高二数学(月考试卷)

合集下载

山西省部分学校2024-2025学年高二上学期10月月考数学试题(含答案)

山西省部分学校2024-2025学年高二上学期10月月考数学试题(含答案)

2024~2025学年高二10月质量检测卷数学(A 卷)考生注意:1.本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。

3.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。

4.本卷命题范围:人教A 版选择性必修第一册第一章~第二章。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知直线经过,两点,则的倾斜角为()A.B.C.D.2.已知圆的方程是,则圆心的坐标是( )A. B. C. D.3.在长方体中,为棱的中点.若,,,则()A. B. C. D.4.两平行直线,之间的距离为( )B.3D.5.曲线轴围成区域的面积为( )l (A (B l 6π3π23π56πC 2242110x y x y ++--=C ()2,1-()2,1-()4,2-()4,2-1111ABCD A B C D -M 1CC AB a = AD b =1AA c = AM =111222a b c -+ 111222a b c ++12a b c-+12a b c++ 1:20l x y --=2:240l x y -+=y =xA. B. C. D.6.已知平面的一个法向量,是平面内一点,是平面外一点,则点到平面的距离是( )A. B.D.37.在平面直角坐标系中,圆的方程为,若直线上存在点,使以点为圆心,1为半径的圆与圆有公共点,则实数的取值范围是( )A. B.C. D.8.在正三棱柱中,,,为棱上的动点,为线段上的动点,且,则线段长度的最小值为( )A.2二、选择题:本题共3小题,每小题6分,共18分。

四川省成都2024-2025学年高二上学期10月月考试题 数学含答案

四川省成都2024-2025学年高二上学期10月月考试题 数学含答案

成都2024—2025学年度高二上期10月月考数学试卷(答案在最后)注意事项:1.本试卷分第I 卷和第II 卷两部分;2.本堂考试120分钟,满分150分;3.答题前,考生务必将自己的姓名、学号正确填写在答题卡上,并使用2B 铅笔填涂;4.考试结束后,将答题卡交回.第I 卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项符合题目要求.1.现须完成下列2项抽样调查:①从12瓶饮料中抽取4瓶进行食品卫生检查;②某生活小区共有540名居民,其中年龄不超过30岁的有180人,年龄在超过30岁不超过60岁的有270人,60岁以上的有90人,为了解居民对社区环境绿化方面的意见,拟抽取一个容量为30的样本.较为合理的抽样方法分别为()A .①随机数法,②抽签法B .①随机数法,②分层抽样C .①抽签法,②分层抽样D .①抽签法,②随机数法2.已知向量()1,2,1a =- ,()3,,b x y = ,且//a b r r,那么实数x y +等于()A .3B .-3C .9D .-93.若,l n 是两条不相同的直线,,αβ是两个不同的平面,则下列命题中为真命题的是()A .若l n ⊥,n β⊥,则l //βB .若αβ⊥,l α⊥,则l //βC .若//αβ,l α⊂,则l //βD .若//l α,//αβ,则l //β4.如图,空间四边形OABC 中,,,OA a OB b OC c ===,点M 为BC 中点,点N 在侧棱OA上,且2ON NA =,则MN =()A .121232a b c--+B .211322a b c-++C .211322a b c-- D .111222a b c+-5.为了养成良好的运动习惯,某人记录了自己一周内每天的运动时长(单位:分钟),分别为53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =()A .58或64B .59或64C .58D .596.已知点D 在ABC V 确定的平面内,O 是平面ABC 外任意一点,正数,x y 满足23DO xOA yOB OC =+- ,则yx 21+的最小值为()A .25B .29C .1D .27.现有一段底面周长为12π厘米和高为12厘米的圆柱形水管,AB 是圆柱的母线,两只蜗牛分别在水管内壁爬行,一只从A 点沿上底部圆弧顺时针方向爬行π厘米后再向下爬行3厘米到达P 点,另一只从B 沿下底部圆弧逆时针方向爬行π厘米后再向上爬行3厘米爬行到达Q 点,则此时线段PQ 长(单位:厘米)为()A .B .C .6D .128.如图,四边形,4,ABCD AB BD DA BC CD =====ABD △沿BD 折起,当二面角A BD C --的大小在[,63ππ时,直线AB 和CD 所成角为α,则cos α的最大值为()A .16B C .16D .8二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列命题中,正确的是()A .两条不重合直线12,l l 的方向向量分别是()2,0,1a =-,()4,0,2b =- ,则12//l l B .直线l 的方向向量()1,1,2c =-,平面α的法向量是()6,4,1m =- ,则l α⊥C .两个不同的平面α,β的法向量分别是()2,2,1u =-,()3,4,2v =- ,则αβ⊥D .直线l 的方向向量()0,1,1d = ,平面α的法向量()1,0,1n =,则直线l 与平面α所成角的大小为π310.小刘一周的总开支分布如图①所示,该周的食品开支如图②所示,则以下说法正确的是()A .娱乐开支比通信开支多5元B .日常开支比食品中的肉类开支多100元C .娱乐开支金额为100元D .肉类开支占储蓄开支的1311.已知四面体OABC 的所有棱长都为1,,D E 分别是,OA BC 的中点.N M ,是该四面体内切球球面上的两点,P 是该四面体表面上的动点.则下列选项中正确的是()A.DE 的长为44B.D 到平面ABC 的距离为66C.当线段MN 最长时,PN PM ⋅的最大值为31D.直线OE 与直线AB 所成角的余弦值为33第II 卷三、填空题:本题共3小题,每小题5分,共15分.12.某校高一年级共有学生200人,其中1班60人,2班50人,3班50人,4班40人.该校要了解高一学生对食堂菜品的看法,准备从高一年级学生中随机抽取40人进行访谈,若采取按比例分配的分层抽样,则应从高一2班抽取的人数是.13.已知(2,1,3),(1,4,2)a b =-=-- ,c (4,5,)λ=,若,,a b c 三向量不能构成空间向量的一组基底,则实数λ的值为.14.在正方体ABCD A B C D -''''中,点P 是AA '上的动点,Q 是平面BB C C ''内的一点,且满足A D BQ '⊥,则平面BDP 与平面BDQ 所成角余弦值的最大值为.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.(满分13分)15.已知向量()6a m = ,,()1,0,2=b ,()()2R c m =∈ (1)求()a b c ⋅-的值;(2)求cos b c ,;(3)求a b - 的最小值.(满分15分)16.成都市政府委托市电视台进行“创建文明城市”知识问答活动,市电视台随机对该市1565~岁的人群抽取了n人,绘制出如图所示的频率分布直方图,回答问题的统计结果如表所示.组号分组回答正确的人数回答正确的人数占本组的频率第一组[15,25)500.5第二组[25,35)180a第三组[35,45)x0.9第四组[45,55)90b第五组[55,65)y0.6a b x y的值;(1)分别求出,,,(2)从第二、三、四、五组回答正确的人中用分层抽样的方法抽取7人,则从第二、三、四、五组每组回答正确的人中应各抽取多少人.-中,ABCD是边长为2的正方形,平面PBC⊥(满分15分)17.如图,在四棱锥P ABCDPC=.平面ABCD,直线PA与平面PBC所成的角为45︒,2(1)若E,F分别为BC,CD的中点,求证:直线AC⊥平面PEF;(2)求二面角D PA B--的正弦值.(满分17分)18.随着时代不断地进步,人们的生活条件也越来越好,越来越多的人注重自己的身材,其中体脂率是一个很重要的衡量标准.根据一般的成人体准,女性体脂率的正常范围是20%至25%,男性的正常范围是15%至18%.这一范围适用于大多数成年人,可以帮助判断个体是否存在肥胖的风险.某市有关部门对全市100万名成年女性的体脂率进行一次抽样调查统计,抽取了1000名成年女性的体脂率作为样本绘制频率分布直方图,如图.(1)求a ;(2)如果女性体脂率为25%至30%属“偏胖”,体脂率超过30%属“过胖”,那么全市女性“偏胖”,“过胖”各约有多少人?(3)小王说:“我的体脂率是调查所得数据的中位数.”小张说:“我的体脂率是调查所得数据的平均数.”那么谁的体脂率更低?(精确到小数点后2位)(满分17分)19.如图,四面体ABCD 中,2,AB BC BD AC AD DC ======(1)求证:平面ADC ⊥平面ABC ;(2)若(01)DP DB λλ=<<,①若直线AD 与平面APC 所成角为30°,求λ的值;②若PH ⊥平面,ABC H 为垂足,直线DH 与平面APC 的交点为G .当三棱锥CHP A -体积最大时,求DGGH的值.高二上10月月考数学答案一、单选题:C D C C A B A B二、多选题:AC;BCD;BC3三、填空题:10;5;318:(1)由频率直方图可得,(2)由频率分布直方图可得样本中女性⨯=,所以全市女性50.020.1⨯=,10000000.1100000。

2024-2025学年江西省抚州市临川二中高二(上)第一次月考数学试卷(含答案)

2024-2025学年江西省抚州市临川二中高二(上)第一次月考数学试卷(含答案)

