x x 的极差相等,C 选项正确.设数据123,,x x x 按从小到大排列为123x x x ≤≤,中位数为2x .设数据456,,x x x 按从小到大排列为456x x x ≤≤,中位数为5x .对于数据123456,,,,,x x x x x x 按从小到大排列后,中位数不一定是2x ,所以数据123456,,,,,x x x x x x 与数据123,,x x x 的中位数不一定相等,D 选项错误.故选:ABC11.已知四棱柱1111ABCD A B C D -的底面是边长为6的菱形,1AA ⊥平面ABCD ,13AA =,π3DAB ∠=,点P 满足1AP AB AD t AA λμ=++,其中λ,μ,[]0,1t ∈,则()A.当P 为底面1111D C B A 的中心时,53t λμ++=B.当1t λμ++=时,AP 长度的最小值为2C.当1t λμ++=时,AP 长度的最大值为6D.当221t λμλμ++==时,1A P为定值【答案】BCD 【解析】【分析】根据题意,利用空间向量进行逐项进行分析求解判断.【详解】对于A ,当P 为底面1111D C B A 的中心时,由1AP AB AD t AA λμ=++ ,则11,,122t λμ===故2t λμ++=,故A 错误;对于B ,当1t λμ++=时,()22222222112·AP AB AD t AA AB AD t AA AB ADλμλμλμ=++=+++()()222223693636936t t λμλμλμλμ=+++=++-22245723636457236362t t t t λμλμ+⎛⎫=-+-≥-+- ⎪⎝⎭223273654273644t t t ⎛⎫=-+=-+⎪⎝⎭当且仅当13,84t λμ===,取最小值为2,故B 正确;对于C ,当1t λμ++=时,1AP AB AD t AA λμ=++,则点P 在1A BD 及内部,而AP是以A 为球心,以AP 为半径的球面被平面1A BD 所截图形在四棱柱1111ABCD A B C D -及内的部分,当=1=0t λμ=,时,=6AP ,当=0=10t λμ=,,时,=6AP ,可得1A P最大值为6,故C 正确;对于D ,221t λμλμ++==,()22223693636945AP t λμλμ=+++=+= ,而11=A P A A AP +,所以()22222111111=+2·=+2A P A A AP A A AP A A AP A A AB AD t AA λμ++⋅++ 22211=29452936A A AP t A A +-=+-⨯= ,则16A P = 为定值,故D 正确.故答案选:BCD.三、填空题:本题共3小题,每小题5分,共15分.12.已知向量()1,2a =- ,(),4b m =-.若()a ab ⊥+ ,则m =________.【答案】3-【解析】【分析】利用非零向量垂直时数量积为0,计算即可.【详解】()1,2a b m +=--.因为()a ab ⊥+ ,所以()1220m ---⨯=,解得3m =-.故答案为:3-.13.已知在正四棱台1111ABCD A B C D -中,()0,4,0AB = ,()13,1,1CB =- ,()112,0,0A D =-,则异面直线1DB 与11A D 所成角的余弦值为__________.【答案】19【解析】【分析】利用向量的线性运算求得1DB,根据向量的夹角公式可求异面直线1DB 与11A D 所成角的余弦值.【详解】111(0,4,0)(3,1,1)(3,3,1)DB DC CB AB CB =+=+=+-=,所以111111111·cos,19·DB A DDB A DDB A D==-,所以异面直线1DB与11A D所成角的余弦值为19.故答案为:1914.已知函数()21xg x=-,若函数()()()()()2121f xg x a g x a=+--+⎡⎤⎣⎦有三个零点,则a的取值范围为__________.【答案】()2,1--【解析】【分析】令()0f x=,可得()2g x=或()1g x a=--,函数有三个零点,则需方程()1g x a=--有两个解,则=与1y a=--的图象有两个交点,数形结合可求解.【详解】令()0f x=,可得()()()()21210g x a g x a⎡⎤+--+=⎣⎦,所以()()()[2][1]0g x g x a-++=,所以()2g x=或()1g x a=--,由()2g x=,又()21xg x=-,可得212x-=,解得21x=-或23x=,方程21x=-无解,方程23x=有一解,故()2g x=有一解,要使函数()()()()()2121f xg x a g x a⎡⎤=+--+⎣⎦有三个零点,则()1g x a=--有两解,即=与1y a=--的图象有两个交点,作出函数=的图象的示图如下:由图象可得011a<--<,解得21a-<<-.所以a的取值范围为(2,1)--.故答案为:(2,1)--.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2cos c b a B +=.(1)若π2A =,求B ;(2)若a =1b =,求ABC V 的面积.【答案】(1)π4(2)12【解析】【分析】(1)利用正弦定理化边为角,再结合内角和定理与两角和与差的正弦公式化简等式得sin sin()B A B =-,代入π2A =求解可得;(2)由sin sin()B A B =-根据角的范围得2A B =,由正弦定理结合二倍角公式可得cos 2B =,从而得π4B =,再利用余弦定理求边c ,由面积公式可求结果.【小问1详解】因为2cos c b a B +=,所以由正弦定理得,sin sin 2sin cos C B A B +=,又sin sin()sin cos cos sin C A B A B A B =+=+代入上式得,所以()sin sin cos cos sin sin =-=-B A B A B A B ,由π2A =,则B 为锐角,且c sin s os n π2i B B B ⎛⎫-= ⎭=⎪⎝,所以π4B =.【小问2详解】由(1)知,()sin sin B A B =-,因为a =1b =,所以A B >,则0πA B <-<,π02B <<,故B A B =-,或πB A B A +-==(舍去).所以2A B =,又a =1b =,由正弦定理得sin sin 22cos sin sin A B aB B B b====,则cos 2B =,则π4B =,由余弦定理得2222cos b a c ac B =+-,则2122c =+-,化简得2210c c -+=,解得1c =,所以111sin 2222ABC S ac B === .故ABC V 的面积为12.16.甲、乙、丙三人打台球,约定:第一局由甲、乙对打,丙轮空;每局比赛的胜者与轮空者进行下一局对打,负者下一局轮空,如此循环.设甲、乙、丙三人水平相当,每场比赛双方获胜的概率都为12.(1)求甲连续打四局比赛的概率;(2)求在前四局中甲轮空两局的概率;(3)求第四局甲轮空的概率.【答案】(1)18(2)14(3)38【解析】【分析】(1)由题意知甲前三局都要打胜,计算可得甲连续打四局比赛的概率;(2)甲轮空两局的情况为,第一局甲败,第二局轮空,第三局甲败,第四局轮空,计算即可;(3)分析可得甲第四轮空有两种情况:第1种情况,第一局甲败,第二局轮空,第三局甲败,第四局轮空,第2种情况,第一局甲胜,第二局甲胜,第三局甲败,第四局轮空,计算即可.【小问1详解】若甲连续打四局,根据比赛规则可知甲前三局都要打胜,所以甲连续打四局比赛的概率311(28=;【小问2详解】在前四局中甲轮空两局的情况为,第一局甲败,第二局轮空,第三局甲败,第四局轮空,故在前四局中甲轮空两局的概率111(1(1)224-⨯-=;【小问3详解】甲第四轮空有两种情况:第1种情况,第一局甲败,第二局轮空,第三局甲败,第四局轮空,第2种情况,第一局甲胜,第二局甲胜,第三局甲败,第四局轮空,第1种情况的概率111(1)(1224-⨯-=;第2种情况的概率1111(12228⨯⨯-=;由互斥事件的概率加法公式可得第四局甲轮空的概率为113488+=.17.如图,在几何体PABCD 中,PA ⊥平面ABC ,//PA DC ,AB AC ⊥,2PA AC AB DC ===,E ,F 分别为棱PB ,BC 的中点.(1)证明://EF 平面PAC .(2)证明:AB EF ⊥.(3)求直线EF 与平面PBD 所成角的正弦值.【答案】(1)证明见解析(2)证明见解析(3)6【解析】【分析】(1)构造线线平行,证明线面平行.(2)先证AB ⊥平面PACD ,得到AB PC ⊥,结合(1)中的结论,可得AB EF ⊥.(3)问题转化为直线PC 与平面PBD 所成角的正弦值.设1CD =,表示CP 的长,利用体积法求C 到平面PBD 的距离,则问题可解.【小问1详解】如图,连接CP .在BCP 中,E ,F 分别为棱PB ,BC 的中点,所以//EF CP ,,又EF ⊄平面PAC ,CP ⊂平面PAC .所以//EF 平面PAC .【小问2详解】因为PA ⊥平面ABC ,AB ⊂平面ABC ,所以PA AB ⊥,又AB AC ⊥,,PA AC ⊂平面PAC ,且PA AC A = ,所以AB ⊥平面PAC .因为CP ⊂平面PAC ,所以AB CP ⊥.又因为//EF CP ,所以AB EF ⊥.【小问3详解】因为//EF CP ,所以直线EF 与平面PBD 所成角与直线PC 与平面PBD 所成角相等,设为θ.不妨设1CD =,则=PC 设C 到平面PBD 的距离为h .则13C PBD PBD V S h -=⋅ .又11212333C PBDB PCD PCD V V S AB --==⋅=⨯⨯= .在PBD △中,PB =BD PD ==,所以12PBD S =⨯= .所以33C PBD PBD V h S -=== .所以63sin θ6h PC ===.故直线EF 与平面PBD.18.设A 是由若干个正整数组成的集合,且存在3个不同的元素a ,b ,c A Î,使得a b b c -=-,则称A 为“等差集”.(1)若集合{}1,3,5,9A =,B A ⊆,且B 是“等差集”,用列举法表示所有满足条件的B ;(2)若集合{}21,,1A m m =-是“等差集”,求m 的值;(3)已知正整数3n ≥,证明:{}23,,,,nx x x x ⋅⋅⋅不是“等差集”.【答案】(1)答案见解析(2)2m =(3)证明见解析【解析】【分析】(1)根据等差集的定义结合子集的定义求解即可;(2)根据等差集定义应用a b b c -=-,即2a c b +=逐个计算判断即可;(3)应用反证法证明集合不是等差集.【小问1详解】因为集合{}1,3,5,9A =,B A ⊆,存在3个不同的元素a ,b ,c B ∈,使得a b b c -=-,则{}1,3,5,9B =或{}1,3,5B =或{}1,5,9B =.【小问2详解】因为集合{}21,,1A m m =-是“等差集”,所以221m m =+-或2211m m =+-或()2221m m +=-,计算可得1132m -±=或0m =或2m =或1334m =,又因为m 正整数,所以2m =.【小问3详解】假设{}22,,,,nx x x x⋅⋅⋅是“等差集”,则存在{},,1,2,3,,,m n q n m n q ∈<< ,2n m q x x x =+成立,化简可得2m n q n x x --=+,0m n x ->因为*N ,1x q n ∈-≥,所以21q n x x ->≥≥,所以=1与{}22,,,,nx x x x ⋅⋅⋅集合的互异性矛盾,所以{}22,,,,nx x x x⋅⋅⋅不是“等差集”.【点睛】方法点睛:解题方法是定义的理解,应用反证法设集合是等差集,再化简计算得出矛盾即可证明.19.过点()00,A x y 作斜率分别为1k ,2k 的直线1l ,2l ,若()120k k μμ=≠,则称直线1l ,2l 是()A K μ定积直线或()()00,x y K μ定积直线.(1)已知直线a :()0y kx k =≠,直线b :13y x k=-,试问是否存在点A ,使得直线a ,b 是()A K μ定积直线?请说明理由.(2)在OPM 中,O 为坐标原点,点P 与点M 均在第一象限,且点()00,M x y 在二次函数23y x =-的图象上.若直线OP 与直线OM 是()()0,01K 定积直线,直线OP 与直线PM 是()2P K -定积直线,直线OM与直线PM 是()00,202x y K x ⎛⎫- ⎪⎝⎭定积直线,求点P 的坐标.(3)已知直线m 与n 是()()2,44K --定积直线,设点()0,0O 到直线m ,n 的距离分别为1d ,2d ,求12d d 的取值范围.【答案】(1)存在,理由见解析(2)()1,2(3)[)0,8【解析】【分析】(1)由定积直线的定义运算可求结论;(2)设直线OM 的斜率为()0λλ≠,则直线OP 的斜率为1λ,利用定积直线的定义可得01x λ=或1-,进而2003x x λ-=,计算即可;(3)设直线():42m y t x -=+,直线()4:42n y x t-=-+,其中0t ≠,计算得12d d =,利用基本不等式可求12d d 的取值范围.【小问1详解】存在点()0,0A ,使得a ,b 是()A K μ定积直线,理由如下:由题意可得1133k k ⎛⎫⋅-=- ⎪⎝⎭,由()013y kx k y x k ⎧=≠⎪⎨=-⎪⎩,解得00x y =⎧⎨=⎩,故存在点()0,0A ,使得a ,b 是()A K μ定积直线,且13μ=-.【小问2详解】设直线OM 的斜率为()0λλ≠,则直线OP 的斜率为1λ,直线PM 的斜率为2λ-.依题意得()2022x λλ⋅-=-,得2201x λ=,即01x λ=或1-.直线OM 的方程为y x λ=,因为点()200,3M x x -在直线OM 上,所以2003x x λ-=.因为点M 在第一象限,所以20031x x λ-==,解得02x =或2-(舍去),12λ=,()2,1M ,所以直线OP 的方程为12y x x λ==,直线PM 的方程为()2213y x x λ=--+=-+,由23y x y x =⎧⎨=-+⎩,得12x y =⎧⎨=⎩,即点P 的坐标为()1,2.【小问3详解】设直线():42m y t x -=+,直线()4:42n y xt-=-+,其中0t ≠,则12d d ===2216171725t t ++≥=,当且仅当2216t t =,即24t =时,等号成立,所以08≤<,即1208d d ≤<,故12d d 的取值范围为[)0,8.【点睛】思路点睛:理解新定义题型的含义,利用定积直线的定义进行计算求解,考查了运算求解能力,以及基本不等式的应用.。