2024-2025学年江西省抚州市临川二中高二(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若直线3x +2y−3=0和直线6x +my +1=0互相平行,则m 的值为( )A. −9B. 32C. −4D. 42.若两个非零向量a ,b 的夹角为θ,且满足|a |=2|b |,(a +3b )⊥a ,则cosθ=( )A. −23B. −13C. 13D. 233.已知直线3x−(a−2)y−2=0与直线x +ay +8=0互相垂直,则a =( )A. 1B. −3C. −1或3D. −3或14.为了得到函数y =sin (5x +π3)的图象,只要将函数y =sin5x 的图象( )A. 向左平移π15个单位长度 B. 向右平移π15个单位长度C. 向左平移π3个单位长度D. 向右平移π3个单位长度5.过点(3,−2)且与椭圆4x 2+9y 2−36=0有相同焦点的椭圆方程是( )A. x 215+y 210=1 B. x 25+y 210=1 C. x 210+y 215=1 D. x 225+y 210=16.已知圆的方程为x 2+y 2−2x =0,M(x,y)为圆上任意一点,则y−2x−1的取值范围是( )A. [− 3,3]B. [−1,1]C. (−∞,− 3]∪[3,+∞)D. [1,+∞)∪(−∞,−1]7.已知圆C :(x−3)2+(y−4)2=1和两点A(−m ,0),B(m ,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为 ( )A. 7B. 6C. 5D. 48.已知向量a ,b 满足|a |=1,|2a +b |+|b |=4,则|a +b |的取值范围是( )A. [2−3,2]B. [1,3]C. [2− 3,2+3]D. [3,2]二、多选题:本题共3小题,共18分。

天津市南开大学附属中学2024-2025学年高二上学期第一次月考数学试卷

天津市南开大学附属中学2024-2025学年高二上学期第一次月考数学试卷

天津市南开大学附属中学2024-2025学年高二上学期第一次月考数学试卷一、单选题1.已知全集{}0,2,4,6,8,10U =,集合{}0,2,4A =,{}0,6,8B =,则()U A B ⋂=ð()A .{}0B .{}6,8C .{}0,6,8D .{}2,4,6,82.在空间直角坐标系中,点(3,1,5)M -,关于x 轴对称的点的坐标是A .()3,1,5---B .()3,1,5--C .()3,1,5-D .()3,1,5--3.以下各组向量中的三个向量,不能构成空间基底的是()A .()1,0,0a = ,()0,2,0b = ,1(,2c = B .()1,0,0a =,()0,1,0b = ,()0,0,2c = C .()1,0,1= a ,()0,1,1b = ,()2,1,2c =D .()1,1,1a = ,()0,1,0b = ,()1,0,2c =4.已知{},,a b c 是空间的一组基底,其中23AB a b =- ,AC a c =- ,2AD b c λ=+.若A ,B ,C ,D 四点共面,则λ=()A .34-B .34C .43D .43-5.如图,在空间四边形OABC 中,点E 为BC 中点,点F 在OA 上,且2OF FA = ,则EF等于A .121+232OA OB OC-B .211+322OA OB OC-+C .111222OA OB OC+-D .211322OA OB OC--6.若直线1x ya b-=过第一、三、四象限,则实数,a b 满足()A .0,0a b <<B .0,0a b <>C .0,0a b >>D .0,0a b ><7.已知直线l 的一个方向向量为ππsin ,cos 33p ⎛⎫= ⎝⎭ ,则直线l 的倾斜角为()A .π6B .π3C .2π3D .4π38.已知直线310kx y k --+=,当k 变化时,所有直线都恒过点()A .()0,0B .()0,1C .()2,1D .()3,19.已知()2,4A ,()1,1B 两点,直线l 过点()0,2C 且与线段AB 相交,则直线l 的斜率k 的取值范围为()A .(][),11,-∞-+∞B .(][),22,-∞-+∞UC .[]1,1-D .[]22-,10.若曲线y =()21y k x =++仅有一个交点,则实数k 的取值范围是()A .11,3⎡⎤--⎢⎥⎣⎦B .11,3⎡⎫--⎪⎢⎣⎭C .{}11,03⎡⎤--⎢⎥⎣⎦ D .{}11,03⎡⎫--⎪⎢⎣⎭ 二、填空题11.已知空间向量()2,3,4a = ,()1,0,1b =- ,那么a 在b上的投影向量为.12.已知向量(2,,1),(2,1,1)a t b =--= ,若a与b 的夹角为钝角,则实数t 的取值范围是.13.已知直线12:3450,:6850l x y l x y +-=++=则1l 与2l 的距离d =.14.在棱长为2的正方体ABCD A B C D -₁₁₁₁中E BC ,为中点,则点1B 到直线1A E 的距离为15.已知(,0),(,0)(0),A m B m m ->若圆22:68210C x y x y ++-+=上存在点P ,使得222||||4PA PB m +=,则m 的范围.三、解答题16.已知ABC V 的内角A ,B ,C 所对的边分别是a ,b ,c ,7,8,5a b c ===.(1)求角A 的值;(2)求sin B 的值.17.已知直线1:(4)(6)160l m x m y +++-=与直线2:6(1)80l x m y +--=.(1)当m 为何值时,1l 与2l 相交;(2)当m 为何值时,1l 与2l 平行,并求1l 与2l 的距离;(3)当m 为何值时,1l 与2l 垂直.18.已知点M (3,1),圆O 1:(x ﹣1)2+(y ﹣2)2=4.(1)若直线ax ﹣y +4=0与圆O 1相交于A ,B 两点,且弦AB 的长为a 的值;(2)求过点M 的圆O 1的切线方程.19.如图,平行六面体1111ABCD A B C D -中,1111,60AB AD AA A AB A AD BAD ===∠=∠=∠=︒.(1)证明:1AC BD ⊥;(2)求1AC 的长;(3)求直线1BD 与AC 所成角的余弦值.20.在如图所示的几何体中,四边形ABCD 是正方形,四边形ADPQ 是梯形,PD ∥π,2QA PDA PDC ∠∠==,且22AD PD QA ===.(1)求证:QB∥平面PDC;--的平面角大小.(2)求二面角C PB Q(3)已知点H在棱PD上,且异面直线AH与PB H的位置.。