四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

高二上数学月考(一)(答案在最后)一、单项选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某高校对中文系新生进行体测,利用随机数表对650名学生进行抽样,先将650名学生进行编号,001,002,…,649,650.从中抽取50个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32211834297864540732524206443812234356773578905642 84421253313457860736253007328623457889072368960804 32567808436789535577348994837522535578324577892345A.623B.328C.072D.457【答案】A【解析】【分析】按照随机数表提供的数据,三位一组的读数,并取001到650内的数,重复的只取一次即可【详解】从第5行第6列开始向右读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个数是623,,故A正确.故选:A.2.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第二次被抽到的可能性为b,则()A.19b= B.29b= C.310b= D.110b=【答案】D【解析】【分析】根据题意,在抽样过程中每个个体被抽到的概率相等即可求解.【详解】因为总体中共有10个个体,所以五班第一次没被抽到,第二次被抽到的可能性为91110910b=⨯=.故选:D.3.已知向量1,22AB ⎛⎫=- ⎪ ⎪⎝⎭,122BC ⎛⎫=- ⎪ ⎪⎝⎭,则ABC ∠=()A.30°B.150°C.60°D.120°【答案】B 【解析】【分析】根据向量夹角的坐标表示求出向量夹角,进而求解几何角.【详解】因为向量13,22AB ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BC ⎛⎫=- ⎪ ⎪⎝⎭,所以13312222cos ,2AB BC AB BC AB BC⎛⎫⎛⎫⨯+-⨯- ⎪ ⎪⋅==⋅,又0,180AB BC ≤≤,所以,30AB BC =,所以,18030150BA BC =-= ,所以150ABC ∠=o .故选:B.4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则下列说法错误的是()A.若//a b ,,b a αα⊂⊄,则//a αB.若,a b αα⊥⊥,则//a bC.若,,b a b αβαβ⊥⋂=⊥,则a β⊥D.若,a b 为异面直线,,a b αβ⊂⊂,//a β,//b α,则//αβ【答案】C 【解析】【分析】根据线面平行的判定定理判断A ,根据线面垂直的性质判断B ,当a α⊄时即可判断C ,根据异面直线的定义及线面平行的性质定理判断D.【详解】对于A :若//a b ,,b a αα⊂⊄,根据线面平行的判定定理可知//a α,故A 正确;对于B :若,a b αα⊥⊥,则//a b ,故B 正确;对于C :当a α⊂时,,,b a b αβαβ⊥⋂=⊥,由面面垂直的性质定理可得a β⊥,当a α⊄时,,,b a b αβαβ⊥⋂=⊥,则//a β或a β⊂或a 与β相交,故C 错误;对于D :因为a α⊂,//b α,所以存在b α'⊂使得//b b ',又b β⊂,b β'⊄,所以//b β',又//a β且,a b 为异面直线,所以平面α内的两直线b '、a 必相交,所以//αβ,故D 正确.故选:C5.下列说法正确的是()A.互斥的事件一定是对立事件,对立事件不一定是互斥事件B.若()()1P A P B +=,则事件A 与事件B 是对立事件C.从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为25D.事件A 与事件B 中至少有一个发生的概率不一定比A 与B 中恰有一个发生的概率大【答案】D 【解析】【分析】根据互斥事件、对立事件和古典概型及其计算逐一判定即可.【详解】对于A ,由互斥事件和对立事件的关系可判断,对立事件一定是互斥事件,互斥事件不一定是对立事件,故A 错误;对于B ,由()()1P A P B +=,并不能得出A 与B 是对立事件,举例说明:现从a ,b ,c ,d 四个小球中选取一个小球,已知选中每个小球的概率是相同的,设事件A 表示选中a 球或b 球,则1()2P A =,事件B 表示选中b 球或c 球,则1()2P B =,所以()()1P A P B +=,但A ,B 不是对立事件,故B 错误;对于C ,该试验的样本空间可表示为:{(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9)(5,7,9)}Ω=,共有10个样本点,其中能构成三角形的样本点有(3,5,7),(3,7,9),(5,7,9),共3个,故所求概率310P =,故C 错误;对于D ,若A ,B 是互斥事件,事件A ,B 中至少有一个发生的概率等于A ,B 中恰有一个发生的概率,故D 正确.故选:D.6.一组数据:53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =().A.58或64B.58C.59或64D.59【答案】A 【解析】【分析】先对数据从小到大排序,分57x ≤,79x ≥,5779x <<三种情况,舍去不合要求的情况,列出方程,求出答案,【详解】将已知的6个数从小到大排序为45,49,53,57,61,79.若57x ≤,则这组数据的第80百分位数与第60百分位数分别为61和57,他们的差为4,不符合条件;若79x ≥,则这组数据的第80百分位数与第60百分位数分别为79和61,它们的差为18,不符合条件;若5779x <<,则这组数据的第80百分位数与第60百分位数分别为x 和61(或61和x ),则613x -=,解得58x =或64x =故选:A7.如图,四边形ABCD 为正方形,ED ⊥平面,,2ABCD FB ED AB ED FB ==∥,记三棱锥,,E ACD F ABC F ACE ---的体积分别为123,,V V V ,则()A.322V V =B.31V V =C.3123V V V =-D.3123V V =【答案】D 【解析】【分析】结合线面垂直的性质,确定相应三棱锥的高,求出123,,V V V 的值,结合选项,即可判断出答案.【详解】连接BD 交AC 于O ,连接,OE OF ,设22AB ED FB ===,由于ED ⊥平面,ABCD FB ED ∥,则FB ⊥平面ABCD ,则1211141112222,22133233323ACD ABC V S ED V S FB =⨯⨯=⨯⨯⨯⨯==⨯⨯=⨯⨯⨯⨯= ;ED ⊥平面,ABCD AC Ì平面ABCD ,故ED AC ⊥,又四边形ABCD 为正方形,则AC BD ⊥,而,,ED BD D ED BD =⊂ 平面BDEF ,故AC ⊥平面BDEF ,OF ⊂平面BDEF ,故AC OF ⊥,又ED ⊥平面ABCD ,FB ⊥平面ABCD ,BD ⊂平面ABCD ,故,ED BD FB BD ⊥⊥,222222,26,3,BD OD OB OE OD ED OF OB BF =∴===+==+=而()223EF BD ED FB =+-=,所以222EF OF OE +=,即得OE OF ⊥,而,,OE AC O OE AC =⊂ 平面ACE ,故OF ⊥平面ACE ,又22222AC AE CE ===+=,故(2231131323233434F ACE V V ACE S OF AC OF =-=⋅=⨯⋅=⨯= ,故323131231,2,,233V V V V V V V V V ≠≠≠-=,故ABC 错误,D 正确,故选:D8.已知平面向量a ,b ,e ,且1e = ,2a = .已知向量b 与e所成的角为60°,且b te b e -≥- 对任意实数t 恒成立,则12a e ab ++-的最小值为()A.31+ B.23C.35 D.25【答案】B【解析】【分析】b te b e -≥-对任意实数t 恒成立,两边平方,转化为二次函数的恒成立问题,用判别式来解,算出||2b =r ,借助2a =,得到122a e a e +=+ ,12a e a b ++- 的最小值转化为11222a e a b++- 的最小值,最后用绝对值的三角不等式来解即可【详解】根据题意,1cos 602b e b e b ⋅=⋅︒=,b te b e -≥- ,两边平方22222||2||2b t e tb e b e b e +-⋅≥+-⋅ ,整理得到210t b t b --+≥ ,对任意实数t 恒成立,则()2Δ||410b b =--+≤ ,解得2(2)0b -≤ ,则||2b =r .由于2a =,如上图,122a e a e +=+ ,则111112(2)()22222a e a b a e a b a e a b ++-=++-≥+--222843e b e b b e =+=++⋅12a e ab ++- 的最小值为23当且仅当12,,2e b a -终点在同一直线上时取等号.故选:B .二、多项选择题.本题共3个小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求,部分选对的得部分,有选错的得0分.9.某保险公司为客户定制了5个险种:甲,一年期短期;乙,两全保险;丙,理财类保险;丁,定期寿险;戊,重大疾病保险.各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得到如图所示的统计图表.则()A.丁险种参保人数超过五成B.41岁以上参保人数超过总参保人数的五成C.18-29周岁人群参保的总费用最少D.人均参保费用不超过5000元【答案】ACD 【解析】【分析】根据统计图表逐个选项进行验证即可.【详解】由参保险种比例图可知,丁险种参保人数比例10.020.040.10.30.54----=,故A 正确;由参保人数比例图可知,41岁以上参保人数超过总参保人数的45%不到五成,B 错误;由不同年龄段人均参保费用图可知,1829~周岁人群人均参保费用最少()3000,4000,但是这类人所占比例为15%,54周岁以上参保人数最少比例为10%,54周岁以上人群人均参保费用6000,所以18-29周岁人群参保的总费用最少,故C 正确.由不同年龄段人均参保费用图可知,人均参保费用不超过5000元,故D 正确;故选:ACD .10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有()A.甲地B.乙地C.丙地D.丁地【答案】AD 【解析】【分析】假设最多一天疑似病例超过7人,根据极差可判断AD ;根据平均数可算出10天疑似病例总人数,可判断BC .【详解】解:假设甲地最多一天疑似病例超过7人,甲地中位数为2,说明有一天疑似病例小于2,极差会超过5,∴甲地每天疑似病例不会超过7,∴选A .根据乙、丙两地疑似病例平均数可算出10天疑似病例总人数,可推断最多一天疑似病例可能超过7人,由此不能断定一定没有发生大规模群体感染,∴不选BC ;假设丁地最多一天疑似病例超过7人,丁地总体平均数为2,说明极差会超过3,∴丁地每天疑似病例不会超过7,∴选D .故选:AD .11.勒洛四面体是一个非常神奇的“四面体”,它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是()A.勒洛四面体能够容纳的最大球的半径为22-B.勒洛四面体被平面ABC 截得的截面面积是(2π-C.勒洛四面体表面上交线AC 的长度为2π3D.勒洛四面体表面上任意两点间的距离可能大于2【答案】ABD 【解析】【分析】A 选项:求出正四面体ABCD 的外接球半径,进而得到勒洛四面体的内切球半径,得到答案;B 选项,作出截面图形,求出截面面积;C 选项,根据对称性得到交线AC 所在圆的圆心和半径,求出长度;D 选项,作出正四面体对棱中点连线,在C 选项的基础上求出长度.【详解】A 选项,先求解出正四面体ABCD 的外接球,如图所示:取CD 的中点G ,连接,BG AG ,过点A 作AF BG ⊥于点F ,则F 为等边ABC V 的中心,外接球球心为O ,连接OB ,则,OA OB 为外接球半径,设OA OB R ==,由正四面体的棱长为2,则1CG DG ==,BG AG ==133FG BG ==,233BF BG ==3AF ===,3OF AF R R =-=-,由勾股定理得:222OF BF OB +=,即22233R R ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:2R =,此时我们再次完整的抽取部分勒洛四面体,如图所示:图中取正四面体ABCD 中心为O ,连接BO 交平面ACD 于点E ,交 AD 于点F ,其中 AD 与ABD △共面,其中BO 即为正四面体外接球半径2R =,设勒洛四面体内切球半径为r ,则22r OF BF BO ==-=-,故A 正确;B 选项,勒洛四面体截面面积的最大值为经过正四面体某三个顶点的截面,如图所示:面积为(2221π333322222344⎛⎫⨯⨯⨯-⨯+⨯= ⎪ ⎪⎭⎝,B 正确;C 选项,由对称性可知:勒洛四面体表面上交线AC 所在圆的圆心为BD 的中点M ,故3MA MC ==2AC =,由余弦定理得:2221cos 23233AM MC AC AMC AM MC +-∠===⋅⨯⨯,故1arccos3AMC ∠=3AC 133,C 错误;D 选项,将正四面体对棱所在的弧中点连接,此时连线长度最大,如图所示:连接GH ,交AB 于中点S ,交CD 于中点T ,连接AT ,则22312ST AT AS =-=-=则由C 选项的分析知:3TG SH ==,所以323322GH =+=,故勒洛四面体表面上两点间的距离可能大于2,D 正确.故选:ABD.【点睛】结论点睛:勒洛四面体考试中经常考查,下面是一些它的性质:①勒洛四面体上两点间的最大距离比四面体的棱长大,是对棱弧中点连线,最大长度为232a a ⎫->⎪⎪⎭,②表面6个弧长之和不是6个圆心角为60︒的扇形弧长之和,其圆心角为1arccos 3,半径为32a .三、填空题:本题共3个小题,每小题5分,共15分.12.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为3:4:7,现在用分层抽样的方法抽出容量为n 的样本,样本中的A 型号产品有15件,那么样本容量n 为________.【答案】70【解析】【分析】利用分层抽样的定义得到方程,求出70n =.【详解】由题意得315347n=++,解得70n =.故答案为:7013.平面四边形ABCD 中,AB =AD =CD =1,BD =BD ⊥CD ,将其沿对角线BD 折成四面体A ′﹣BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′﹣BCD 顶点在同一个球面上,则该球的表面积_____.【答案】3π【解析】【分析】根据BD ⊥CD ,BA ⊥AC ,BC 的中点就是球心,求出球的半径,即可得到球的表面积.【详解】因为平面A′BD ⊥平面BCD ,BD ⊥CD ,所以CD ⊥平面ABD ,∴CD ⊥BA ,又BA ⊥AD ,∴BA ⊥面ADC ,所以BA ⊥AC ,所以△BCD 和△ABC 都是直角三角形,由题意,四面体A ﹣BCD 顶点在同一个球面上,所以BC 的中点就是球心,所以BC =2所以球的表面积为:242π⋅=3π.故答案为:3π.【点睛】本题主要考查面面垂直的性质定理和球的外接问题,还考查空间想象和运算求解的能力,属于中档题.14.若一组样本数据12,,n x x x 的平均数为10,另一组样本数据1224,24,,24n x x x +++ 的方差为8,则两组样本数据合并为一组样本数据后的方差是__________.【答案】54【解析】【分析】计算出1n ii x =∑、21nii x=∑的值,再利用平均数和方差公式可求得合并后的新数据的方差.【详解】由题意可知,数据12,n x x x 的平均数为10,所以12)101(n x x x x n =+++= ,则110ni i x n ==∑,所以数据1224,24,,24n x x x +++ 的平均数为121(242424)210424n x x x x n'=++++++=⨯+= ,方差为()(()222221111444[24241010n n n i i i i i i s x x x x n n n n n ===⎤⎡⎤=+-+=-=-⨯⨯⎦⎣⎦∑∑∑2144008n i i x n ==-=∑,所以21102nii xn ==∑,将两组数据合并后,得到新数据1212,24,24,,24,n n x x x x x x +++ ,,则其平均数为11114)4)11113]4)[(2(3(222n i nn n i i i i i i i x x x x x n n n ====''=+=⨯+=⨯++∑∑∑∑()13104172=⨯⨯+=,方差为()()2222111111172417(586458)22n n n ni i i i i i i i s x x x x n n n ====⎡⎤=-++-=-+⎢⎥⎣⎦'∑∑∑∑1(51028610458)542n n n n=⨯-⨯+=.故答案为:54.四、解答题:本题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.袋中有形状、大小都相同的4个小球,标号分别为1,2,3,4.(1)从袋中一次随机摸出2个球,求标号和为奇数的概率;(2)从袋中每次摸出一球,有放回地摸两次.甲、乙约定:若摸出的两个球标号和为奇数,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.【答案】(1)23(2)是公平的,理由见解析【解析】【分析】(1)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式即可求解;(2)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式及概率进行比较即可求解.