北京市顺义区2024-2025学年高二上学期10月月考数学试卷含答案

北京市顺义区2024-2025学年高二上学期10月月考数学试卷含答案

顺义2024-2025学年第一学期月考高二年级数学试卷(答案在最后)一、选择题(每小题5分,共40分,四个选项中,只有一项是符合题目要求的,将答案填涂在答题卡相应的位置上)1.空间任意四个点,,,A B C D ,则DA CD CB +-=()A.DBB.ACC.ABD.BA【答案】D 【解析】【分析】根据空间向量加减运算法则得到答案.【详解】C D C A A D B CA B CB +-=-=.故选:D2.直线20x --=的倾斜角是()A.30︒B.45︒C.60︒D.75︒【答案】A 【解析】【分析】先得到直线斜率,从而求出倾斜角.【详解】3232033x y x --=⇒=-,故斜率为33,故倾斜角为30︒.故选:A3.若直线经过()(1,0,A B 两点,则直线AB 的倾斜角为()A.30︒B.45︒C.60︒D.135︒【答案】C 【解析】【分析】根据两点坐标求出直线的斜率,进而求出倾斜角.【详解】由直线经过()(1,0,A B 两点,可得直线的斜率为3021-=-,设直线的倾斜角为θ,有tan θ=,又0180θ≤< ,所以60θ= .故选:C.4.已知直线l 的一个方向向量为()3,2a =-,则直线l 的斜率为()A.32-B.23-C.23 D.32【答案】B 【解析】【分析】根据直线斜率公式结合已知直线的方向向量可以直接求出直线的斜率.【详解】因为直线l 的一个方向向量为()3,2a =-,所以直线l 的斜率为23-.故选:B5.过点(1,3)P -且垂直于直线230x y -+=的直线方程为()A.210x y +-=B.250x y +-= C.250x y +-= D.270x y -+=【答案】A 【解析】【分析】由题意可得直线230x y -+=的斜率为12,由垂直得垂直直线的斜率,然后由点斜式写出直线方程,化为一般式可得结果.【详解】解:由题意可得直线230x y -+=的斜率为12,则过点(1,3)P -且垂直于直线230x y -+=的直线斜率为2-,直线方程为32(1)y x -=-+,化为一般式为210x y +-=.故选:A .6.若直线l 的方向向量为()2,1,m ,平面α的法向量为11,,22⎛⎫⎪⎝⎭,且l α⊥,则m =()A.1B.2C.3D.4【答案】D 【解析】【分析】由l α⊥可知,直线l 的方向向量与平面α的法向量平行,列方程组求解即可.【详解】∵直线l 的方向向量为()2,1,m ,平面α的法向量为11,,22⎛⎫⎪⎝⎭,且l α⊥,∴直线l 的方向向量与平面α的法向量平行,则存在实数λ使()12,1,1,,22m λ⎛⎫= ⎪⎝⎭,∴21122m λλλ=⎧⎪⎪=⎨⎪=⎪⎩,解得2,4m λ==,故选:D.7.如图,空间四边形OABC 中,,,OA a OB b OC c ===,点M 在OA 上,且23OM OA = ,点N 为BC 中点,则MN等于()A.111222a b c +-B.211322a b c-++C.221332a b c +- D.221332a b c-+- 【答案】B 【解析】【分析】根据给定的几何体,利用已知的空间基底表示向量MN.【详解】在空间四边形OABC 中,11111((323))2)2(MN MA AN OA AB AC OA OB OA OC OA =+=++=+-+- 211211322322OA OB OC a b c =-++=-++.故选:B8.如图,在棱长为2的正方体1111ABCD A B C D -中,P 为线段11A C 的中点,Q 为线段1BC 上的动点,则下列结论正确的是()A.存在点Q ,使得//PQ BDB.存在点Q ,使得PQ ⊥平面11AB C DC.三棱锥Q APD -的体积是定值D.存在点Q ,使得PQ 与AD 所成的角为π6【答案】B 【解析】【分析】A 由11//BD B D 、11B D PQ P = 即可判断;B 若Q 为1BC 中点,根据正方体、线面的性质及判定即可判断;C 只需求证1BC 与面APD 是否平行;D 利用空间向量求直线夹角的范围即可判断.【详解】A :正方体中11//BD B D ,而P 为线段11A C 的中点,即为11B D 的中点,所以11B D PQ P = ,故,BD PQ 不可能平行,错;B :若Q 为1BC 中点,则1//PQ A B ,而11A B AB ⊥,故1PQ AB ⊥,又AD ⊥面11ABB A ,1A B ⊂面11ABB A ,则1A B AD ⊥,故PQ AD ⊥,1AB AD A ⋂=,1,AB AD ⊂面11AB C D ,则PQ ⊥面11AB C D ,所以存在Q 使得PQ ⊥平面11AB C D ,对;C :由正方体性质知:11//BC AD ,而1AD 面APD A =,故1BC 与面APD不平行,所以Q 在线段1BC 上运动时,到面APD 的距离不一定相等,故三棱锥Q APD -的体积不是定值,错;D :构建如下图示空间直角坐标系D xyz -,则(2,0,0)A ,(1,1,2)P ,(2,2,)Q a a -且02a ≤≤,所以(2,0,0)DA = ,(1,1,2)PQ a a =--,若它们夹角为θ,则222cos ||2(1)1(2)233a a a a θ==⨯-++-⋅-+令1[1,1]t a =-∈-,则22cos 112121t t t tθ==⋅++⋅++,当(0,1]t ∈,则[)11,t ∈+∞,6cos (0,]6θ∈;当0t =则cos 0θ=;当[1,0)t ∈-,则(]1,1t∞∈--,2cos (0,2θ∈;所以π3cos62=不在上述范围内,错.故选:B二、填空题(每小题5分,共20分,将答案填写在答题卡相应的位置上)9.已知()2,1,3a =- ,()1,2,1b =- ,则a b ⋅= ______;a 与b夹角的余弦值为______.【答案】①.7②.2161216【解析】【分析】利用空间向量数量积公式和夹角余弦公式进行求解【详解】()()2,1,31,2,12237a b ⋅=-⋅-=++=,a 与b夹角的余弦值为216419141a b a b⋅==++⨯++⋅ .故答案为:7,21610.设()3,5,4a =- ,()2,1,2b =-- ,则2a b =-r r ______;2a b -= ______.【答案】①.()1,7,0-②.52【解析】【分析】根据空间向量线性运算法则得到()1,72,0a b =--rr ,并利用模长公式求出答案.【详解】()()()()()23,5,422,1,23,5,440,2,41,7,a b =-=------=---rr;214902a b -=++故答案为:()1,7,0,52-11.若直线1:10+-=l mx y 与2:(43)10l m x my -+-=平行,则实数m =______.【答案】3【解析】【分析】根据两直线平行,列出有关m 的等式,即可求出实数m 的值,再验证直线的关系.【详解】由于1l 与2l 平行,则()2430m m --=,则1m =或3m =,当1m =时,1:10l x y +-=,2:10l x y +-=,两直线重合,当3m =时,1:310l x y +-=,2:9310l x y +-=,两直线平行.故答案为:3.12.如图,四棱柱ABCD -A 1B 1C 1D 1为正方体,①直线DD 1的一个方向向量为()0,0,1;②直线BC 1的一个方向向量为()0,1,1;③平面ABB 1A 1的一个法向量为()0,1,0;④平面B 1CD 的一个法向量为 恈 恈 ;则上述结论正确的是___________(填序号)【答案】①②③【解析】【分析】根据向量的平行、方向向量、法向量及坐标运算求解即可.【详解】设正方体的棱长为1.因为11//AA DD ,且()10,0,1AA =,所以①正确;因为11//AD BC ,()10,1,1AD =,所以②正确;因为AD ⊥平面11ABB A ,()0,1,0AD =,所以③正确;因为正方体中CD ⊥平面11B BCC ,1BC ⊂平面11B BCC ,所以1CD BC ⊥,又11BC B C ⊥,1B C CD C ⋂=,1,B C CD ⊂平面1B CD ,所以1⊥BC 平面1B CD ,而1BC 与1AC 相交,不平行,1AC 与平面1B CD 不垂直,故()11,1,1AC =不是平面1B CD 的法向量,所以④错误.故答案为:①②③.三、解答题(共4小题,共60分,在答题卡相应位置上写出详细的解答过程)13.已知ABC V 的三个顶点为()4,0A ,()0,2B ,()2,6C .(1)求AC 边所在的直线方程.(2)求AC 边上的高BD 所在直线的方程;(3)求BC 边上的中线AE 所在直线的方程.【答案】(1)3120x y +-=(2)360x y -+=(3)43160x y +-=【解析】【分析】(1)两点式求出直线AC 的方程,化为一般式即可;(2)根据垂直关系,设出BD 所在直线方程为30x y t -+=,将()0,2B 代入,求出6t =,得到答案;(3)求出()1,4E ,两点式求出直线方程,化为一般式即可.【小问1详解】AC 边所在的直线方程为046024y x --=--,即3120x y +-=;【小问2详解】设AC 边上的高BD 所在直线方程为30x y t -+=,将()0,2B 代入得060t -+=,解得6t =,故AC 边上的高BD 所在直线方程为360x y -+=;【小问3详解】线段BC 的中点坐标为0226,22E ++⎛⎫⎪⎝⎭,即()1,4E ,故BC 边上的中线AE 所在直线方程为410441y x --=--,即43160x y +-=.14.已知1111ABCD A B C D -是正方体,点E 为11A B 的中点,点F 为11B C 的中点.(1)求证:1⊥BD EF ;(2)求平面EFC 与平面BFC 夹角的余弦值.(3)求点1C 到直线1BD 的距离.【答案】(1)证明过程见解析(2)23(3)3【解析】【分析】(1)建立空间直角坐标系,写出点的坐标,得到10BD EF ⋅=,求出垂直关系;(2)求出两平面的法向量,利用面面角的余弦夹角公式得到答案;(3)利用点到直线距离向量公式求出答案.【小问1详解】以D 为坐标原点,1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系,设正方体棱长为2,则()()()()()12,2,0,0,0,2,2,1,2,1,2,2,0,2,0B D E F C ,故()()12,2,21,1,0220BD EF ⋅=--⋅-=-= ,故1BD EF ⊥uuu r uu u r ,所以1⊥BD EF ;【小问2详解】由图可知,平面BFC 的法向量为()0,1,0m =,设平面EFC 的法向量为(),,n x y z =,则()()()(),,1,1,00,,1,0,220n EF x y z x y n CF x y z x z ⎧⋅=⋅-=-+=⎪⎨⋅=⋅=+=⎪⎩ ,令1z =得2,2x y =-=-,故()2,2,1n =--,平面EFC 与平面BFC 夹角的余弦值为()()0,1,02,2,123441m nm n ⋅--⋅==⋅++;【小问3详解】()10,2,2C ,()12,2,2BD =-- ,()()()12,2,00,2,22,0,2C B =-=-,点1C 到直线1BD 的距离为()()22211112,0,22,2,264043444C B BD d C B BD ⎛⎫⎛⎫-⋅--⋅ ⎪=-=++- ⎪⎪++⎝⎭⎝⎭.15.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,2PA AB ==.(1)求证://AD 平面PBC ;(2)求直线BD 平面PCD 夹角的正弦值;(3)求点B 到平面PCD 的距离.【答案】(1)证明见解析(2)12(3【解析】【分析】(1)由线线平行得到线面平行即可证明;(2)由线面垂直得到线线垂直,建立空间直角坐标系,写出点的坐标,求出平面的法向量,由线面角的夹角向量公式求出直线BD 平面PCD 夹角的正弦值;(3)在(2)基础上,由点到平面距离向量公式求出答案.【小问1详解】因为底面ABCD 为正方形,所以//AD BC ,因为AD ⊄平面PBC ,⊂BC 平面PBC ,所以//AD 平面PBC ;【小问2详解】因为PA ⊥平面ABCD ,,AB AD ⊂平面ABCD ,所以,PA AB PA AD ⊥⊥,以A 为坐标原点,,,AB AD AP 所在直线分别为,,x y z 轴,建立空间直角坐标系,()()()()2,0,0,0,2,0,0,0,2,2,2,0B D P C ,设平面PCD 的法向量为 恈 恈 ,则()()()(),,2,2,22220,,0,2,2220m PC x y z x y z m PD x y z y z ⎧⋅=⋅-=+-=⎪⎨⋅=⋅-=-=⎪⎩ ,令1y =,则1,0z x ==,则()0,1,1m =,直线BD 平面PCD 夹角的正弦值为1cos ,2BD m BD m BD m⋅===⋅ ;【小问3详解】由(2)知,平面PCD 的法向量为()0,1,1m =,点B 到平面PCD 的距离为BC m m ⋅=== 16.如图,在四面体ABCD 中,AD⊥平面ABC ,点M 为棱AB 的中点,2,2AB AC BC AD ====.(1)证明:AC BD ⊥;(2)求平面BCD 和平面DCM 夹角的余弦值;(3)在线段BD 上是否存在一点P ,使得直线PC 与平面DCM 所成角的正弦值为6?若存在,求BP BD 的值;若不存在,请说明理由.【答案】(1)证明见解析(2)223(3)不存在,理由见解析【解析】【分析】(1)由勾股定理得AB AC ⊥,由AD ⊥平面ABC 得AD AC ⊥,从而AC ⊥平面ABD ,进而得出结论;(2)以A 为坐标原点,以,,AB AC AD 所在直线分别为,,x y z 轴,建立空间直角坐标系,求出平面BCD 与平面DCM 的法向量,利用向量夹角公式求解;(3)设()01BP BD λλ=≤≤,则BP BD λ= ,求得22,0(,2)P λλ-,设直线PC 与平面DCM 所成角为θ,由题意sin cos ,PC n PC n PC n θ⋅== ,列式求解即可.【小问1详解】∵2,AB AC BC ===,∴222AB AC BC +=,∴AB AC ⊥,∵AD ⊥平面ABC ,AC ⊂平面ABC ,∴AD AC ⊥,∵AB AD A ⋂=,,AB AD ⊂平面ABD ,∴AC ⊥平面ABD ,∵BD ⊂平面ABD ,∴AC BD ⊥.【小问2详解】以A 为坐标原点,以,,AB AC AD 所在直线分别为,,x y z轴,建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(0,0,2),(1,0,0)A B C D M ,(2,2,0),(0,2,2),(1,2,0)BC CD CM =-=-=- ,设平面BCD 的法向量为111(,,)m x y z = ,由1111220220m BC x y m CD y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令11x =,则111,1==y z ,(1,1,1)m = ,设平面DCM 的法向量为222(,,)n x y z = ,由222222020n CD y z n CM x y ⎧⋅=-+=⎪⎨⋅=-=⎪⎩ ,令21y =,则222,1x z ==,(2,1,1)n = ,∴cos ,3m n m n m n ⋅=== ,∴平面BCD 和平面DCM夹角的余弦值为3.【小问3详解】设()01BP BDλλ=≤≤,则BP BD λ= ,设(,,)P x y z ,则()()2,,2,0,2x y z λ-=-,得22,0,2x y z λλ-=-==,∴22,0(,2)P λλ-,()22,2,2PC λλ=-- ,平面DCM 的法向量为(2,1,1)n = ,设直线PC 与平面DCM 所成角为θ,由题意,6sin cos ,6PC n PC n PC n θ⋅==== ,∴210λ+=,此方程无解,∴在线段BD 上是不存在一点P ,使得直线PC 与平面DCM 所成角的正弦值为66.。

江苏省扬州中学2024-2025学年高二上学期10月月考试题 数学(含答案)

江苏省扬州中学2024-2025学年高二上学期10月月考试题 数学(含答案)

2024—2025学年第一学期高二上10月自主学习效果评估数学试卷2024.10.08一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知,直线过定点,且与线段相交,则直线的斜率的取值范围是( )A B. C. 或 D. 或2. 若圆与圆相切,则()A. 6B. 3或6C. 9D. 3或93. 已知直线,,则过和的交点且与直线垂直的直线方程为( )A. B. C. D.4. 若点在圆内,则直线与圆C 的位置关系为( )A. 相交B. 相切C. 相离D. 不能确定5. 圆心为,且与直线相切的圆的方程为( )A. B. C. D.6. 已知圆上有四个点到直线的距离等于1,则实数的取值范围为( )A. B. C. D.7. 已知圆关于直线对称,则实数( ).()()2,02,3A B 、l ()1,2P AB l k 21k -≤≤112k -≤≤12k ≤-1k ≥2k ≤-1k ≥()2221:(4)0O x y r r ++=>222:(2)9O x y -+=r =1:10l x y -+=2:210l x y --=1l 2l 3450x y +-=3410x y --=3410x y -+=4310x y --=4310x y -+=(),P a b221Cx y +=:1ax by +=(2,1)M -2+1=0x y -22(2)(1)5x y -+-=22(2)(1)5x y -++=22(2)(1)25x y -++=22(2)(1)25x y -+-=224x y +=y x b =+b ()2,2-(()1--()1,1-22:330C x y mx y +-++=:0l mx y m +-=m =A 1或 B. 1 C. 3 D. 或38. 若圆与圆交于两点,则的最大值为( )A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.9. 若直线与圆交于两点,则( )A. 圆的圆心坐标为B. 圆的半径为3C. 当时,直线倾斜角为D. 的取值范围是10. 已知点在上,点,,则( )A. 点到直线的距离最大值是B. 满足的点有2个C. 过直线上任意一点作的两条切线,切点分别为,则直线过定点D. 的最小值为11. 设直线系(其中均为参数,),则下列命题中是真命题的是()A. 当时,存在一个圆与直线系中所有直线都相切B. 当时,若存在一点,使其到直线系中所有直线的距离不小于1,则C. 存在,使直线系中所有直线恒过定点,且不过第三象限D. 当时,坐标原点到直线系中所有直线的距离最大值为1三、填空题:本题共3小题,每小题5分,共15分..的3-1-22:(cos )(sin )1(02π)M x y θθθ-+-=≤<22:240N x y x y +--=A B 、tan ANB ∠344543:2cos 0l x y θ-⋅=22:10E x y +--=,A B E ()-E 1cos 2θ=l π4AB ⎡⎢⎣P 22:4O x y +=e ()3,0A ()0,4B P AB 125AP BP ⊥P AB O e ,M N MN 4,13⎛⎫ ⎪⎝⎭2PA PB +:cos sin 1m n M x y θθ+=,,m n θ{}02π,,1,2m n θ≤≤∈1,1m n ==M 2,1m n ==(),0A a M 0a ≤,m n M m n =M12. 已知直线,圆,写出满足“对于直线上任意一点,在圆上总存在点使得”的的一个值______.13. 已知二次函数与轴交于两点,点,圆过三点,存在一条定直线被圆截得弦长为定值,则该定值为__________.14. 如图,点C 是以AB 为直径的圆O 上的一个动点,点Q 是以AB 为直径的圆O 的下半个圆(包括A ,B 两点)上的一个动点,,则的最小值为___________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知直线与直线.(1)若,求m 的值;(2)若点在直线上,直线过点P ,且在两坐标轴上的截距之和为0,求直线的方程.16. 已知:及经过点的直线.(1)当平分时,求直线的方程;(2)当与相切时,求直线的方程.17. 如图,已知,直线.(1)若直线等分的面积,求直线的一般式方程;(2)若,李老师站在点用激光笔照出一束光线,依次由(反射点为)、(反射点为)反射后,光斑落在点,求入射光线的直线方程.的:1l x my =--22:6890O x y x y ++++=l A O B π2ABO ∠=m ()()223411y x m x m m =+---∈R x ,A B ()1,3CG ,,A B C l G ,3,2PB AB AB PB ⊥==1)3AP BA QC +⋅(()1:280l m x my ++-=2:40,R l mx y m +-=∈12l l //()1,P m 2l l l C e ()()22124x y -+-=()1,1P --l l C e l l C el (()(),0,0,12,0A BC (():20l k x y k k +--=∈R l ABC Vl (2,P P BC K AC I P PK18. 已知圆与直线相切于点,圆心在轴上.(1)求圆的标准方程;(2)若直线与圆交于两点,当数的值;(3)过点且不与轴重合的直线与圆相交于两点,为坐标原点,直线分别与直线相交于两点,记的面积为,求的最大值.19. 在数学中,广义距离是泛函分析中最基本概念之一.对平面直角坐标系中两个点和,记,称为点与点之间的“距离”,其中表示中较大者.(1)计算点和点之间的“距离”;(2)设是平面中一定点,.我们把平面上到点的“距离”为的所有点构成的集合叫做以点为圆心,以为半径的“圆”.求以原点为圆心,以为半径的“圆”的面积;(3)证明:对任意点.的M 340x -+=(M x M ()()():21174l m x m y m m +++=+∈R M ,P Q PQ =m M x M ,A B O ,OA OB 8x =,C D ,OAB OCD V V 12,S S 12S S ()111,P x y ()222,P x y 1212121212max ,11tx x y y PP x x y y ⎧⎫--⎪⎪=⎨⎬+-+-⎪⎪⎩⎭12t PP 1P 2P t -{}max ,p q ,p q ()1,2P ()2,4Q t -()000,P x y 0r >0P t -r 0P r t -O 12t -()()()111222333131223,,,,,,t t t P x y P x y P x y PP PP P P ≤+2024—2025学年第一学期高二上10月自主学习效果评估数学试卷2024.10.08一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】D【3题答案】【答案】D【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】B【7题答案】【答案】C【8题答案】【答案】D二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.【9题答案】【答案】BC【10题答案】【答案】BCD【11题答案】【答案】ABC三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】1(答案不唯一)【13题答案】【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1) (2)或【16题答案】【答案】(1) (2)或.【17题答案】【答案】(1; (2).【18题答案】【答案】(1) (2). (3).【19题答案】【答案】(1); (2)4;(3)证明见解析.3--1m =-10x y -+=20x y -=3210x y -+=1x =-51270x y --=170y +-=2100x -=22(4)16x y -+=23m =-1423。