【小问1详解】试验的样本空间{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}Ω=,共6个样本点,设标号和为奇数为事件B ,则B 包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,所以42().63P B ==【小问2详解】试验的样本空间Ω{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}=,共有16个,设标号和为奇数为事件C ,事件C 包含的样本点为(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),共8个,故所求概率为81()162P C ==,即甲胜的概率为12,则乙胜的概率为12,所以甲、乙获胜的概率是公平的.16.(1)请利用已经学过的方差公式:()2211ni i s x xn ==-∑来证明方差第二公式22211n i i s x x n ==-∑;(2)如果事件A 与B 相互独立,那么A 与B 相互独立吗?请给予证明.【答案】(1)证明见解析;(2)独立,证明见解析【解析】【分析】(1)根据题意,对方差公式恒等变形,分析可得结论;(2)根据相互独立事件的定义,只需证明()()()P AB P A P B =即可.【详解】(1)()()()()2222212111n i n i s x xx x x x x x n n =⎡⎤=-=-+-++-⎢⎥⎣⎦∑ ()()2222121212n n x x x x x x x nx n ⎡⎤=+++-+++⎢⎥⎣⎦ ()22221212n x x x x nx nx n ⎡⎤=+++-⨯+⎢⎥⎣⎦ ()222121n x x x nx n ⎡⎤=+++-⎢⎥⎣⎦ 2211n i i x x n ==-∑;(2)因为事件A 与B 相互独立,所以()()()P AB P A P B =,因为()()()P AB P AB P A +=,所以()()()()()()P AB P A P AB P A P A P B =-=-()()()()()1P A P B P A P B =-=,所以事件A 与B 相互独立.17.如图,四棱锥P ABCD -的侧面PAD 是边长为2的正三角形,底面ABCD 为矩形,且平面PAD ⊥平面ABCD ,M ,N 分别为AB ,AD 的中点,二面角D PN C --的正切值为2.(1)求四棱锥P ABCD -的体积;(2)证明:DM PC⊥(3)求直线PM 与平面PNC 所成角的正弦值.【答案】(1)3(2)证明见解析(3)35【解析】【分析】(1)先证明DNC ∠为二面角D PN C --的平面角,可得底面ABCD 为正方形,利用锥体的体积公式计算即可;(2)利用线面垂直的判定定理证明DM ⊥平面PNC ,即可证明DM PC ⊥;(3)由DM⊥平面PNC 可得MPO ∠为直线PM 与平面PNC 所成的角,计算其正弦值即可.【小问1详解】解:∵PAD △是边长为2的正三角形,N 为AD 中点,∴PN AD ^,PN =又∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =∴PN ^平面ABCD又NC ⊂平面ABCD ,∴PN NC ⊥∴DNC ∠为二面角D PN C --的平面角,∴tan 2DC DNC DN∠==又1DN =,∴2DC =∴底面ABCD 为正方形.∴四棱P ABCD -的体积12233V =⨯⨯=.【小问2详解】证明:由(1)知,PN ^平面ABCD ,DM ⊂平面ABCD ,∴PN DM⊥在正方形ABCD 中,易知DAM CDN ≌△△∴ADM DCN ∠=∠而90ADM MDC ∠+∠=︒,∴90DCN MDC ∠+∠=︒∴DM CN ⊥∵PN CN N = ,∴DM ⊥平面PNC∵PC ⊂平面PNC ,∴DM PC ⊥.【小问3详解】设DM CN O ⋂=,连接PO ,MN .∵DM⊥平面PNC .∴MPO ∠为直线PM 与平面PNC 所成的角∵2,1AD AM ==,∴DM =5DO ==∴55MO ==又MN =PM ==∴35sin 5MO MPO PM ∠===∴直线PM 与平面PNC 所成角的正弦值为35.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)【答案】(1)0.016m =(2)不正确(3)78.26【解析】【分析】(1)利用频率和为1列式即可得解;(2)求出85%分位数后判断即可;(3)利用方差公式推导总样本方差计算公式,从而得解.【小问1详解】根据频率和为1,可知()0.0090.0220.0250.028101m ++++⨯=,可得0.016m =.【小问2详解】由题意,需要确定月均用电量的85%分位数,因为()0.0280.0220.025100.75++⨯=,()0.0280.0220.0250.016100.91+++⨯=,所以85%分位数位于[)230,240内,从而85%分位数为0.850.7523010236.252340.910.75-+⨯=>-.所以小明的估计不正确.【小问3详解】由题意,A 区的样本数为1000.440⨯=,样本记为1x ,2x ,L ,40x ,平均数记为x ;B 区的样本数1000.440⨯=,样本记为1y ,2y ,L ,40y ,平均数记为y ;C 区样本数为1000.220⨯=,样本记为1z ,2z ,L ,20z ,平均数记为z .记抽取的样本均值为ω,0.42130.42230.2233221ω=⨯+⨯+⨯=.设该市第二档用户的月均用电量方差为2s ,则根据方差定义,总体样本方差为()()()40402022221111100i j k i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑()()()4040202221111100i j k i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑因为()4010ii x x =-=∑,所以()()()()404011220iii i x x x x x x ωω==--=--=∑∑,同理()()()()404011220jji i yyy y yy ωω==--=--=∑∑,()()()()202011220kki i zz z z zz ωω==--=--=∑∑,因此()()()()4040404022222111111100100i j i i i i s x x x y y y ωω====⎡⎤⎡⎤=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()202022111100k i i z z z ω==⎡⎤+-+-⎢⎥⎣⎦∑∑,代入数据得()()222114024.2402132214012.340223221100100s ⎡⎤⎡⎤⎣⎦⎦=⨯+⨯-+⨯-⎣+⨯()212038.32023322178.26100⎡⎤+⨯+⨯-=⎣⎦.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B ,C ,D 三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的A ,B ,C ,D 四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是13,每场比赛的结果相互独立.(1)求A 球队在小组赛的3场比赛中只积3分的概率;(2)已知在已结束的小组赛的3场比赛中,A 球队胜2场,负1场,求A 球队最终小组出线的概率.【答案】(1)427(2)7981【解析】【分析】(1)分类讨论只积3分的可能情况,结合独立事件概率乘法公式运算求解;(2)由题意,若A 球队参与的3场比赛中胜2场,负1场,根据获胜的三队通过净胜球数等规则决出前两名,分情况讨论结合独立事件概率乘法公式运算求解.【小问1详解】A 球队在小组赛的3场比赛中只积3分,有两种情况.第一种情况:A 球队在3场比赛中都是平局,其概率为111133327⨯⨯=.第二种情况:A球队在3场比赛中胜1场,负2场,其概率为11113 3339⨯⨯⨯=.故所求概率为114 27927+=.【小问2详解】不妨假设A球队参与的3场比赛的结果为A与B比赛,B胜;A与C比赛,A胜;A与D比赛,A胜.此情况下,A积6分,B积3分,C,D各积0分.在剩下的3场比赛中:若C与D比赛平局,则C,D每队最多只能加4分,此时C,D的积分都低于A的积分,A可以出线;若B与C比赛平局,后面2场比赛的结果无论如何,都有两队的积分低于A,A可以出线;若B与D比赛平局,同理可得A可以出线.故当剩下的3场比赛中有平局时,A一定可以出线.若剩下的3场比赛中没有平局,则当B,C,D各赢1场比赛时,A可以出线.当B,C,D中有一支队伍胜2场时,若C胜2场,B胜1场,A,B,C争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=;若D胜2场,B胜1场,A,B,D争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=.其他情况A均可以出线.综上,A球队最终小组出线的概率为1179 1818181⎛⎫-+=⎪⎝⎭.【点睛】关键点点睛:解题的关键在于分类讨论获胜的三队通过净胜球数等规则决出前两名,讨论要恰当划分,做到不重不漏,从而即可顺利得解.。