黑龙江省哈尔滨市2024-2025学年高二上学期10月月考试题 数学含答案

黑龙江省哈尔滨市2024-2025学年高二上学期10月月考试题 数学含答案

哈尔滨市2024-2025学年度上学期十月学业阶段性评价考试高二数学学科考试试卷(答案在最后)(考试时间:120分钟满分150分)第Ⅰ卷(共58分)一、单选题(共8小题,每小题5分,每小题只有一个选项符合题意)1.在空间直角坐标系中,点()2,1,4-关于x 轴对称的点坐标是()A.()2,1,4-- B.()2,1,4 C.()2,1,4--- D.()2,1,4-2.若向量{}123,,e e e 是空间中的一个基底,那么对任意一个空间向量a,存在唯一的有序实数组(),,x y z ,使得:123a xe ye ze =++ ,我们把有序实数组(),,x y z 叫做基底{}123,,e e e 下向量a 的斜坐标.设向量p 在基底{},,a b c 下的斜坐标为()1,2,3-,则向量p 在基底{},,a b a b c +-下的斜坐标为()A.13,,322⎛⎫--⎪⎝⎭B.13,,322⎛⎫-- ⎪⎝⎭ C.13,,322⎛⎫-⎪⎝⎭ D.13,,322⎛⎫-⎪⎝⎭3.已知两条直线12:410,:20l ax y l x ay +-=++=,则“2a =”是“12l l //”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知平面α的一个法向量(2,2,1)n =--,点()1,3,0A -在平面α内,若点()2,1,P z -到α的距离为103,则z =()A.16B.4- C.4或16- D.4-或165.已知点()2,3A -,()3,2B --,若过点()1,1的直线与线段AB 相交,则该直线斜率的取值范围是()A.[)3,4,4⎛⎤-∞-+∞ ⎥⎝⎦B.(]3,4,4⎡⎫+∞⎪⎢⎣--⋃⎭∞C.3,44⎡⎤-⎢⎥⎣⎦D.34,4⎡⎤-⎢⎣⎦6.直线l 过点()2,3A ,则直线l 与x 轴、y 轴的正半轴围成的三角形的面积最小值为()A.9B.12C.18D.247.如图,在平行六面体ABCD A B C D -''''中,5,3,7AB AD AA ='==,60BAD ∠=︒,45BAA DAA ''∠=∠=︒,则AC '的长为()A. B.C.D.8.正三棱柱ABC ﹣A 1B 1C 1中,所有棱长均为2,点E ,F 分别为棱BB 1,A 1C 1的中点,若过点A ,E ,F 作一截面,则截面的周长为()A. B.C. D.2+二、多选题(共3小题,每小题有多个选项符合题意,全部选对的得6分,部分选对得得部分分,有选错的得0分)9.下列命题中正确的是()A.若向量,a b 满足0a b ⋅<,则向量,a b 的夹角是钝角B.若,,OA OB OC 是空间的一组基底,且232OD OA OB OC =-+,则,,,A B C D 四点共面C.若向量{},,a b c 是空间的一个基底,若向量m a c =+,则{},,a b m 也是空间的一个基底D.若直线l 的方向向量为(1,0,3)e = ,平面α的法向量为(2,0,2)n =-,则直线l 与平面α所成角的余弦值为5510.以下四个命题为真命题的是()A.过点()10,10-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为11542y x =-+B.直线()cos 20R x θθ+=∈的倾斜角的范围是π5π0,,π66⎡⎤⎡⎫⎪⎢⎢⎣⎦⎣⎭C.直线10x y +-=与直线2210x y ++=D.直线()()()1213m x m y m m -+-=-∈R 恒过定点()5,2-11.如图,在多面体ABCDES 中,SA ⊥平面ABCD ,四边形ABCD 是正方形,且//DE SA ,22SA AB DE ===,,M N 分别是线段,BC SB 的中点,Q 是线段DC 上的一个动点(含端点,D C ),则下列说法正确的是()A.不存在点Q ,使得NQ SB⊥B.存在点Q ,使得异面直线NQ 与SA 所成的角为60o C.三棱锥Q AMN -体积的最大值是23D.当点Q 自D 向C 处运动时,直线DC 与平面QMN 所成的角逐渐增大第Ⅱ卷(共92分)三、填空题(共3个小题,每小题5分)12.已知()()()1,1,0,0,3,0,2,2,2A B C ,则向量AB 在AC上的投影向量的坐标是______.13.当点()2,1P --到直线l :()()()131240x y λλλλ+++--=∈R 距离的最大值时,直线l 的一般式方程是______.14.离散曲率是刻画空间弯曲性的重要指标.设P 为多面体Γ的一个顶点,定义多面体Γ在点P 处的离散曲率为()122311112πP k k k Q PQ Q PQ Q PQ Q PQ -∅=-∠+∠++∠+∠ ,其中i Q (1i =,2,……,k ,3k ≥)为多面体Γ的所有与点P 相邻的顶点,且平面12Q PQ ,平面23Q PQ ,…,平面1k k Q PQ -和平面1k Q PQ 为多面体Γ的所有以P 为公共点的面.如图,四棱锥S ABCD -的底面ABCD 是边长为2的菱形,且2AC =,顶点S 在底面的射影O 为AC 的中点.若该四棱锥在S 处的离散曲率13S ∅=,则直线OS 与平面SAB 所成角的正弦值为___________.四、解答题(共5小题,总计77分,解答应写出必要的文字说明、证明过程或演算步骤)15.已知直线()():12360m a x a y a -++-+=,:230n x y -+=.(1)若坐标原点O 到直线m ,求a 的值;(2)当0a =时,直线l 过m 与n 的交点,且它在两坐标轴上的截距相反,求直线l 的方程.16.已知ABC V 的顶点()1,2,A AB 边上的中线CM 所在直线的方程为210,x y ABC +-=∠的平分线BH 所在直线的方程为y x =.(1)求直线BC 的方程和点C 的坐标;(2)求ABC V 的面积.17.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求证:PD ⊥平面PAB .(2)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.18.已知两个非零向量a ,b ,在空间任取一点O ,作OA a = ,OB b =,则AOB ∠叫做向量a ,b 的夹角,记作,a b <> .定义a 与b 的“向量积”为:a b ⨯是一个向量,它与向量a ,b 都垂直,它的模sin ,a b a b a b ⨯=.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面ABCD ,4DP DA ==,E 为AD 上一点,AD BP ⨯=.(1)求AB 的长;(2)若E 为AD 的中点,求二面角P EB A --的余弦值;19.如图①所示,矩形ABCD 中,1AD =,2AB =,点M 是边CD 的中点,将ADM △沿AM 翻折到PAM △,连接PB ,PC ,得到图②的四棱锥P ABCM -,N 为PB 中点,(1)若平面PAM ⊥平面ABCD ,求直线BC 与平面PMB 所成角的大小;(2)设P AM D --的大小为θ,若π0,2θ⎛⎤∈ ⎥⎝⎦,求平面PAM 和平面PBC 夹角余弦值的最小值.哈尔滨市2024-2025学年度上学期十月学业阶段性评价考试高二数学学科考试试卷(考试时间:120分钟满分150分)第Ⅰ卷(共58分)一、单选题(共8小题,每小题5分,每小题只有一个选项符合题意)【1题答案】【答案】C【2题答案】【答案】D【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】B二、多选题(共3小题,每小题有多个选项符合题意,全部选对的得6分,部分选对得得部分分,有选错的得0分)【9题答案】【答案】BC【10题答案】【答案】BD【11题答案】【答案】CD第Ⅱ卷(共92分)三、填空题(共3个小题,每小题5分)【12题答案】【答案】111,,663⎛⎫ ⎪⎝⎭【13题答案】【答案】3250x y +-=【14题答案】【答案】1323-四、解答题(共5小题,总计77分,解答应写出必要的文字说明、证明过程或演算步骤)【15题答案】【答案】(1)14a =-或73a =-(2)370x y -=或120x y -+=【16题答案】【答案】(1)2310x y --=,51(,)77,(2)107.【17题答案】【答案】(1)证明见解析;(2)存在,AM AP 的值为14.【18题答案】【答案】(1)2(2)13-【19题答案】【答案】(1)π6;(2)11。

2024-2025学年广安市二中高二数学上学期第一次月考试卷及答案解析

2024-2025学年广安市二中高二数学上学期第一次月考试卷及答案解析

2024-2025学年广安市二中高二数学上学期第一次月考试卷(考试时间:120分钟试卷满分:150分)第一部分(选择题共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知复数()i 17i z =-,则z =()A.7i -+B.7i-- C.7i+ D.7i-【答案】D 【解析】【分析】根据复数乘法运算和共轭复数概念可得.【详解】因为()i 17i 7i z =-=+,所以7i z =-.故选:D 2.直线3:13l y x =-的倾斜角为()A.30oB.60oC.120D.150【答案】A 【解析】【分析】由题意可知直线的斜率,根据直线的斜率求解倾斜角即可.【详解】设直线l 的倾斜角为θ,0180θ≤< ,由题意可知,直线l 的斜率为3,所以tan 3θ=,即30θ= .故选:A .3.孝感市某高中有学生1200人,其中高一年级有学生400人,高二年级有学生600人,现采用分层随机抽样的方法抽取120人进行问卷调查,则被抽到的高二年级学生人数比高一年级学生人数多()A .20B.30C.40D.50【答案】A 【解析】【分析】根据题意先求抽样比,进而求高一,高二被抽到的学生生人数即可求解.【详解】抽样比等于1201120010=,于是,高一被抽到的学生人数为14004010⨯=,高二被抽到的学生人数为16006010⨯=,所以高二年级学生人数比高一年级学生人数多604020-=.故选:A.4.已知直线l 的一个方向向量()2,1,3m =-,且直线l 过点()0,,3A a 和()1,2,B b -两点,则a b +=()A.0B.1C.32D.3【答案】D 【解析】【分析】首先求出AB,依题意//AB m ,则AB m λ= ,根据空间向量共线的坐标表示计算可得.【详解】因为直线l 过点()0,,3A a 和()1,2,B b -两点,所以()1,2,3AB a b =---,又直线l 的一个方向向量()2,1,3m =- ,所以//AB m ,所以AB m λ=,所以()()1,2,32,,3a b λλλ---=-,所以21233a b λλλ=-⎧⎪-=-⎨⎪=-⎩,解得123232a b λ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩,所以3a b +=.故选:D5.空间内有三点()()()3,1,4,2,1,1,1,2,2P E F -,则点P 到直线EF 的距离为()A.B.C.D.【答案】A 【解析】【分析】求出()1,1,1EF =-,得到直线EF 的一个单位方向向量,利用点到直线距离公式得到答案.【详解】因为()1,1,1EF =- ,所以直线EF 的一个单位方向向量为()1,1,13u =- .因为()1,0,5PE =- ,所以点P 到直线EF =.故选:A6.在ABC V 中,60,2BAC BC AB ∠=︒==,且有12AM AB =,则线段CM 的长为()A.2B.2C.D.1【答案】D 【解析】【分析】先由余弦定理求出1AC =,可得ABC V 为直角三角形,由12AM AB = 可得M 为AB 的中点,进而由斜边上的中线等于斜边一半可得CM 的长.【详解】在ABC V 中,由余弦定理可得2222cos BC AC AB AB AC BAC =+-⋅∠,则2214222AC AC =+-⨯⨯,即2210AC AC -+=,解得1AC =.则由22212+=即222AB AC BC =+,可得CA CB ⊥,又12AM AB =,可知M 是AB 的中点,故CM 即为斜边AB 上的中线,则112CM AB ==.故选:D.7.已知直线l 的倾斜角为α,并且0120α≤<︒︒,直线l 的斜率k 的范围是()A.0k <≤B.k >C.0k ≥或k <D.0k ≥或3k <-【答案】C【解析】【分析】根据倾斜角与斜率的关系可求得斜率的取值范围.【详解】因为斜率tan k α=,且0120α≤<︒︒,其中90α=︒时直线l 无斜率,当090α︒≤<︒时,得0k ≥;当90120α︒<<︒时,得k <;故选:C.8.已知四棱锥16,3A BCDE V CD -==,4BC =,CE 平分BCD ∠,点P 在AC 上且满足3AC AP =,则三棱锥A DEP -的体积为()A.87B.167C.85D.165【答案】B 【解析】【分析】根据题意,设点A 到平面BCDE 的距离为d ,P 到平面ADE 的距离为h ,则有()111633A BCDE BCE CDE BCDE V d S d S S -=⨯=⨯+= 四边形,利用三角形面积公式可得A CDE V -,又由点P 在AC 上且满足3AC AP =,可得P 到平面AED 的距离,结合三棱锥体积公式计算可得答案.【详解】根据题意,设点A 到平面BCDE 的距离为d ,P 到平面ADE 的距离为h ,则有()111633A BCDE BCE CDE BCDE V d S S S -=⨯=⨯+= 四边形,而1sin 2BCE S BC CE BCE =⨯⨯⨯∠ ,1sin 2CDE S CD CE DCE =⨯⨯⨯∠ ,又由3CD =,4BC =,CE 平分BCD ∠,则43BCE CDE S S =,则13134837377A CDE CDE A BCDE BCDE V d S d S V --⎛⎫=⨯=⨯⨯=⨯= ⎪⎝⎭ 四边形;故487C ADE A CDE V V --==,而13C ADE ADE V h S -=⨯ ,则有14837ADE h S ⨯= ,又由点P 在AC 上且满足3AC AP =,故P 到平面AED 的距离为3h,则有11637P ADE C ADE V V --==,故11637A DEP P ADE C ADE V V V ---===.故选:B .二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在平面直角坐标系中,下列说法不正确的是()A.任意一条直线都有倾斜角B.直线的倾斜角越大,则该直线的斜率越大C.若一条直线的倾斜角为α,则该直线的斜率为tan αD.斜率相等的两直线平行【答案】BCD 【解析】【分析】根据直线的倾斜角和斜率的定义一一判断即可.【详解】任何一条直线都存在倾斜角,A 正确;钝角大于锐角,但是钝角对应的斜率小于锐角对应的斜率,B 错误;若一条直线的倾斜角90α= ,则斜率不存在,C 错误;斜率相等的两条直线可能是重合或平行,D 错误;故选:BCD.10.已知甲、乙两位同学在高一年级六次考试中的数学成绩的统计如图所示,下列说法正确的是()A.若甲、乙两组数据的平均数分别为12,x x ,则12x x >B.若甲、乙两组数据的方差分别为2212,s s ,则2212s s >C.甲成绩的中位数大于乙成绩的中位数D.甲成绩的极差小于乙成绩的极差【答案】ACD 【解析】【分析】对四个选项一一判断:根据散点图直接判断选项A 、B 、D ;分析甲、乙的中位数特点,即可判断C.【详解】由散点图的点的分布可知,甲同学除第二次考试成绩略低于乙同学,其他次考试成绩都高于乙同学,所以12x x >,故选项A 正确;由散点图点的分步变化趋势可知,甲同学的成绩比乙同学的成绩稳定,由方差的意义可得2212s s <.故选项B错误;因为统计了6次数学成绩,故将一组数据从小到大排序后,第三个和第四个数据的平均数为该组数据的中位数,由散点图知,甲同学成绩排序后的第三次和第四次成绩均在90以上,而乙同学成绩排序后的第三次和第四次成绩均在90以下,故甲成绩的中位数大于乙成绩的中位数.故选项C 正确;因为极差为数据样本的最大值与最小值的差,所以甲同学成绩的极差小于乙同学成绩的极差,故选项D 正确.故选:ACD.11.在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,动点P 在体对角线1BD 上(含端点),则下列结论正确的有()A.当P 为1BD 中点时,APC ∠为锐角B.存在点P ,使得1BD ⊥平面APCC.AP PC +的最小值3D.顶点B 到平面APC的最大距离为6【答案】ABC 【解析】【分析】依题意建立空间直角坐标系,设()101BP BD λλ=≤≤,当P 为1BD 中点时,根据cos PA PC APC PA PC ⋅∠=⋅ 判断cos APC ∠得符号即可判断A ;当1BD ⊥平面APC ,则有110BD AP BD CP ⎧⋅=⎪⎨⋅=⎪⎩,从而求出λ可判断B ;当11,BD AP BD CP ⊥⊥时,AP PC +取得最小值,结合B 即可判断C ;利用向量法求出点B 到平面APC 的距离,分析即可判断D.【详解】如图,以点D为原点建立空间直角坐标系,则()()()()11,0,0,1,1,0,0,1,0,0,0,2A B C D ,设()101BP BD λλ=≤≤,则()11,1,2BD =-- ,故()1,,2BP BD λλλλ==--,则()()()0,1,0,,2,1,2AP AB BP λλλλλλ=+=+--=--,()()()1,0,0,,21,,2CP CB BP λλλλλλ=+=+--=--,对于A ,当P 为1BD 中点时,12λ=,则11,,122AP ⎛⎫=- ⎪⎝⎭ ,11,,122CP ⎛⎫=- ⎪⎝⎭ ,则11,,122PA ⎛⎫=-- ⎪⎝⎭ ,11,,122PC ⎛⎫=-- ⎪⎝⎭,所以1cos 03PA PC APC PA PC⋅∠==>⋅ ,所以APC ∠为锐角,故A 正确;当1BD ⊥平面APC ,因为,AP CP ⊂平面APC ,所以11,BD AP BD CP ⊥⊥,则11140140BD AP BD CP λλλλλλ⎧⋅=+-+=⎪⎨⋅=-++=⎪⎩,解得16λ=,故存在点P ,使得1BD ⊥平面APC ,故B 正确;对于C ,当11,BD AP BD CP ⊥⊥时,AP PC +取得最小值,由B 得,此时16λ=,则151,,663AP ⎛⎫=- ⎪⎝⎭ ,511,,663CP ⎛⎫=- ⎪⎝⎭,所以6AP CP == ,即AP PC +的最小值为303,故C 正确;对于D ,()()0,1,0,1,1,0AB AC =- ,(),1,2AP λλλ=--,设平面APC 的法向量(),,n x y z =,则()0120n AC x y n AP x y z λλλ⎧⋅=-+=⎪⎨⋅=-+-+=⎪⎩ ,可取()2,2,21n λλλ=- ,则点B 到平面APC的距离为AB n n ⋅= 当0λ=时,点B 到平面APC 的距离为0,当01λ<≤2==,当且仅当12λ=时,取等号,所以点B 到平面APC的最大距离为2,故D 错误.故选:ABC.【点睛】关键点睛:本题解决的关键是建立空间直角坐标系,求得(),1,2AP λλλ=--,()1,,2CP λλλ=--,从而利用空间向量法逐一分析判断各选项即可.第二部分(非选择题共92分)三、填空题:本题共三小题,每小题5分,共15分.12.已知向量(2,,4),(1,4,2)a m b =-=- ,且a b ⊥ ,则实数m =______.【答案】52##2.5【解析】【分析】根据向量垂直的坐标表示可直接构造方程求得结果.【详解】因为a b ⊥ ,所以·2480a b m =-+-= ,解得52m =.故答案为:52.13.已知,,,A B C D 四点共面且任意三点不共线,平面ABCD 外一点P ,满足2(,PD AB PB PC μλλμ=++ 均大于0),则11λμ+的最小值________.【答案】4【解析】【分析】根据向量的线性表示,结合共面的性质,可得1μλ+=,即可利用基本不等式求解.【详解】由2PD AB PB PC μλ=++可得()()222PD PB PA PB PC PA PB PC μλμλ=-++=-+++ ,,,,A B C D 四点共面且任意三点不共线,所以221μλ-+++=,故1μλ+=,由于,λμ均为正数,所以()11224μλμλλμλμ⎛⎫++=++≥+⎪⎝⎭,当且仅当μλλμ=,即12μλ==等号成立,故答案为:414.