高二10月月考(数学)试题含答案

高二10月月考(数学)试题含答案

高二10月月考(数学)(考试总分:150 分)一、单选题(本题共计8小题,总分40分)1.(5分)若角600°的终边上有一点(﹣4,a),则a的值是()A.4 B.﹣4C.D.﹣2.(5分)如图正方形OABC的边长为1,它是水平放置的一个平面图形的直观图,则原图形的面积()A.B.1 C.D.2(1+)3.(5分)已知0<α<π,2sin2α=sinα,则sin(α﹣)=()A.﹣B.﹣C.D.4.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,若,,则=()A.B.C.D.25.(5分)在200m高的山顶上,测得山下一塔顶与塔底的俯角分别是30°、60°,则塔高为()A.m B.m C.m D.m6.(5分)在直角三角形ABC中,角C为直角,且AC=BC=2,点P是斜边上的一个三等分点,则=()A.0 B.4 C.D.﹣7.(5分)在△ABC中,若sin(A+B﹣C)=sin(A﹣B+C),则△ABC必是()A.等腰三角形 B.直角三角形C.等腰或直角三角形D.等腰直角三角形8.(5分)如图,在直三棱柱ABC ﹣A 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1=,点P 是线段BC 1上一动点,则CP +PA 1的最小值是( ) A .B .C .D .二、 多选题 (本题共计4小题,总分20分) 9.(5分)若将函数f (x )=2sin (x +)图象上各点的横坐标缩短到原来的(纵坐标不变),再向下平移一个单位得到的函数g (x )的图象,函数g (x )( ) A .图象关于点(﹣,0)对称B .最小正周期是πC .在(0,)上递增 D .在(0,)上最大值是110.(5分)已知m ,l 是两条不同的直线,α,β是两个不同的平面,则下列各组条件中能推出m ⊥l 的是( )A. m ⊥α,l ⊥β,α⊥βB. m ⊥α,l ∥β,α∥βC. m ⊂α,l ⊥β,α∥βD. m ⊂α,l ∥β,α⊥β11.(5分)若函数f (x )=sin (ωx +)(ω>0)在[0,]上仅有两个零点,则ω的的值可以是( ) A .1B .52C .72D .412.(5分)关于函数()(1cos )cos tan2xx x f x =+,有下述四个结论正确的有( )A.()f x 的定义域|()2x x R x k k Z ππ⎧⎫∈≠+∈⎨⎬⎩⎭, B..函数()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上是增函数C.()f x 最小正周期为πD.()f x 是奇函数三、 填空题 (本题共计4小题,总分20分) 13.(5分)已知单位向量与的夹角为120°,则||= .14.(5分)在钝角△ABC 中,已知a =2,b =4,则最大边c 的取值范围是15.(5分)已知<α<π,0<β<,tanα=﹣,cos(β﹣α)=,则sinβ的值为.16.(5分)已知△ABC是等腰直角三角形,斜边AB=2,P是平面ABC外的一点,且满足PA=PB=PC,∠APB=120°,则三棱锥P﹣ABC外接球的表面积为.四、解答题(本题共计6小题,总分70分)17.(10分)(本题满分10分)已知角θ的终边与单位圆x2+y2=1在第一象限交于点P,且点P的坐标为.(1)求tanθ的值;(2)求的值.18.(12分)(本题满分12分)在△ABC中,角A,B,C的对边分别是a,b,c,B=30°,且2a sin A﹣(2b+c)sin B=(b+2c)sin C.(1)求sin(A﹣C)的大小;(2)若△ABC的面积为3,求△ABC的周长.19.(12分)(本题满分12分)如图,在三棱锥A﹣BCD中,△BCD,△ABD均为边长为2的正三角形.(1)若AC=,求证:平面ABD⊥平面BCD;(2)若AC=2,求三棱锥A﹣BCD的体积.20.(12分)(本题满分12分)已知函数f(x)=2sin x cos x﹣2cos(x+)cos(x﹣).(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;(Ⅱ)求函数f(x)在区间[﹣]上的值域.21.(12分)(本题满分12分)在△ABC中,a,b,c分别是角A,B,C的对边,且(a+b+c)(a+b﹣c)=3ab.(1)求角C的值;(2)若c=2,且△ABC为锐角三角形,求2a﹣b的范围.22.(12分)(本题满分12分)如图所示,在直四棱柱ABCD﹣A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.答案一、单选题(本题共计8小题,总分40分)1.(5分)B2.(5分)A.3.(5分)B.4.(5分)D.5.(5分)A.6.(5分)B.7.(5分)C8.(5分)B二、多选题(本题共计4小题,总分20分)9.(5分)BC10.(5分)ABC11.(5分)BC12.(5分)BD三、填空题(本题共计4小题,总分20分)13.(5分).14.(5分)(2,6).15.(5分).16.(5分).四、解答题(本题共计6小题,总分70分)17.(10分)解:(1)将代入圆的方程x2+y2=1得:,因为在第一象限,所以,;(2)=.18.(12分)解:(1)∵2a sin A﹣(2b+c)sin B=(2c+b)sin C,∴2a2﹣b(2b+c)=c(2c+b),整理得b2+c2﹣a2=﹣bc,∴,解得A=120°.又B=30°,∴C=180°﹣120°﹣30°=30°,即C=B=30°,∴sin(A﹣C)=sin(120°﹣30°)=1.(2)由(1)知b=c,A=120°,∴,解得.由余弦定理,得,即a=6.∴ABC的周长为.19.(12分)解:(1)证明:取BD边中点O,连接AO,CO,∵△BCD,△ABD为边长为2的正三角形,∴BD⊥OA,则OC=OA=.∵OC2+OA2=6=AC2,∴OA⊥OC,又OC∩BD=O,OC,BD⊂平面BCD,∴OA⊥平面BCD,∵OA平面ABD,∴平面ABD⊥平面BCD;(2)解:∵BD⊥OC,BD⊥OA,且OA∩OC=O,OA,OC⊂平面AOC,∴BD⊥平面AOC,在AOC中,OA=OC=,AC=2,∴,∴=.20.(12分)解:(I)求函数f(x)=2sin x cos x﹣2cos(x+)cos(x﹣)=sin2x+sin(2x﹣)=sin2x﹣cos2x=2sin(2x﹣).故函数f(x)的最小正周期为=π,再由2x﹣=kπ+可得对称轴方程为x=+,k∈z.(II)∵﹣≤x≤,∴﹣≤2x﹣≤,故当 2x﹣=时,函数取得最大值为2,当 2x﹣=﹣时,函数取得最小值为﹣2×=﹣,故函数f(x)在区间[﹣]上的值域为[﹣,2].21.(12分)解:(1)由题意知(a+b+c)(a+b﹣c)=3ab,∴a2+b2﹣c2=ab,由余弦定理可知,,又∵C∈(0,π),∴.(2)由正弦定理可知,,即,∴,=,=,=,又∵△ABC为锐角三角形,∴,则即,所以,即,综上2a﹣b的取值范围为.22.(12分)解:(1)证明:由直四棱柱,得BB1∥DD1且BB1=DD1,所以BB1D1D是平行四边形,所以B1D1∥BD.而BD⊂平面A1BD,B1D1⊄平面A1BD,所以B1D1∥平面A1BD.(2)证明:因为BB1⊥面ABCD,AC⊂面ABCD,所以BB1⊥AC,又因为BD⊥AC,且BD∩BB1=B,所以AC⊥面BB1D,而MD⊂面BB1D,所以MD⊥AC.(3)当点M为棱BB1的中点时,平面DMC1⊥平面CC1D1D取DC的中点N,D1C1的中点N1,连接NN1交DC1于O,连接OM.因为N是DC中点,BD=BC,所以BN⊥DC;又因为DC是面ABCD与面DCC1D1的交线,而面ABCD⊥面DCC1D1,所以BN⊥面DCC1D1.又可证得,O是NN1的中点,所以BM∥ON且BM=ON,即BMON是平行四边形,所以BN∥OM,所以OM⊥平面CC1D1D,因为OM⊂面DMC1,所以平面DMC1⊥平面CC1D1D.。