如图,在四面体ABCD 中,ABD △与BCD △均是边长为的等边三角形,二面角A BD C --的大小为90︒,则四面体ABCD 的外接球表面积为______.【答案】20π【解析】【分析】设1O 为BCD △的中心,O 为四面体ABCD 的外接球的球心,过O 作OG AM ⊥,然后在Rt AGO △中,由222GA GO OA +=求出外接球的半径,再由球的表面积公式计算可得.【详解】如图所示:设1O 为BCD △的中心,O 为四面体ABCD 的外接球的球心,则1OO ⊥平面BDC .因为二面角A BD C --的大小为90︒,即平面ABD ⊥平面BCD ,设M 为线段BD 的中点,外接球的半径为R ,连接,,AM CM OA ,过O 作OG AM ⊥于点G ,易知G 为ABD △的中心,则11OO OG MO MG ===,因为3332MA =⨯=,故1313MG OG ==⨯=,2GA =,在Rt AGO △中,222GA GO OA +=,故22212R +=,则5R =所以外接球的表面积为24π20πS R ==,故答案为:20π.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.111ππ1,2,23AB AD AA BAD BAA DAA ===∠=∠=∠=.(1)用向量1,,AB AD AA 表示向量1BD ,并求1BD;(2)求1cos ,BD AC .【答案】(1)11BD AD AA AB =+-(2)3【解析】【分析】(1)借助空间向量的线性运算与模长与数量积的关系计算即可得;(2)结合题意,借助空间向量的线性运算与夹角公式计算即可得.【小问1详解】111A BD D AB AD AA AB =-=+-,则2222211111()222BD AD AA AB AD AA AB AD AA AD AB AB AA =+-=+++⋅-⋅-⋅111412120221622=+++⨯⨯⨯--⨯⨯⨯=,所以1BD =【小问2详解】由空间向量的运算法则,可得AC AB AD =+ ,因为11,2AB AD AA ===且11ππ,23BAD BAA DAA ∠=∠=∠=,所以AC====,11()()BD AC AD AA AB AB AD⋅=+-⋅+2211AD AB AD AA AB AA AD AB AD AB=⋅++⋅+⋅--⋅22ππππ11cos121cos21cos111cos22332=⨯⨯++⨯⨯+⨯⨯--⨯⨯=,则1113cos,3BD ACBD ACBD AC⋅==⋅.16.已知(1,2),(5,0),(3,4)A B C.(1)若,,,A B C D四点可以构成平行四边形,求点D的坐标;(2)在(1)的条件下若点D在第四象限的情况下,判断,,,A B C D构成的平行四边形是否为菱形.【答案】(1)(1,6)-或(7,2)或(3,2)-(2)不是菱形【解析】【分析】(1)分四边形ABCD、ABDC、ACBD是平行四边形三种情况讨论,分别利用对边的斜率相等求解即可;(2)分别验证对角线是否垂直,即对角线斜率乘积是否为1-即可.【小问1详解】由题意得021512ABk-==--,42131ACk-==-,40235BCk-==--,设(),D a b,若四边形ABCD是平行四边形,则CD ABk k=,AD BCk k=,即4132221baba-⎧=-⎪⎪-⎨-⎪=-⎪-⎩,解得16ab=-⎧⎨=⎩,即()1,6D-.若四边形ABDC是平行四边形,则CD ABk k=,BD ACk k=,即4122015b a b a -⎧=-⎪⎪-⎨-⎪=⎪-⎩,解得72a b =⎧⎨=⎩,即()7,2D .若四边形ACBD 是平行四边形,则BD AC k k =,AD BC k k =,即015221b a b a -⎧=⎪⎪-⎨-⎪=-⎪-⎩,解得32a b =⎧⎨=-⎩,即()3,2D -.综上所述,点D 的坐标为()1,6-或()7,2或()3,2-.【小问2详解】若D 的坐标为()3,2-,因为12AB k =-,直线CD 的斜率不存在,所以平行四边形ACBD 不是菱形.17.四棱锥M CDEF -中,平面MCD ⊥平面CDEF ,//DE CF ,24DE CF ==,CF EF CD ==,MCD △是正三角形,点N 是ME的中点.(1)求证://FN 平面MCD ;(2)求点D 到平面MCE 的距离.【答案】(1)证明见解析(2【解析】【分析】(1)记点H 是MD 的中点,连接,HN CH ,利用线线平行证明线面平行;(2)连接CE ,过点C 作CP DE ⊥于点P ,可证平面MCD ⊥平面MCE ,作DQ CM ⊥于点Q ,点Q 到平面MCE 的距离为DQ .【小问1详解】证明:记点H 是MD 的中点,连接,HN CH ,点N 是ME 的中点,∴//NH DE ,且12NH DE =,//CF DE ,且12CF DE =,∴//NH CF ,且NH CF =,∴四边形CFNH 为平行四边形,∴//CH FN ,CH ⊂平面,MCD FN ⊄平面MCD ,∴//FN 平面MCD .【小问2详解】解:连接CE ,过点C 作CP DE ⊥于点P ,由题知,11()(42)122DP DE CF =-=⨯-=,∴3CDP π∠=,∴CE ===,∴222CD CE DE +=,∴CE CD ⊥,∴平面MCD ⊥平面CDEF ,平面MCD 平面CDEF CD =,∴CE ⊥平面MCD ,又CE ⊂平面CME ,∴平面MCD ⊥平面MCE ,作DQ CM ⊥于点Q ,又平面MCD 平面MCE CM =,则DQ ⊥平面MCE ,即点Q 到平面MCE 的距离为DQ .由MCD △是正三角形,且2CD =得3DQ =∴点D 到平面MCE 318.某高校承办了成都世乒赛志愿者选拔的面试工作.现随机抽取了100名候选者的面试成绩,并分成五组:第一组[45,55),第二组[55,65),第三组[65,75),第四组[75,85),第五组[85,95],绘制成如图所示的频率分布直方图.已知第三、四、五组的频率之和为0.7,第一组和第五组的频率相同.(1)求,a b 的值;(2)估计这100名候选者面试成绩的众数、平均数和60%分位数(分位数精确到0.1);(3)在第四、第五两组志愿者中,采用分层抽样的方法从中抽取5人,然后再从这5人中选出2人,以确定组长人选,求选出的两人来自不同组的概率.【答案】(1)0.005a =,0.025b =(2)众数为70,平均数为69.5,60%分位数为71.7(3)25【解析】【分析】(1)由第三、四、五组的频率之和为0.7,所有组频率之和为1,列方程求,a b 的值;(2)由频率分布直方图中众数、平均数和百分位数的定义公式计算;(3)根据分层抽样确定的人数,解决古典概型概率问题.【小问1详解】因为第三、四、五组的频率之和为0.7,所以()0.0450.020100.7a ++⨯=,解得0.005a =,所以前两组的频率之和为10.70.3-=,即()100.3a b +⨯=,所以0.025b =.【小问2详解】众数为70,平均数为500.05600.25700.45800.2900.0569.5⨯+⨯+⨯+⨯+⨯=,前两个分组频率之和为0.3,前三个分组频率之和为0.75,所以60%分位数在第三组,且为0.60.3651071.70.45-+⨯≈.【小问3详解】第四、第五两组志愿者分别有20人,5人,采用分层抽样的方法从中抽取5人,则第四组抽4人,记为a b c d ,,,,第五组抽1人,记为A ,则从这5人中选出2人,有()()()()()()()()()(),,,,,,,,,,,,,,,,,,,a b a c a d a A b c b d b A c d c A d A 共10种结果,两人来自不同组有()()()(),,,,,,,a A b A c A d A 共4种结果,所以两人来自不同组的概率为42105P ==.19.在Rt ABC △中,90C ∠=︒,3BC =,6AC =,,D E 分别是,AC AB 上的点,满足DE BC ∥且DE 经过ABC V 的重心,将ADE V 沿DE 折起到1A DE △的位置,使1A C CD ⊥,M 是1A D 的中点,如图所示.(1)求证:1A C ⊥平面BCDE ;(2)求CM 与平面1A BE 所成角的大小;(3)在线段1AC 上是否存在点N ,使平面CBM 与平面BMN 成角余弦值为34?若存在,求出CN 的长度;若不存在,请说明理由.【答案】(1)证明见解析(2)π4(3或【解析】【分析】(1)应用线面垂直的判定定理证明线面垂直关系,再由性质定理得到线线垂直关系,进而再利用判定定理证明所求证的线面垂直关系;(2)以CD 为x 轴,CB 为y 轴,1CA 为z 轴,建立空间直角坐标系.用向量法求CM 与平面1A BE 所成角的大小;(3)假设存在点N ,使平面CBM 与平面BMN 成角余弦值为34,设1CN CA λ= ,分别求解两平面的法向量,用λ表示余弦值解方程可得.【小问1详解】因为在Rt ABC △中,90C ∠=︒,DE BC ∥,且BC CD ⊥,所以DE CD ⊥,DE AD ⊥,则折叠后,1DE A D ⊥,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以DE ⊥平面1A CD ,1A C ⊂平面1A CD ,所以1DE A C ⊥,又已知1A C CD ⊥,CD DE D = 且都在面BCDE 内,所以1A C ⊥平面BCDE ;【小问2详解】由(1),以CD 为x 轴,CB 为y 轴,1CA 为z 轴,建立空间直角坐标系-C xyz .因为2AD CD =,故223DE BC ==,由几何关系可知,2CD =,14A D =,1AC =,故()0,0,0C ,()2,0,0D ,()2,2,0E ,()0,3,0B,(10,0,A,(M,(CM =,(10,3,A B =-,(12,2,A E =- ,设平面1A BE 的法向量为(),,n x y z =r ,则1100n A B n A E ⎧⋅=⎪⎨⋅=⎪⎩,即30220y x y ⎧-=⎪⎨+-=⎪⎩,不妨令2y =,则z =,1x =,(1,n = .设CM 与平面1A BE 所成角的大小为θ,则有sin cos ,2CM n CM n CM n θ⋅===,设θ为CM 与平面1A BE 所成角,故π4θ=,即CM 与平面1A BE 所成角的大小为π4;【小问3详解】假设在线段1AC 上存在点N ,使平面CBM 与平面BMN成角余弦值为4.在空间直角坐标系中,(1,BM =-,CM =,1(0,0,CA =,设1CN CA λ=,则(0,0,)CN =,(0,3,0)(0,0,)(0,3,)BN BC CN =+=-+=-,设平面BMN 的法向量为()2222,,n x y z = ,则有2200n BM n BN ⎧⋅=⎪⎨⋅=⎪⎩,即222223030x y y z ⎧-+=⎪⎨-+=⎪⎩,不妨令2z =,则22y λ=,263x λ=-,所以(263,2n λλ=-,设平面CBM 的法向量为()3333,,n x y z = ,则有3300n BM n CM ⎧⋅=⎪⎨⋅=⎪⎩,即3333330x y x ⎧-+=⎪⎨=⎪⎩,不妨令3z =,则33x =-,30=y,所以(3n =-,若平面CBM 与平面BMN成角余弦值为4.则满足232323cos,4n nn nn n⋅==,化简得22310λλ-+=,解得1λ=或12,即1CN CA=或112CN CA=,故在线段1AC上存在这样的点N,使平面CBM与平面BMN 成角余弦值为34.此时CN的长度为或。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新邵八中高二第一学期第一次月考数学试题(理科)
命题人 曾剑 审核 张友莲 时量:120分钟 满分:150分
一、选择题:本大题共8个小题,每小题5分,共40分,在每小题
给出的四个选项中,只有一项是符合题目要求的,将各题正确答案的代号填写在括号内. 1. 在等比数列{}n a ,37232a a ==,,则q =(