高二10月月考(数学)试题含答案

高二10月月考(数学)试题含答案

高二10月月考(数学)(考试总分:150 分)一、 单选题 (本题共计8小题,总分40分)1.(5分)1.已知()3,1A ,()1,2B -,()1,1C ,则过点C 且与线段AB 平行的直线方程为( )A .3250x y +-=B .3210x y --=C .2310x y -+=D .2350x y +-=2.(5分)2. “方程x 2+y 2-4y+k=0表示一个圆”是“0<k<4”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.(5分)3.若方程20x x m ++=有两个虚根,αβ,且||3αβ-=,则实数m 的值为( )A .52B .52-C .2D .2-4.(5分)4.袋中有a 个白球b 个黑球,不放回摸球两次,问第二次摸出白球的概率为( )A .a a b +B .b a b +C .a bD .b a5.(5分)5.对于命题“正三角形内任意一点到各边的距离之和为定值”推广到空间是“正四面体内任意一点到各面的距离之和为( )”.A .定值B .变数C .有时为定值、有时为变数D .与正四面体无关的常数6.(5分)6.已知圆22:42150C x y x y +---=上有两个不同的点到直线():76l y k x =-+则k 的取值范围是( )A .1,22⎛⎫ ⎪⎝⎭B .12,2⎛⎫-- ⎪⎝⎭C .11(,2),(2,)22∞∞⎛⎫--⋃-⋃+ ⎪⎝⎭D .1,(2,)2⎛⎫-∞-+∞ ⎪⎝⎭7.(5分)7.在锐角ABC 中,若cos cos sin sin 3sin A C B C a c A +=cos 2C C +=,则a b +的取值范围是( )A .(B .(0,C .(D .(6, 8.(5分)8.在正方体ABCD ﹣A 1B 1C 1D 1中,过点C 做直线l ,使得直线l 与直线BA 1和B 1D 1所成的角均为70,则这样的直线l ( )A .不存在B .有2条C .有4条D .有无数条二、 多选题 (本题共计3小题,总分15分)9.(5分)9.下列命题中假命题的是( )A .向量a 与向量b 共线,则存在实数λ使()a b R λλ=∈B .a ,b 为单位向量,其夹角为θ,若||1a b ->,则ππ3θ<≤ C .若0a b ⋅=,则a b ⊥D .已知1e 与2e 是互相垂直的单位向量,若向量12e ke +与12ke e +的夹角为锐角,则实数k 的取值范围是0k >. 10.(5分)10.直线2326023180x y x m y ++=-+=,和23120mx y -+=围成直角三角形,则m 的值可为( )A .0B .1C .1-D .49- 11.(5分)12.设10AB =,若平面上点P 满足对任意的R λ∈,恒有28AP AB λ-≥,则下列一定正确的是( ) A .4PA ≥ B .10PA PB +≥ C .9PA PB ⋅-≥ D .90APB ∠≥︒三、 填空题 (本题共计5小题,总分25分)12.(5分)11.已知平行六面体1111ABCD A B C D -的体积为24,任取其中四个不共面的顶点构成四面体,则该四面体的体积可能取值为( )A .4B .6C .8D .1613.(5分)13.某学员在一次射击测试中射靶10次,命中环数如下:9,8,8,9,7,8,9,10,7,5,估计该学员射击一次命中环数为___________.14.(5分)14.假设()0.7,()0.8,P A P B ==且A 与B 相互独立,则()P A B ⋃=___________.15.(5分)15.如图,在ABC 中,D 是BC 的中点,E 在边AB 上,2AC =,2BE EA =,AD 与CE 的交点为O .若2AO BC ⋅=-,则AB 的长为______.16.(5分)16.在平面直角坐标系中,给定()()1,2,3,4M N 两点,点P 在x 轴的正半轴上移动,当MPN ∠最大值时,点P 的横坐标为_______.四、 解答题 (本题共计6小题,总分70分)17.(10分)17.已知复数z 满足234i z =+,且z 在复平面内对应的点位于第三象限. (1)求复数z ;(2)求20211()1z z++的值. 18.(12分)18.已知ABC 的面积为212sin b B ,cos cos 13A C =-. (1)求B 的大小;(2)若6b =,求该三角形内切圆半径r .19.(12分)19.已知圆()()22:1216C x y ++-=,直线()():211710l m x m y m ++--+=,m R ∈.(1)证明:不论m 取任何实数,直线l 与圆C 恒交于两点;(2)当直线l 被圆C 截得的弦长最短时,求此最短弦长及直线l 的方程. 20.(12分)20.在一个文艺比赛中,10名专业评委和10名观众代表各组成一个评委小组.给参赛选手甲,乙打分如下:(用小组A ,小组B 代表两个打分组)小组A :甲:7.5 7.5 7.8 7.8 8.0 8.0 8.2 8.3 8.4 9.5乙:7.0 7.8 7.8 7.8 8.0 8.0 8.3 8.3 8.5 8.5小组B :甲:7.4 7.5 7.5 7.6 8.0 8.0 8.2 8.9 9.0 9.0乙:6.9 7.5 7.6 7.8 7.8 8.0 8.0 8.5 9.0 9.9(1)选择一个可以度量打分相似性的量,并对每组评委的打分计算度量值,根据这个值判断小组A 与小组B 那个更专业?(2)根据(1)的判断结果,计算专业评委打分的参赛选手甲、乙的平均分;(3)若用专业评委打分的数据.选手的最终得分为去掉一个最低分和一个最高分之后.剩下8个评委评分的平均分.那么,这两位选手的最后得分是多少?若直接用10位评委评分的平均数作为选手的得分,两位选手的排名有变化吗?你认为哪种评分办法更好?(只判断不说明).(以上计算结果保留两位小数)21.(12分)21.已知圆M 过A ,(10,4)B ,且圆心M 在直线y x =上. (1)求圆M 的标准方程;(2)过点(0,4)-的直线m 截圆M 所得弦长为m 的方程;(3)过直线l: x+y+4=0上任意一点P 向圆M 作两条切线,切点分别为C ,D.记线段CD的中点为Q ,求点Q 到直线l 的距离的取值范围.22.(12分)22.在三棱柱111ABC A B C -中,1,,AB BC AB AA ⊥⊥12π,3A AC ∠=点M 为棱1CC 的中点,点T 是线段BM 上的一动点,12 2.AA AC AB ===(1)证明:1CC BM ⊥;(2)求平面11B BCC 与平面11A ACC 所成的二面角的正弦值;(3)设直线AT 与平面11B BCC 、平面11A ABB 、平面ABC 所成角分别为123,,.θθθ求123sin sin sin θθθ++的取值范围.答案一、 单选题 (本题共计8小题,总分40分)1.(5分)1.B2.(5分) 2.B3.(5分) 3.A4.(5分) 4.A5.(5分)5.A6.(5分)6.【答案】C 【详解】由圆22:(2)(1)20,C x y -+-=():76l y k x =-+过定点()7,6,C R ∴=C 上有两个不同点到l即~∈C l d,<k 的取值范围为()()11,2,2,22∞∞⎛⎫--⋃-⋃+ ⎪⎝⎭故选:C. 7.(5分)7.Dcos 2sin()26C C C π+=+=,得262C k πππ+=+,k Z ∈, (0,)2C π∈,3C π∴=. 由正弦定理知,sin sin B b A a =, 由余弦定理知,222cos 2b c a A bc +-=, cos cos sin sin 3sin A C B C a c A +=,∴22211223b c a b bc a c a +-⨯+=)0b c =, 0b≠,c ∴=由正弦定理,有4sin sin sin a b c A B C ====,4sin a A ∴=,4sin b B =, 锐角ABC ∆,且3C π=,(0,)2A π∴∈,2(0,)32B A ππ=-∈,解得(6A π∈,)2π,214(sin sin )4[sin sin()]4(sin sin ))326a b A B A A A A A A ππ∴+=+=+-=+=+, (6A π∈,)2π,(63A ππ∴+∈,2)3π,sin()6A π+∈1], a b ∴+的取值范围为(6,.8.(5分)8.C 在正方体ABCD ﹣A 1B 1C 1D 1中,连接1,A D BD ,如图,则有11//BD B D ,显然11A B A D BD ==,即直线BA 1和B 1D 1所成角160∠=A BD , 过点C 做直线l 与直线BA 1和B 1D 1所成的角均为70可以转化为过点B 做直线l '与直线BA 1和BD 所成的角均为70,A BD '∠的平分线AO 与直线BA 1和BD 都成30的角,让l '绕着点B 从AO 开始在过直线AO 并与平面A BD '垂直的平面内转动时,在转动到l '⊥平面A BD '的过程中,直线l '与直线BA 1和BD 所成的角均相等,角大小从30到90,由于直线l '的转动方向有两种,从而得有两条直线与直线BA 1和BD 所成的角均为70,又A BD '∠的邻补角大小为120,其角平分线与直线BA 1和BD 都成60的角, 当直线l '绕着点B 从A BD '∠的邻补角的平分线开始在过该平分线并与平面A BD '垂直的平面内转动时,在转动到l '⊥平面A BD '的过程中,直线l '与直线BA 1和BD 所成的角均相等,角大小从60到90,由于直线l '的转动方向有两种,从而得有两条直线与直线BA 1和BD 所成的角均为70, 综上得,这样的直线l '有4条,所以过点C 与直线BA 1和B 1D 1所成的角均为70的直线l 有4条.二、 多选题 (本题共计3小题,总分15分)9.(5分)9.ACD10.(5分) 10.ACD 由题意,若3260x y ++=和223180x m y -+=垂直可得: ()232230m ⨯+⨯-=,解得1m =±,经验证当1m =时,后面两条直线平行,构不成三角形,故1m =-;同理,若3260x y ++=和23120mx y -+=垂直可得:660m -=,解得1m =,应舍去;若223180x m y -+=和23120mx y -+=垂直可得:2490m m +=,解得0m =或49m =-,经验证均符合题意,故m 的值为:0,1-,49-. 11.(5分)12.AC 以直线AB 为x 轴,线段AB 的中垂线为y 轴建立如图所示的平面直角坐标系,则(5,0),(5,0)A B -,设(,)P x y ,则(5,)AP x y =+,(10,0)AB =,2(21010,2)AP AB x y λλ-=+-,由28AP AB λ-≥得22(21010)464x y λ+-+≥,22(55)16x y λ+-+≥,对任意λ,22(55)16x y λ+-+≥恒成立,则216y ≥,即4y ≤-或4y ≥,此时min 4AP =(当5,4x y =-=±时取得),A 正确;若(0,4)P ,则(0,8)PA PB +=,8PA PB +=,B 错;22(5,)(5,)25025169PA PB x y x y x y ⋅=+⋅-=-+≥-+=-(20,4x y ==时等号成立),C正确;例如P 点坐标是(5,4)-时, 90PAB ∠=︒,APB ∠90<︒,D 错,故选:AC .三、 填空题 (本题共计5小题,总分25分)12.(5分)11.AC设平行六面体的体积为24V =如左图,当取顶点1,,,A A B D 时,则该四面体体积11124466V V ==⨯=; 如右图,当取顶点11,,,A B C D 时,则该四面体体积21424448V V V =-=-⨯=.13.(5分)13.814.(5分) 14. 0.9415.(5分)15. ∵D 是BC 的中点,2BE EA =, ∵23BE BA =,2BC BD =. ∵E ,O ,C 三点共线,设()()21213BO BE BC BA BD λλλλ=+-=+-,且A ,O ,D三点共线, ∵()22113λλ+-=,解得34λ=, ∵1124BO BA BC =+. ∵()111244AO AB BO AB BA BC AB AC =+=++=+, ∵()()()()22211142444AO BC AB AC AC AB AC AB AB ⋅=+⋅-=-=-=-,∵212AB =,23AB =16.(5分)16.3 过点,,M N P 三点的圆的圆心在线段MN 的中垂线5y x =-上,其中MPN ∠为弦MN 所对的圆周角,所以当圆的半径最小时,MPN ∠最大,设圆心坐标为(,5)E a a -,又由点P 在x 轴上移动,当圆和x 轴相切时,MPN ∠取得最大值,设切点为(,0)P a ,圆的半径为5a -,所以圆的方程为222()(5)(5)x a y a a -++-=-,代入点(1,2)M 代入圆的方程,可得222(1)(25)(5)a a a -++-=-,整理得2250a a +-=,解得3a =或5a =-(舍去), 所以点P 的横坐标的为3.四、 解答题 (本题共计6小题,总分70分)17.(10分)17.(1)2i z =--;(2)i .(1)设i z a b =+,,0a b <, 则2222i 34i z a b ab =-+=+,22,0232i 124a b a a b z b ab <⎧=-⎧⎪∴-=⇒⇒=--⎨⎨=-⎩⎪=⎩; (2)202120212021202111i 1i i i 1i 1i 1z z +--+⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭⎝⎭. 18.(12分)18.【详解】(1)21sin 212sin ABC b S ac B B ==, 由正弦定理得:21sin sin sin sin 212sin B A C B B=,又sin 0B ≠,1sin sin 6A C ∴=, ()111cos cos cos cos sin sin 362B A C A C A C ∴=-+=-+=+=,又()0,B π∈,3B π∴=;(2)3612sin 3ABC S π===1sin 2ac B ∴==,解得:8ac =;由余弦定理得:()()222222cos 22cos 24363b a c ac B a c ac ac a c π=+-=+--=+-=,a c ∴+=6a b c ∴++=+()(132ABC S a b c r r =++⋅==r ∴= 19.(12分)19.【详解】(1)证明:因为()():211710l m x m y m ++--+=,所以()()2710m x y x y +-+-+=,因为m R ∈,所以2702103x y x x y y +-==⎧⎧⇒⎨⎨-+==⎩⎩故直线l 过定点()2,3A .因为圆C 的圆心为()1,2C -,4r =,4AC ,则点A 在圆内.所以直线l 与圆C 恒交于两点.(2)由(1)知直线l 过定点()2,3A ,所以当直线l 被圆C 截得的弦长最短时有l AC ⊥, 弦心距d ====因为321213AC k -==+,所以13k =-,故直线l 的方程为390x y +-=. 20.(12分)20.(1)小组A 更专业;(2)甲均分8.1,乙均分8;(3)甲均分8,乙均分8.06,两位选手排名有变化,我认为去掉一个最高分,一个最低分后更合理 (1)小组A 的打分中,甲的均值: 17.57.57.87.8888.28.38.49.5108.1X +++++++++== 甲的方差: 210.360.360.090.090.010.010.010.040.09 1.96100.302s +++++++++== 乙的均值: 277.87.87.8888.38.38.58.5108X +++++++++== 乙的方差: 2210.040.040.040.090.090.250.25100.18s +++++++== 小组B 的打分中,甲的均值: 37.47.57.57.6888.28.999108.11X +++++++++==甲的方差: 2222222222230.710.610.610.510.110.110.090.790.890.89100.3749s +++++++++== 乙的均值: 4 6.97.57.67.87.8888.599108.01X +++++++++== 乙的方差: 2222222222240.710.610.610.510.110.110.090.790.890.89100.3949s +++++++++== 由以上数据可得,在均值均差0.01的情况下,小组B 的打分方差较大,所以,小组A的打分更专业(2)由(1)可得:小组A 为专业评委,所以: 选手甲的平均分18.1X = 选手乙的平均分28X =(3)由专业评委的数据,去掉一个最高分,去掉一个最低分后,甲乙的均值分别为: 7.57.87.8888.28.38.488X +++++++==甲 7.87.87.8888.38.38.588.06X +++++++=≈乙 去掉一个最低分,一个最高分之后,乙的均值高于甲,按照10个数据计算时,甲的均值高于乙的均值,排名不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011—2012学年第一学期惠州八中学月考试
2011.12
高二数学试卷 命题人:罗为
说明:1、本卷总分150 分,考试时间120分钟。