A . 2 B. -2
C. ±2
D. 4
2.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前6项之和
等于( ) A.15
B.18
C. 21
D.42
3. 等差数列{a n }中,已知1a =1
3,52a a +=4,a n =33,则n 为
( ) A 、50 B 、49 C 、48 D 、47
4. 三个数a ,b ,c 既是等差数列,又是等比数列,则a ,b ,c 间的
关系为 ( )
A 、b c a b -=-
B 、ac b =2
C 、c b a ==
D 、0≠==c b a
5. 在△ABC 中,若sin cos cos sin A B A B =,则△ABC 为( ) A 直角三角形
B 等腰三角形
C 等腰直角三角形
D 等腰三角形或直角三角形
6. 在各项均为正数的等比数列
{}n b 中,若783b b ⋅=,
则3132log log b b ++……314log b +等于( ) A 5 B 6 C 7
D8
7. 若实数a 、b 满足a+b=2,则3a +3b 的最小值是 ( )
A 、18
B 、6
C 、23
D 、24
3
8. 已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪
-+≥⎨⎪--≤⎩
,则z=x 2+y 2的最大值
和最小值分别是 ( )
A 、13,1
B 、13,2
C 、13,45 D

二、填空题:本大题共7个小题,每小题共5分,共35分,把答案填写在题中的横线上.
9. 在等比数列{}n a 中,341512
11-=-==n n S a a ,,,则=n 10.111122334+++⨯⨯⨯.……1(1)n n +=+
11. 等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则{}n a 的前9项的和S 9= 。

12. 在△ABC 中
,a =
b =1cos 3C =
,则ABC S =△ 。

13..△ABC 中,A (2,4)、B (-1,2)、C (1,0),D (x ,y )在△ABC 内部及边界运动,
则z=x -y 的最大值为 . 14.函数
11
2)(-+
=x x x f (1>x )的值域是 。

15. 已知x ,y 满足⎪⎩

⎨⎧≥-+≥≥≤-+0320,1052y x y x y x ,则x
y 的最大值为
三、解答题:本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)
解不等式
06522>+-a ax x ,0≠a
17.(本小题满分12分)
在ABC △中,已知45B =︒,D 是BC 上一点,
5,7,3AD AC DC ===,求AB 的长.
18.(本小题满分12分)
求数列a,2a 2,3a 3,4a 4,…,na n , …(a 为常数, a ≠0)的前n 项和。

D
C
A
B
19.(本小题满分13分)
已知数列{}n a 的各项为正数,其前n 项和
2
n n a 1S (
)2+=,设
10()*=-∈n n b a n N ,
(1)求证:数列n {a }是等差数列,并求n {a }的通项公式;
(2)设数列{}n b 的前n 项和为T n ,求T n 的最大值。

20.(本小题满分13分)投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元.设)(n f 表示前n 年的纯利润总和(f (n )=前n 年的总收入一前n 年的总支出一投资额). (1)该厂从第几年开始盈利?
(2)若干年后,投资商为开发新项目,对该厂有两种处理方案:
①年平均纯利润达到最大时,以48万元出售该厂;②纯利润总和达到最大时,以10万元出售该厂,问哪种方案更合算?
21.(本小题满分13分)
数列{a n }中,a 1=8,a 4=2且满足a n+2=2a n+1-a n ,(n ∈N *). (1)求数列{a n }的通项公式;
(2)设S n =|a 1|+|a 2|+…+|a n |,求S n ; (3)设b n =
)
12(1n a n (n ∈N *),T n =b 1+b 2+……+b n (n ∈N *),是否存在最大的整
数m ,使得对任意n ∈N *均有T n >32m
成立?若存在,求出
m 的值;
若不存在,说明理由.
新邵八中高二第一学期第一次月考数学试题
答 题 卷(理科)
一、选择题:本大题共8个小题,每小题5分,共40分,在每小题
给出的四个选项中,只有一项是符合题目要求的,将各题正确答
填写在题中的横线上.
9、 10 10 n/n+1 11、 99
12、 4√3 13、 1 14、[2+2√2 ,+ ∞ ) 15、 2
三、解答题:本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16、(本小题满分12分)
解 原不等式可化为:()0)3(2>--a x a x ,对应方程()0)3(2=--a x a x 的两根为 a x a x 3,221==,当0a 时,即23a a ,解集为{}a x a x x 23|<>或;当0<a 时,即23a a ,解集为{}
|23x x a x a ><或
17、(本小题满分12分)
在ADC ∆中,由余弦定理得2223571
cos 2352
ADC +-∠=
=-⨯⨯, ∵(0,)ADC π∠∈,∴120ADC ∠=︒,
∴60ADB ∠=︒,
在ABD ∆中,由正弦定理得sin 5sin 60sin sin 45AD ADB AB B ∠︒=
==︒ 班级___________ 学号____________ 姓名___________ 考场号__________ 座位号__________ ……………………………………… 装 …………………………………… 订 ……………………………… 线…………………………
18、(本小题满分12分)
19、(本小题满分13分)
()()
()
()()()()()(){}11
1
2211221221112
211111114S 21,
14S 21,212422020,0,12,(),(1)02
1,12(1)21
----------=++=++-=-+-∴--+=+--=>+∴-=∴==∴-=∴==+-=-n n n n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a a a a a a a S a a a n n 21.证明:得:
;又为等差数列,又
()
()()
56155521212125671212(2)10112112510,111210
5919,1,525
2
911230,B 102
0,B ()
()2(=-=-=-⨯=>=-=-<+====+-≤>∴=+++=
=-><∴=+++=+++-+++=-+++++++ n n n n n n n n n n n b a n
b b b b b n n b b b b n n b b b b b b b b b b b b b b b b 的前项和最大,即T 最大,T 当n 5时,当n 5时,252122
)1050
105)B 10505)
=-+⎧-≤⎪
=+++=⎨-+>⎪⎩ n n n n n n n b b b n n n (综上:( 20、(本小题满分13分)
解:由题意知
72]42)
1(12[50)(-⨯-+
-=n n n n n f
724022-+-=n n ………………4分
(1)由
182,072402,0)(2
<<>-+->n n n n f 解得即…………7分 由*N n ∈知,从第三年开始盈利.…………………………8分
(2)方案①:年平均纯利润16
)36
(240)(≤+-=n n n n f
当且仅当n=6时等号成立.
故方案①共获利6×16+48=144(万元),此时n=6.………………10分
方案②:
.
128
)
10
(2
)
(2+
-
-
=n
n
f当n=10,.
128
)
(
max
=
n
f
故方案②共获利128+10=138(万元)……………………12分比较两种方案,选择第①种方案更合算.……………………13分
21、(本小题满分13分)。

相关文档
最新文档