2、考生必须用黑色钢笔或签字笔在答题卷指定范围内作答。

一.选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填写在答题表中) 1、f(x)是定义在R 上的偶函数,满足1
(2)()
f x f x +=-,当23x ≤≤时,()f x x =则(5.2)f 等于( )
A 、—2.8
B 、—5.2
C 、2.8
D 、5.2
2、要得到sin(2)4y x π
=-+的图象,只需将sin(2)y x =-的图象( )
A 、向左平移3π个单位
B 、向右平移8π
个单位
C 、向左平移8π个单位
D 、向右平移4
π
个单位
3、3
log
42等于( )
A 、3
B 、
C D 、13
4、若3()sin 1f x ax b x =++且(5)9f =则(5)f -=( ) A 、5 B 、5- C 、7- D 、7
5、已知直线m 330y --=的倾斜角的2倍,且直线m 在x 轴上的截距是-3,则直线m 的方程是( )
A .30y --=
B 0y -+=
C .0x +=
D 30y -+=
6、如图在正方体''''ABCD A B C D -中,直线AC 与直线BC ′所成的角为( )
A .30°
B . 60°
C .90°
D . 45° 7、21
()sin ()2
f x x x =-∈R ,则()f x 的最小正周期为( )
.
A. π的偶函数
B.π的奇函数
C.2π的偶函数
D. π
2
的奇函数 8、 数列4,,,121--a a 成等差数列;4,,,,1321--b b b 成等比数列,则2
1
2b a a -的值为(
). A 、21-
B 、21
C 、21或2
1- D 、41
9、若已知,a b →→
满足:||1a →=,||2b →=,||2a b →→-=,则||a b →→
+= ( ). A.7
10、已知集合}121|{},72|{-<<+=≤≤-=m x m x B x x A 且≠B φ,若A B A =则( ). A.43≤≤-m
B.43<<-m
C. 42≤<m
D. 42<<m
二.填空题(共6小题,每道小题5分,共30分。

请将正确答案填写在答题表中)
11.在如图所示的算法流程图中,输出S 的值为 . 12. P: 12≥-x ,Q:0232
≥+-x x
,则“非P ”是“非Q ”
的___________ (充分不必要条件,必要不充分条件,充要条件,既不充分也不必要条件.)
13.抛物线22(0)y px p =>的焦半径PF 为直径的圆与y 轴的位置关系为_______(相交,相离,相切,无法确定) 14.一个长为2m ,宽为1 m 的纱窗,由于某种原因,纱窗上
有一个半径为10㎝的小孔,现随机向纱窗投一小沙子,则小沙子恰好从孔中飞出的概率为 15. P 为椭圆19
25
2
2
=+y x 上一点,1F 、2F 为左右焦点,若
︒=∠6021PF F ,则△21PF F 的面积为__________
16.某工厂生产A 、B 、C 三种不同型号的产品, 这比产品数量
依次为1600,1600,4800.现用分层抽样的方法抽出一个容量为N 的样本,样本中A 种型号的产品共有16件,那么此样本的容量N=__________件.
B ′
D ′ A B
C D
A ′ C ′ 图
三.解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤。


17.在工业生产中,纤维产品的粗细程度一般用“纤度”来表示。

某工厂在生产过程中,测得纤维产品的纤度共有100个数据,将数据分组得如下频率分布表和频率分布直方图:
(1)补全频率分布表和频率分布直方图;
(2)纤度落在[1.38,1.50)和纤度小于1.40的百分比各是多少?
18.某班数学兴趣小组有男生三名,分别记为a,b,c,女生两名,分别记为x,y,现从中任选2名学生参加校数学竞赛,
(1)写出这种选法的基本事件空间
(2)求参赛学生中恰有一名男生的概率。

(3)求参赛学生中至少有一名男生的概率。

19.(1)求经过点(2,3)
A B的椭圆的标准方程.
(2)已知椭圆的对称轴为坐标轴,O为坐标原点,F是一个焦点,A是一个
顶点,若椭圆的长轴长是6,且
2
cos
3
OFA
<=,求椭圆方程。

20 (1)双曲线与椭圆
136
272
2=+y x 有相同焦点,且经过点,求双曲线的方程 (2)过双曲线22
136
x y -
=的右焦点2F 倾斜角为30︒的直线交双曲线于A,B 两点,求AB
21.(1)已知抛物线的焦点在直线240x y --=上,求此抛物线的标准方程。

(2)已知双曲线12
2
2
=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。

若存在这样的直线l ,求出它的方程,若不存在,说
明理由。

22.设圆C与两圆2222
+=+=中的一个内切,另一个外切.
x y x y
(4,(4
(1)求圆C的圆心轨迹L的方程
(2)已知点M F,且P为L上动点,求MP FP
-的最大值及此时P的坐标.。

相关文档
最新文档